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ABSTRACT The existing open-source infrared dim and small target dataset have limited data capacity and
insufficient scenarios. To improve the generalization and robustness of the network, it is usually needed
to establish a new dataset for the specific application scenario. When using the conventional training
method in the new dataset, there are problems such as low target-to-background proportion in full-sized
images, inaccurate labels due to nonexpert annotators, and inadequate diversity of data, which affect the
training efficiency and network performance. This article proposes a training strategy based on the newly
established dataset to overcome these problems. Specifically, small-sized image transfer learning is proposed
to increase the small target proportion, shorten training time, and improve training efficiency. Moreover,
a label refinement method based on loss evaluation metrics is adopted to reduce the impact of inaccurate
labeling on network training. In addition, an iterative training method is proposed by supplementing new
false alarm and miss detection data into the dataset between each iteration to further improve the training
performance. The experiments are carried out and the results show that the above method can effectively
shorten training time, improve training efficiency and performance of infrared dim and small target detection
networks.

INDEX TERMS Infrared dim and small targets, target detection, training strategy, sequential images, cloud
background.

I. INTRODUCTION
Infrared dim and small target detection is one of the
most important directions in the infrared research field.
By accurately detecting infrared dim and small targets, it is
possible to achieve monitoring and warning of long-distance
targets, which is of great significance in ensuring the safety of
aviation. In recent years, with the development and progress
of artificial intelligence science, deep learning convolutional
neural networks have rapidly gained a significant advantage
over conventional methods in the field of computer vision.
Deep learning has also gradually been applied to infrared dim
and small target detection.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuo Sun.

Liu et al. [1] proposed a correlation filter-based ensem-
ble tracker with multi-layer convolutional features for
thermal infrared tracking. A fusion method based on
Kullback–Leibler divergence and a simple scale estimation
strategy are provided to improve the tracking performance.
Zhao et al. [2] designed a convolutional neural network
TBC-Net for infrared dim and small target detection, which
consists of a target extraction module (TEM) and a semantic
constraint module (SCM). The SCM imposes a semantic
constraint on TEM by combining the high-level classification
task and solves the problem of the difficulty of learning
features caused by class imbalance problem., Zhao et al. [2]
designed a feature extraction network based on the YOLO
detection framework [4]. The feature fusion network was
improved by utilizing the idea of multi-path aggregation. The
number of detection output layers was adjusted to enhance
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the reuse of feature information. Zhang et al. [5] introduced
CA-U2-Net, a refinement of the U2-Net tailored to make
the network more focused on infrared dim and small targets.
Bao et al. [6] improved DNA-Net by retaining the densely
nested attention network structure in Dense Nested Attention
Network (DNA-Net) and introducing a Swin-transformer in
the feature extraction stage to enhance feature continuity
resulting in better performance.

The above methods of infrared dim and small targets
mainly focus on the network model [7], whereas some
scholars have studied the training strategies of network
models, including distributed learning [10], knowledge
distillation [11], data augmentation, and optimization [12],
and hyperparameter optimization [13]. Distributed learning
and knowledge distillation usually require more training
time and compute resources, whereas hyperparameters need
to be optimized specifically for the given problem and model.
Compared to other methods, augmenting and optimizing the
dataset is more universally applicable.

Recently, scholars have also researched data augmentation
methods. The Cutout [14] method randomly masks parts
of the input image during the training process, which is
simple and easy to implement. This method forces the
model to learn more robust representations, which reduce
overfitting and can be combinedwith other data augmentation
methods. TheMixup [15] method mixes two input samples in
proportion to generate a new sample. This method improves
the model’s generalization ability and reduces the impact of
label noise. The GridMask [16] method randomly deletes
subregions of the input image and fills them with patches
from other training data. This method considers both global
and local contexts, encouraging the learning of richer visual
features and improving accuracy. Mosaic [17] concatenates
and adjusts labels to generate diverse synthetic images with
multiple data stitched together. This method increases data
diversity, enriches context, and effectively utilizes resources.

The above methods mainly involve mixing, deleting,
and other operations to the original image to enhance
the generalization ability of the network model, mainly
focusing on the final training performance whereas ignoring
the analysis of training efficiency. The improvement of
training efficiency can discover network problems timely,
save computing resources, and reduce training time.

This article proposes a training strategy based on the newly
established dataset to improve the training efficiency and
network performance, including small-sized image transfer
learning, label refinement based on loss evaluation metrics,
and iterative training based on the updated dataset. The
experiments are carried out and the results show that the
above method can effectively shorten training time, improve
training efficiency and performance of infrared dim and small
target detection networks.

