
Received 19 June 2024, accepted 26 July 2024, date of publication 30 July 2024, date of current version 8 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3435949

MP-TD3: Multi-Pool Prioritized Experience
Replay-Based Asynchronous Twin
Delayed Deep Deterministic
Policy Gradient Algorithm
WENWEN TAN1 AND DETIAN HUANG 1,2, (Member, IEEE)
1College of Engineering, Huaqiao University, Quanzhou 362000, China
2Quanzhou Digital Institute, Quanzhou 362000, China

Corresponding author: Detian Huang (huangdetian@hqu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2021YFE0205400, in part
by the National Natural Science Foundation of China under Grant 61901183 and Grant 61976098, in part by the Fundamental Research
Funds for the Central Universities under Grant ZQN-921, in part by the Collaborative Innovation Platform Project of Fujian Province under
Grant 2021FX03, in part by the Natural Science Foundation of Fujian Province under Grant 2023J01140, in part by the Natural Science
Foundation of Fujian Provincial Science and Technology Department under Grant 2021H6037, in part by the Key Project of Quanzhou
Science and Technology Plan under Grant 2021C008R and Grant 2023C007R, and in part by the Key Science and Technology Project of
Xiamen City under Grant 3502Z20231005.

ABSTRACT The prioritized experience replay mechanisms have achieved remarkable success in
accelerating the convergence of reinforcement learning algorithms. However, applying traditional prioritized
experience replay mechanisms directly to asynchronous reinforcement learning leads to slow convergence,
due to the difficulty for an agent to utilize excellent experiences obtained by other agents interacting with
the environment. To address the above issue, we propose a Multi-pool Prioritized experience replay-based
asynchronous Twin Delayed Deep Deterministic policy gradient algorithm (MP-TD3). Specifically, a multi-
pool prioritized experience replay mechanism is proposed to strengthen the experience interactions among
different agents to accelerate the network convergence. Then, a global-pool self-cleaning mechanism based
on sample diversity and a global-pool self-cleaningmechanism based on TD-errors are designed to overcome
the deficiency that the samples suffer from high redundancy and low information content in the global-pool,
respectively. Finally, a multi-batch sampling mechanism is investigated to further reduce the training time.
Extensive experiments validate that the proposed MP-TD3 significantly improve the convergence speed and
performance compared with state-of-the-art methods.

INDEX TERMS Asynchronous reinforcement learning, twin delayed deep deterministic algorithm,
prioritized experience replay, TD-error.

I. INTRODUCTION
Reinforcement Learning (RL) [1], [2] is one of the promising
machine learning methods for obtaining optimal decisions
through iterative trial and error, where an agent constantly
interacts with environment to improve its strategy for
maximum cumulative rewards. It has been widely used

The associate editor coordinating the review of this manuscript and

approving it for publication was Deepak Mishra .

in various fields such as robot [3], [4], [5], autonomous
vehicles [6], [7], supply chain optimization [8], [9] and game
design [10], [11], and so on. In recent years, numerous
variants of RL techniques have been developed. For example,
Watkins [12] proposed a Q-learning algorithm that allows
agents to learn optimal policy in a controlled Markov
Decision Process (MDP) [13]. William [14] proposed a
connectionist RL algorithm, which only requires learning of
the policy function and not the value function. Konda and

105268

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-8542-3728
https://orcid.org/0000-0002-3225-6495

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

Tsitsiklis [15] proposed an Actor-Critic (AC) framework,
which estimates not only the policy function but also the value
function.

In previous RL algorithms, an agent uses the experience
derived from a single interaction with the environment
to update the model, which means that the interaction
experience is discarded after a single update. This results in
two following problems: 1) the interaction experience has
highly temporal correlation, which is detrimental to themodel
training; 2) the interaction experience that is rapidly discarded
may be a rare experience that is useful for subsequent
training. To solves both problems, the experience replay
mechanism [16] stores the experiences obtained from the
interaction of agent with environment in an experience replay
pool, and then the agent is able to update the model according
to the previous and recent experiences. In other words,
the experience replay mechanism addresses the problem of
temporal correlation between training data. On the other
hand, a number of significant experiences have been used
repeatedly to update the model, which effectively improves
the learning efficiency of the agent.