II. SEQUENTIAL INFRARED DIM AND SMALL TARGETS
According to the definition provided by SPIE (Society of
Photo-Optical Instrumentation Engineers) [18], the size of
infrared dim and small targets is less than 81 pixels, generally

not exceeding 0.12% of the total number of pixels. The term
‘‘dim’’ indicates that there is a small difference between the
target and the background, resulting in a low signal-to-noise
ratio. The term ‘‘Small’’ indicates that the target occupies a
small proportion, and in extreme cases, it can be as few as one
or two pixels. Due to the limited number of pixels occupied by
targets, these targets usually lack texture features, as shown
in the Fig. 1.

FIGURE 1. Infrared dim and small target.

Sequential images contain more motion information than
single-frame images. In sky scenes, themotion characteristics
of the target and background are different, and the image
sequence contains the motion information of both. Through
network learning, the motion information of small targets can
be effectively utilized.

Image differencing [19] is a method of determining which
regions have changed by comparing the pixel differences
between consecutive frames. The infrared dim and small
targets have relative motion characteristics with the moving
platform, and the background’s motion speed is usually
smaller than the target’s motion speed. This difference can
be fully utilized for dim and small target detection. So,
image differencing can be used to distinguish between the
target and background, which facilitates the extraction of
target information and is advantageous for subsequent target
detection. Fig. 2 shows the original image and the differential
image.

FIGURE 2. Original image (a) and differential image(b).

Therefore, this article uses differential operations to
transform sequential images into sequential differential
images, which improves the network’s ability by extracting
information of small and dim targets. In practical utilization,
the first frame of the images is sequentially subtracted from
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the second, third, and fourth frames of the sequential images,
as shown in Eq. (1). Where F is the original image sequence
with a size ofM×N× 4,G is the differential image sequence
with a size of M × N × 3, and M and N are the width and
height of the image respectively.

G =

F (:, :, 1) − F(:, :, 2)
F(:, :, 1) − F(:, :, 3)
F(:, :, 1) − F(:, :, 4)

 (1)

Apart from the input method of images, suitable training
strategies can make up the problems in the network training
process, improve the accuracy and robustness of the network,
and provide a reliable basis for subsequent decision-making.

III. INFRARED DIM AND SMALL TARGETS TRAINING
STRATEGY
The performance of the network depends on the quality of
the dataset. Different application scenarios have different
characteristics and require different datasets. Although there
are currently some open-source infrared target datasets, these
datasets do not fully cover all scenarios and requirements.
To better reflect the real situation, a dataset is built to
collect infrared image data suitable for specific application
scenarios. A good dataset should have the characteristics
of diversity, coverage, high quality, balanced sample, and
being updated timely. By optimizing the dataset, the accuracy,
robustness, and adaptability of the model can be improved.

The impact of the dataset on training mainly includes
three parts for the detection of infrared dim and small
targets:
1) Low training efficiency of full-sized images. The pixels

occupied by infrared dim and small targets are few, and most
of the pixels belong to the background. The proportion of
the target and background is unbalanced. Most of the time is
spent on calculating the background during network training.
Such a process slows down the learning of dim and small
targets. In addition, the actual resources occupied by the
targets are less, wasting storage space.
2) Inaccurate labeling. The correctness and accuracy of the

labels have an impact on the network performance, which
should be considered in the design of the training strategy. For
network training, inaccurate labels will cause large loss and
incorrect gradient direction of learning, resulting in training
fluctuations. Therefore, timely refining inaccurate labels is
significant for network training.
3) Incomplete dataset. The diversity and richness of data

are crucial for training. In actual engineering, it is difficult to
establish a completely sufficient and accurate dataset in the
initial stage, thus continuous data supplementation is needed.
In addition, false positive and false negative data is vital for
training effectiveness, and how to mine and supplement false
positive and false negative data in subsequent training is also
a major challenge.

Therefore, this article conducts research on the above
problems and proposes a training strategy related to dataset
optimization, including small-sized image transfer learning,

label refinement based on loss evaluation metrics, and
iterative training based on updated dataset. The specific
flowchart is shown as Fig. 3.

FIGURE 3. Flow chart of the training strategy.

A. SMALL-SIZED IMAGE TRANSFER LEARNING
Full-sized images are frequently used to establish datasets for
infrared dim and target detection algorithms, yet there are
some problems with this approach.

First of all, it usually requires a large and rich dataset for
the robustness of network. The scale of full-sized datasets
increases with the continuous improvement of infrared
image resolution, leading to increased storage requirements.
Additionally, the computing time needed for the training
network also increases with the increase of the scale of the
dataset. For practical applications, processing a full-sized
dataset requires more computing resources and training time.