Recently, numerous studies have revealed the advantages
of introducing experience replay in RL algorithms. Deep
Q-Network (DQN) algorithm [17] stabilizes the training of
the value function represented by a deep neural network
with an experience replay mechanism. Deep Deterministic
policy gradient (DDPG) algorithm [18] also introduces an
experience replay mechanism, which selects state transfer
samples from the environment by an exploration strategy and
delivers the samples into an experience replay pool, so as to
reduce the number of interactions between the agent and the
environment. Although the above RL algorithms are effective
in exploring the optimal policy for the environment, they all
employ uniform sampling, i.e., they do not take into account
the significance of the samples, resulting in all samples
being selected with the same probability. A recent work
by DeepMind [19] pointed out that the experience replay
mechanism neglects the temporal property of the samples and
the efficiency of sampling the agents [20], [21], [22], [23],
[24], which is prone to result in unstable training and slow
convergence [25].

To address the above problems, the prioritized experience
replay mechanism [19] has received increasing attention.
This mechanism prioritizes the samples in an appropriate
order, which enables the agents to select more valuable
samples in the experience replay pool. According to the
different prioritizing methods, it can be divided into value
change-based [26], [27] and TD error-based [28] prioritizing.
Recently, numerous works have demonstrated that the
prioritized experience replay accelerates training for RL [29],
[30], [31]. Brittain et al. [32] proposed a Prioritized Sequence
Experience Replay (PSER) algorithm, which exploits the
relationship between successive experiences by assigning
a higher sampling priority to an important experience,
as well as increasing the priority of the antecedent sequence
experiences that lead to the creation of important experience.

FIGURE 1. Comparison of training methods for update mechanism.

Cao et al. [33] proposed a High-Value Prioritized Experience
Replay (HVPER), which incorporates the value function with
TD-error as a measure of its prioritization. Wang et al. [34]
incorporated the prioritized experience replay in a dueling
network.

However, application of prioritized experience replay
mechanisms to asynchronous RL algorithms has yet to be
further studied. Intuitively, there are two approaches to
apply traditional prioritized experience replay mechanisms to
asynchronous RL algorithms: 1) each agent uses its respective
experience replay pool and adopts the prioritized experience
replay mechanism within the experience replay pool; 2) each
agent uses the same global-pool and employs the prioritized
experience replay mechanism in the global-pool. The former
prevents each agent from sharing its respective excellence
experiences with each other, resulting in slow training
speed. On the contrary, the latter makes each agent require
frequent experience interactions, inevitably increasing the
time overhead. As a result, it is imprudent to directly apply
traditional prioritized experience replay to asynchronous
RL.

To solve the above issues, a multi-pool prioritized experi-
ence replay mechanism is designed and further incorporated
into the TD3 algorithm, thus forming a Multi-pool Pri-
ority experience replay-based asynchronous Twin Delayed
Deep Deterministic policy gradient algorithm (MP-TD3).
Experimental results that the proposed multi-pool prioritized
experience replay mechanism significantly accelerates the
convergence while boosting the performance of the TD3
algorithm. Specifically, the proposed MP-TD3 employs
a multi-pool structure, in which various agents share
the learned outstanding experiences. Then, different from
existing asynchronous RL [35], our MP-TD3 adopts the
proposed global-pool self-cleaning mechanisms based on
sample diversity and TD-errors, which not only reduces the
similarity of the samples, but also improves the information
content of the samples. Next, our MP-TD3 uses the proposed
self-updating mechanism based on TD-errors to alleviate
the TD-error hysteresis of samples. Subsequently, a multi-
batch sampling mechanism and a multi-cache structure are
implemented to decrease the training time. In summary, the
primary contributions of our work are as follows:
• To address the problem that prioritized experience
replay mechanism suffers from the experience inter-
actions among agents in asynchronous RL, a Multi-
pool Prioritized experience replay-based asynchronous
Twin Delayed Deep Deterministic policy gradient
algorithm (MP-TD3) is proposed. Experimental results

VOLUME 12, 2024 105269

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

FIGURE 2. The network structure of A3C, contains an Actor-network and
a Critic-network, which operate independently and in parallel.

demonstrate that the proposed MP-TD3 improves the
convergence speed and performance effectively.

• A multi-pool prioritized experience replay mechanism
is proposed to strengthen the experience interactions
among different agents, so as to accelerate the conver-
gence.

• Two global-pool self-cleaning mechanisms based
on sample diversity and TD-errors are respectively
designed to remove redundant samples and maintain the
diversity of samples.

• A self-updating mechanism based on TD-errors is
proposed to alleviate the TD-error hysteresis.

This paper consists of five sections. Section II discusses
the basic concepts of TD3 algorithm, asynchronous RL, and
prioritized experience replay mechanism based on random
sampling. The detail of the proposed MP-TD3 is discussed
in Section III. Section IV presents experimental results
and analysis. Finally, Section V summarizes the paper and
discusses future research directions.

II. PRELIMINARIES
A. TD3 ALGORITHM
Traditional RL algorithms generally employ a single-agent
training approach that updates serially during training,
as shown in Fig. 1(a). At each time-step t , the agent acquires
the state st of the environment and selects an action at by a
policy π . Upon executing the action at , the agent obtains a
reward rt and transitions to the next state st+1. This iterative
process is repeated until the agent reaches the terminal state
within the state space S.
During the interaction between the agent and environment,

the discounted cumulative rewards at time-step t is defined as
follows:

Rt =
T∑
i=t

γ i−tr (st , at) , (1)

where T indicates the maximum time-step, γ is a discount
factor with a range of (0,1].

To realize the ultimate goal of RL algorithm, which
explores the optimal policy for maximizing the cumulative
rewards. Define the action-value function Qπ (s, a) =

Eπ [Rt |st = s, at = a] to represent the expectation of the
discounted cumulative rewards for an agent executing action
at under policy π and state s. The action-value function is
known as the Q-function, adheres to the Bellman equation,
which is expressed as follows:

Qπ (s, a) = Eat+1∽π,st+1∽ρπ [r (s, a)

+ γQπ (st+1, at+1)], (2)

where ρπ is the distribution of state transfer probability with
policy π .
Fujimoto et al. [36] proposed a Twin Delayed Deep

Deterministic policy gradient (TD3) algorithm, which miti-
gates network overestimation by adopting a minimum value
between two Critic-networks. In addition, the algorithm
delays the policy update while incorporating noise into the
actions to minimize the error and improve the performance.

At each time-step, the agent selects an action at =
πφ (st)+ Nt augmented with noise in state s, where Nt is the
added noise. Then, the agent performs the action and stores
the experience (st , at , st+1, rt) obtained from interaction with
environment in the experience replay pool. Subsequently,
a mini-batch of transitions is selected randomly from the
experience replay pool, and the two Critic-networks are
updated by optimizing the loss function:

Li (θi) = E(s,a,r,s′)

[(
Qθi (s, a)− y

)2]
, (3)

y = r(s, a)+ γ min
i=1,2

Qθ ′i
(s′, πφ′ (s

′)). (4)

In Eq. (4), TD3 calculates the values of the two Critic-
networks Qθ ′i

(s′, πφ′ (s′)) separately, and selects the smaller
as the Q-value y for the Target-network. Here, θ denotes a
parameter of the Q-network, s′ and a′ are obtained from the
experience replay pool.

Based on the obtained Critic-networks, the Actor-network
πφ is updated with a delay every few time-steps through
maximizing the learned Q-function, where φ denotes the
parameters of the Actor-network. Finally, TD3 delay updates
the parameters of the three Target-networks:

θ ′i = τθi + (1− τ)θ ′i ,

φ′ = τφ + (1− τ)φ′, (5)

where τ indicates soft update factor with a range of (0,1],
θ ′i (i = 1, 2) denote the parameters of the two target Critic-
networks, φ′ is the parameter of the target Actor-network.

B. ASYNCHRONOUS RL
RL algorithms excel in exploring optimal policy. However,
they employ a single-agent to update the parameters, which
causes the agent to suffer from an overload of redundant
information. This results in slow convergence of the model

105270 VOLUME 12, 2024

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

FIGURE 3. Experience Replay Mechanism. Train the network by randomly
selecting a mini-batch of transitions from the experience replay pool.

and tends to fall into local optimums. To address these issues,
scholars have incorporated the parallel update approach to
the RL algorithms, which can be divided into two methods
by using multiple agents that interact with the environment
independently. The first method is synchronous parallelism,
decomposing the state space into several subspaces and
allowing each agent to explore among these subspaces.
Another method is asynchronous parallelism, enabling each
agent to explore the entire state space independently thus
improving the convergence speed and performance through
interaction information.