Secondly, full-size images result in a low target-to-
background proportion. In infrared dim and small target
images, the number of pixels occupied by the target is
few, thus the target occupies a small proportion in the full-
sized images. The majority of the image is taken up by the
background. The background is mainly trained and calculated
during network training whereas the target is less trained,
which lowers training efficiency.

Considering the above, we can choose to extract the
region of interest, the area where the target is located when
building a dataset. This can reduce irrelevant background
information, improve the proportion of targets, and facilitate
the learning of target information. Taking into account the
parameter-sharing characteristic of convolutions and the
small size of infrared targets, this article transforms full-sized
images into small-sized images for transfer learning.

The same weights are used for different positions of the
input data when convolution is carried out. This way, the
network can learn the same feature representations regardless
of the target position in the input images. Parameter
sharing ensures that the small-sized images and full-sized
images learn the same set of parameters. Moreover, even
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TABLE 1. Comparison of parameters between full-sized images and small-sized images.

FIGURE 4. Full-sized and small-sized images.

with reduced size, the small-sized images can still contain
small targets and sufficient background information due
to the small proportion of infrared targets. The example
of small-sized images and full-sized images are shown in
Fig. 4. Table 1 shows the comparison of parameters between
large-sized images and small-sized images.

B. LABEL REFINEMENT BASED ON LOSS EVALUATION
METRICS
In the task of object detection, accurate and appropriate
data labels are crucial. In the detection of dim and small
infrared targets, there are challenges posed by interference
factors such as electromagnetic interference, flickering
pixels, and cloud-edge interference, as shown in Fig. 5. These
interference factors have similar grayscale features to dim
and small targets in infrared images, making them prone
to false detections during the detection process. A multi-
category label method is adopted to establish labels to reduce
the impact of interference factors. This method treats all
interference factors as an additional target category and learns
them together with targets in the network. By increasing
the label of the interference category, the network model
can pay more attention to distinguishing subtle differences
between targets and interference factors during the training
process. The network model can identify correct targets more
precisely and exclude interference factors, thereby further
improving the accuracy of the detection.

Therefore, the loss in this article is divided into two
parts: position loss (Lossloc) and classification loss (Lossclc),
as shown in the Eq. (2). In Eq. (2), smoothL1 loss is used
for the positional loss function and binary cross-entropy loss
is chosen for the classification loss function. Then a and b
respectively represent the corresponding weights for the two
types of loss.

Loss = a ∗ Lossloc + b ∗ Lossclass (2)

The position information of the infrared target includes
four parameters: x (target center horizontal coordinate), y
(target center vertical coordinate), w (target width), and h
(target height). Therefore, the position loss is shown in Eq.
(3). ti is the predicted value, and gi is the ground-truth value.

Lossloc =

∑
i∈{x,y,w,h}

smoothL1
(
ti, gi

)
(3)

The classification loss calculation is as follows Eq. (4),
where c1 and c2 are two categories of targets, and conf is
the confidence value. pi is the predicted value, and p∗

i is the
ground-truth value.

Lossclass =

∑
i∈{c1,c2,conf}

BCEloss(pi, p∗
i ) (4)

However, due to the limitations of manual operation, it is
hard to label all images accurately. As a result, it is inevitable
that mislabeled images will appear in the dataset. These
inaccurate labels are classified into four categories: unlabeled
targets, incorrectly positioned labeled targets, incorrectly
categorized labeled targets, and incorrectly labeled back-
grounds. The comparisons of these four types of inaccurate
labels before and after refinement are shown in Fig. 6.
The inaccurate label is a major factor affecting training.

In the actual training process, the inaccurate labels make the
gradient learning direction wrong, which affects the training
effect of the network model. The network continually learns
error information due to inaccurate labels, thereby affecting
its object detection capability.

Refining the inaccurate labels is necessary to improve
network performance. However, manually judging massive
labels is both consuming manpower and difficult to ensure
accuracy. The key to solving this problem is how to select the
inaccurate labels from the massive labels.
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FIGURE 5. Dim and small targets (a) and interfering factors(b), (c), (d).

FIGURE 6. Incorrect label and refined label.

With the deepening of network training and the enhance-
ment of network target detection capability, the inaccurate
label does not match the prediction result of the network,
resulting in a high loss. Therefore, the loss is used as the
judgment threshold, and labels that exceed the loss threshold
are manually judged and refined. The modified dataset is
retrained to improve the training effect.