Fig. 1(b) and (c) illustrate the schematic of the two parallel
models. Asynchronous parallelism has a time advantage over
synchronous parallelism. While synchronous parallelism
must wait for all agents complete the current iteration
before proceeding to the next one, unlike asynchronous
parallelism.

Asynchronous RL algorithms are derived from parallel RL,
utilizing asynchronous parallelism to explore complex state
spaces. Multiple agents learn independently and interaction
information, thereby enhancing the exploration process [35].
When the state space is discrete, existing asynchronous RL
algorithms suffer from limited convergence, as they fail to
integrated properly with model-based approaches. In addi-
tion, when the state space is continuous, the asynchronous
methods are integrated with Deep RL (DRL) algorithms,
each agent transmits its gradient information to the global-
network, which subsequently updates itself using the gradient
information received from each agent.

Fig. 2 presents a classical asynchronous RL framework,
known as Asynchronous Advantage Actor-Critic (A3C).
The A3C algorithm consists of an Actor-network and a
Critic-network. The Actor-network determines the action
performed by the agent in next state, while the Critic-network
evaluates the value of the action. Both networks operate
independently and in parallel with each other. Specifically,
the A3C algorithm trains multiple agents in parallel on single
machine, thus significantly conserving hardware resources.
During each iteration, individual agent interacts with its
environment and transfers information to the global-network,
which greatly accelerates the training process. However,
the A3C algorithm is encumbered by several limitations.
Firstly, it is susceptible to the complexity of the environment
and the number of threads, which increases implementation
and debugging challenges. Secondly, the algorithm demands

substantial data and computational resources, potentially
constraining its adaptability and generalization in certain
environments.

C. PRIORITIZED EXPERIENCE REPLAY MECHANISM
BASED ON RANDOM SAMPLING
To address the temporal correlation of the experiences
acquired by agents and the inability of agents to utilize
historical experience, Lin [37] proposed the experience
replay mechanism, as illustrated in Fig. 3.
Traditional RL algorithms based on experience replay [17],

[18], [38] use uniform sampling. The probability of a sample
being selected is described as follows:

p(i) =
1
n
, (6)

where n denotes the number of samples in the experience
replay pool.

However, uniform sampling prevents the agent from lever-
aging favorable samples for learning. To enhance learning
efficiency, Van Seijen and Sutton [28] prioritized samples
based on TD-errors, which enables samples with higher
TD-error to have higher sampling probability, as follows:

δt = Rt + γQ (St+1,At+1)− Q (St ,At) , (7)

where t indicates the time-step, γ denotes a discount factor
with a range of (0,1], Q denotes the state action-value
function, St is the state at moment t , and At is the action
executed at moment t .

Nevertheless, such TD error-based ranking methods suffer
from the following problems:
• To avoid repeated scanning of the samples in the
experience replay pool, traditional algorithms update the
TD-error exclusively for the samples currently captured,
which results in samples with initially low TD-errors
being challenging to be sampled in subsequent training.

• The TD-error exhibits hysteresis, meaning that it is only
associated with the current model. When the model
parameters change, the TD-error adjusts accordingly.

Consequently, using Eq. (7) potentially overlooks samples
that are informative for the current model.

To solve the above problem, [19] proposed a random
sampling method that integrates pure greedy prioritization
with uniform random sampling. This method ensures that
the probability of a sample being selected is monotonic
and non-zero in the prioritization process. Specifically, the
probability of a sample i being selected as follows:

p(i) =
pα
i∑
kp

α
k
, (8)

where pi = |δt + ε| indicates the priority obtained by
prioritizing sample i according to the TD-error, ε is a small
value to ensure samples with a TD-error of zero are still
selected with a non-zero probability, and α determines the
weight of the experience replay, with α = 0 indicating
uniform sampling.

VOLUME 12, 2024 105271

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

FIGURE 4. The network architecture of MP-TD3. The primary components comprise a global-agent, a global-pool, a self-cleaning
mechanism and multiple agents.