C. ITERATIVE TRAINING BASED ON THE UPGRADE
DATASET
In deep learning, diverse and rich datasets are crucial for
the robustness of the network. However, it is always hard
to collect a sufficient amount of data in the initial stage.
At the same time, labeling all images requires too much
manual operation due to the target-to-background proportion
and massive original image sequence. So, it is difficult to
establish a comprehensive and accurate dataset in the initial
stage.

Infrared targets have motion characteristics in sequential
images, and the target position information between con-
secutive frames is correlated. In consecutive frames, the
movement direction of the same target should be relatively
consistent, and the distance between positions should not be
too large. By utilizing the motion characteristics of small
targets, the detection results can be analyzed. In sequential
images, targets that are detected multiple times and form
trajectories are regarded as correct targets, whereas targets
that appear only once and are not detected in the preceding
and subsequent frames are regarded as interference targets.
This method can be used to label the data and supplement
the dataset when the network training is not sufficient. Fig. 7
illustrates the detection and miss detection of targets in the
sequential images.

Supplementing all the new data into the dataset, not only
lacks consideration for the diversity of the dataset but also
increases training resources and time. For network learning,
false positive and false negative data (false alarm and miss
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FIGURE 7. Targets (a -e, g – i ) and missed target (f) in sequential images.

FIGURE 8. Flow chart of iterative training.

detection) can help to improve the training performance of
the network. In infrared dim and small target detection,

these data are more difficult for network learning, and
cannot be effectively learned in the initial stage. Therefore,
learning should be intensified for false positive and false
negative data in the subsequent training process. New false
positive and false negative data are constantly mined and
added to the network training in the subsequent process,
thus the network can focus more on learning these difficult
points.

An initial network is obtained by training on the newly
established dataset. The existing network is used to predict
new original image sequences. When the detection result
forms a trajectory in the preceding and following frames, but
no target is detected in the current frame, it is considered
as miss detection. If the target appears only once in the
sequential images and is not detected in both the preceding
and following frames, it is considered a false alarm.
False alarm data and miss detection data are automatically
identified through the above method, and then added to the
dataset after manual double-check.

Iterative training is used to complete the above prediction,
judgment, and data supplement operations. The trained
network is used to predict sequential images, the false alarm
and miss detection data are supplemented to the current
dataset, and then the iterative training is continued. In each
iteration, the dataset is first refined and supplemented, and
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FIGURE 9. Examples of dataset.

FIGURE 10. Network model.

the updated dataset is retrained. The flow chart is shown in
Fig. 8.

IV. EXPERIMENT AND VERIFICATION
A. EXPERIMENTAL PREPARATION
The experimental dataset comes from infrared sequential
images captured by the infrared focal plane detector under
the sky background, with the original size being 640 ×

512 × 4. The dataset is self-built dataset and consists of
89510 images, including 54489 pure background images and
35021 target images. Randomly allocate all datasets into two
parts: training set and validation set, with 85010 training sets
and 4500 validation sets. Fig. 9 shows an example of a partial
dataset.

The CPU used is Intel(R) Xeon(R) Gold 6248R, and the
GPU is GV100-32GB in this experiment. The initial learning
rate for training is 1.0e-6. The main evaluation metrics used
in this experiment are precision, recall rate, and F1 score.

Precision [20] measures the ratio of correctly predicted
target number over all predicted target number, as shown in
the Eq. (5). The TP is the number of correctly predicted target,
and FP is the number of false predicted target.

precision =
TP

TP + FP
(5)

Recall [21] measures the ratio of correctly predicted target
number over all real target number, as shown in the Eq. (6).
The FN is the number of miss detection target.

recall =
TP

TP + FN
(6)

F1 score [22] is harmonic mean of Precision and recall,
providing a better reflection of the model’s performance as

shown in the Eq. (7).

F1 =
2 · recall · precision
recall + precision

(7)

Different backbone networks are used to verify the
usefulness of the above method. The input and output layers
are unified for better comparison of backbone networks.
A convolutional layer has been added to the input section
to obtain differential images for extracting target moving
information, and a unified regression layer has been used in
the output section. The intermediate layers are the different
backbone networks and the number of network layers is
adjusted to obtain the same feature map size output, as shown
in Fig. 10.

B. SMALL-SIZED IMAGE TRAINING
Due to hardware limitations, the network model size cannot
be too large in engineering applications. Therefore, this
article is trained on images of various sizes based on six
widely used lightweight backbone networks (DarkNet-19
[23], ResNet-18 [24], GooLeNet [25], SuqeezeNet [26],
MoblieNet [27], and EfficientNet [28]). The results are as
follows in Table 2.
The experiment shows that as the size of the training image

reduces, the resources required for network training reduce,
the amount of operation required decreases, and the training
time reduces. Compared to the size of 80×80, when training
with the size of 64 × 64, there is a slight quiver in recall
and precision, but the training time is significantly reduced.
When using the size of 32 × 32, although the training time
further decreases, the results show a moderate reduction of
the network performanceWhen the size of the training image
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TABLE 2. Training results for images of different sizes.