III. MP-TD3 ALGORITHM
This section discusses the proposed MP-TD3 in detail. Ini-
tially, we analyze the challenges associated with prioritizing
experience replay mechanism. Then, a multi-pool priori-
tized experience replay mechanism is proposed and further
introduced into the TD3 algorithm. Subsequently, two global-
pool self-cleaning mechanisms based on sample diversity
and TD-errors, along with a self-updating mechanism and a
multi-batch sampling mechanism are proposed.

A. PROBLEM FORMULATION
In an asynchronous RL framework, different agents interact
independently with their respective environments. During
each iteration, an agent initially observes the certain state
st and selects an action at according to its policy. After
executing the action, the environment delivers an immediate
reward rt to the agent and proceeds to the next state st+1.
Meanwhile, the acquired samples (st , at , st+1, rt , done)
are delivered into the respective experience replay pool,
where done indicates the sign that the environment has
reached the terminal state. During training, each agent selects
a mini-batch of transitions from its respective experience
replay pool and guides the model learning by calculating the
TD-error, which updates the parameters of the global-agent
until converges.

Traditional asynchronous RL algorithms employ uniform
sampling, i.e., the probability of selecting samples from
each experience replay pool with p = 1/n. In this way,
the importance of the information transmitted by various
agents is neglected, leading agents to inadvertently prioritize
communicating erroneous information to the global-network,

and influencing it to update parameters. A prioritized
sampling structure intends to enable valuable samples to be
sampled frequently by adjusting the sampling probability p,
which improves the convergence speed and performance.

However, applying an experience replay mechanism
directly to asynchronous RL raises the following issues:

1) During training, each agent selects samples only from
its respective experience replay pool, which implies that an
agent fails to utilize excellent experiences obtained by other
agents interacting with the environment.

2) The asynchronous update mechanism leads to a
significant similarity of the samples in the experience replay
pool for each agent, which makes the samples suffer from an
intense degree of redundancy.

3) The TD-error of the samples in the global-pool
decreases with model updating, which results in a decrease
in the information content of the samples.

4) Similar to experience replay in a single-agent, the
problem of TD-error hysteresis exists in an asynchronous RL
framework.

5) Integrating all the samples in experience replay pool
corresponding to each agent generates a substantial volume
of inter-process interactions.

To solve the above issues, we propose a Multi-pool Prior-
itized experience replay-based asynchronous Twin Delayed
Deep Deterministic policy gradient algorithm (MP-TD3).
Fig. 4 illustrates the network architecture of our MP-TD3,
which consists of a global-agent that guides the update
of each agent, a global-pool that aggregates samples from
each experience replay pool and provides samples for each
agent to train its network, a self-cleaning mechanism (SCM)

105272 VOLUME 12, 2024

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

Algorithm 1Multi-Pool Structure
Input: Initialize local-pools pli(i = 1,. . . ,m), global-pool pg;

Initialize local-iteration nl , global-iteration ng;
Initialize max iteration T , update frequency f ;
Initialize local-networksMli(i = 1,. . . ,m) with random weight w′, global-networkMg with random weight w

Output: Global-networkMg
1: while ng ≤ T do
2: Initialize state s0
3: cache← φ, t = 0
4: while done is False do
5: Select action with exploration noise at ∽ πφ′ (st)+ϵ, ϵ ∽ N (0, σ)
6: Obtain reward rt and next state st+1
7: Store transition tuple (st , at , st+1, rt , done, TD-error) in pli and according to Eq. (8) in cache
8: j← nl%f
9: if ng ≤ l then

10: bj← Sample mini-batch of transitions from pli
11: end if
12: Compute the gradient ∇w′ of Mli based on bj
13: Asynchronous update the weights w of Mg based on the gradient ∇w′

14: ng← ng + 1
15: if nl%f = 0 then
16: Store samples in pg, cache← φ

17: end if
18: if ng ≥ l then
19: Sample f mini-batch

{
b0, b1, . . . , bf

}
from pg

20: end if
21: t+ = 1, ng+ = 1, nl+ = 1
22: end while
23: end while
24: return Global-networkMg

that eliminates redundant samples from the global-pool, and
multiple agents that offer gradient information to the global-
agent.

B. MULTI-POOL PRIORITIZED EXPERIENCE REPLAY
MECHANISM
To address the difficulty of each agent to utilize excellent
experiences from other agents interacting with the environ-
ment, we propose a multi-pool structure, which is primarily
comprised of multiple experience replay pools and a global-
pool.