TABLE 3. Training results for images of iterative algorithm.

is reduced to 16 × 16, the performance of most networks is
very poor.

This is because images of different sizes provide different
background information. For infrared dim and small targets,
images that are too small in size cannot fully express the
complete background information. For example, images with
size 16×16 are difficult to fully represent the details of cloud
edges, resulting in poor learning for background and a large
number of false alarms and miss detections. In addition, the
detection ability of networks for edge positions is usually

poor. The smaller the image size, the larger the proportion
of edge positions, which also has an impact on the training
effect.

When the size gradually increases, the image contains
more background information. However, when the infor-
mation contained in the image is sufficient to provide the
complete background, it has a little effect on the improvement
of network performance by continuing to increase the back-
ground information. Full-sized images provide redundant
background information, thus most of the time is spent on
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FIGURE 11. Distribution of loss first iteration (a) and last iteration (b).

FIGURE 12. Comparison of training results with different inputs.

calculating the background during network training, which
ultimately leads to an increase in training time and a decrease
in training efficiency.

Overall, the training effect of infrared dim and small
target networks is influenced by the size of the images.
The excessive image size with redundant background affects
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the learning of target features, resulting in long training
time and poor training efficiency; The too small image size
with incomplete background results in poor performance.
Therefore, selecting appropriate small-sized images for
training can effectively reduce training time and improve
training efficiency. From the comparison of various networks,
DarkNet19 has the best detection performance, with the
highest precision rate of 96.50% and the highest recall rate
of 94.19%.

C. ITERATIVE TRAINING
To validate the iterative training method, this experiment
selected images with a size of 80 × 80 and the backbone
network of DarkNet19 for iterative training to validate the
iterative training method. The dataset is updated between
each iteration. Between the iterations, we manually judge
whether the label with high loss is inaccurate and refine
the inaccurate label. Furthermore, new sequential images are
predicted, and the image is added to the dataset when there is
miss detection or false alarm data in the image. In the iterative
training, the dataset is constantly revised and supplemented.
The results of iterative training are shown in Table 3. The
distribution of loss first iteration and last iteration is shown
in the following Fig. 11.

As shown in Table 3, with the increasing number of
iterations, the precision and recall of the network continue
to improve, with the highest precision rate of 96.90% and the
highest recall rate of 94.94%. From Fig. 11, it can be seen
that label refinement based on loss evaluation metrics reduces
the overall loss of the dataset, the average loss decreased
from 0.5758 to 0.3989, decreased by 30.94%. The method
avoids the sustained impact of inaccurate labels with high loss
evaluation on training.

The results have demonstrated that network performance
and training efficiency can be effectively improved by using
this strategy to continuously supplement new false alarm and
miss detection data, refine inaccurate labels, and carry out
iterative training.

D. ITERATIVE TRAINING
To verify the impact of sequential differential images
on training, we conducted comparative experiments using
Darknet19 in the final dataset. We trained on the origi-
nal single frame images, original sequential images, and
sequential differential images, respectively. Fig. 12 shows the
comparison of their prediction results.

From the experimental results, it can be seen that
sequence differential images can effectively improve network
performance compared to the original images.

V. CONCLUSION
Based on analyzing the impact of datasets on infrared
dim and small target detection, this article proposes a
strategy for training dim and small infrared target detection
networks under sequential cloud background images. This
strategy uses small-sized image datasets to reduce computing

resources and training time. Through multiple iterations of
training, it continuously refines inaccurate labels, updates
and supplements the dataset, improves the quality of the
dataset, and enhances the effectiveness of network training.
The experiments are carried out and the results show that the
above method can effectively shorten training time, improve
training efficiency and performance of infrared dim and small
target detection networks.

At present, the establishment of large-scale and high-
quality datasets is still an important basic task of dim
and small target detection. And the imaging results of
the target are inevitably affected by the point diffusion
function of the atmosphere and optical system, which
seriously affects the accuracy of the annotation. Our method
adopts semi-supervised learning method to improve the
training efficiency and performance, but still requires manual
operation and high cost to establish the dataset. In the future,
innovation method such as auto evaluation metrics based on
abnormal loss monitoring may help to enable unsupervised
learning, reduce manual operations and costs.
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