In RL algorithms, the samples with large TD-error tend
to be more significant for model training. To leverage these
samples, the proposed framework redefines the samples in
the experience replay pool, i.e., (st , at , st+1, rt , done, TD-
error). At every time-step, each agent interacts independently
with its respective environment and delivers excellent
samples into its experience replay pool (i.e., local-pool),
which facilitates the agent to select such samples in the
subsequent training, thus accelerating the convergence speed.
Subsequently, the samples in the local pool are selected based
on the probability of Eq. (8) and then transferred into the
global-pool.

Furthermore, each agent requires numerous inter-process
interactions, which increases the time overhead. To reduce
the overhead of interactions, each agent samples directly
from its local-pool in the early training stage. While in
the later training stage, each agent samples from the
global-pool rather than the respective experience replay
pool. Compared with original TD3 algorithm, our MP-TD3
introduces a multi-pool structure. This design enables agents
to select beneficial samples from other agents’ experience
replay pools, which improves the convergence speed and
performance. Algorithm 1 summarizes the procedure of the
proposed multi-pool structure.

C. SELF-CLEANING MECHANISM
To solve the intense degree of redundancy and low infor-
mation content of samples, we propose two global-pool
self-cleaning mechanism based on sample diversity and TD-
errors, respectively.

1) SELF-CLEANING MECHANISM BASED ON SAMPLE
DIVERSITY
Since each agent interacts with the environment indepen-
dently and updates parameters through an asynchronous

VOLUME 12, 2024 105273

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

Algorithm 2 Self-Cleaning Mechanism Based on Sample Diversity
Input: global-pool pg, delete number n, cluster number k
Output: cleaned global-pool pg
1: T ← all samples in pg
2: Concatenate state and action of each iteration form a point set P
3: Perform K-means algorithm to clustering P into k clusters: {ci}ki=1
4: Record the size of each cluster

{
nic

}k
i=1

5: Compute the average size of each cluster n̄ic
6: Record the index of cluster in

{
c∗i

}k
i=1 that are larger than the average size n̄ic

7: D← φ

8: for i← 1 to α do
9: d ← Compute the difference between c∗i and n̄

i
c

10: D← D ∪ {d}
11: end for
12: Allocate the delete number {ni}αi=1 of each cluster proportionally based on the difference d in D
13: for i← 1 to α do
14: Select ni randomly from c∗i and delete these samples from pg
15: end for
16: return pg

Algorithm 3 Self-Cleaning Mechanism Based on TD-Errors
Input: global-pool pg, delete number n
Output: cleaned global-pool pg
1: T ← all samples in pg
2: Order T in ascendant based on TD-errors and retain the

index T ∗ =
{
T ∗i

}n
i=1 of the top n samples

3: for i← 1 to n do
4: Remove T ∗i from pg
5: end for
6: return pg

updating mechanism, it may result in a high degree of sample
similarity among the samples in the global-pool. It tends
to select numerous similar samples when an agent selects
samples from the global-pool, leading to a lack of diversity.
To address this problem, we eliminate the samples with
highly similar to reduce sample redundancywith theK-means
algorithm. Specifically, we first concatenate the states st and
actions at of the samples in the global-pool to form a new
point set, then cluster point sets with the K-means algorithm
to derive k categories, and finally, clean point sets in each
cluster by a certain proportion. Algorithm 2 presents the
procedure of the proposed self-cleaning mechanism based on
sample diversity.

2) SELF-CLEANING MECHANISM BASED ON TD-ERRORS
During updating, the TD-error of samples tends to decrease
progressively, resulting in a decrease in the low information
content of samples and affecting the model performance. As a
result, to ensure the high TD-error of the samples in the
global-pool, we perform self-cleaning for the samples with
minor TD-error. Algorithm 3 outlines the procedure for the
self-cleaning mechanism based on TD-errors.

D. SELF-UPDATING MECHANISM BASED ON TD-ERRORS
The TD-error hysteresis of samples exists in asynchronous
RL, in other words, the error information of the selected sam-
ples is significantly deviates from the actual situation, which
influences the learning efficiency and performance. To tackle
this issue, we propose two self-updating mechanisms for the
global-pool and the experience replay pool (i.e., local-pool)
of each agent, respectively.

1) EXPERIENCE REPLAY POOL FOR EACH AGENT
During training, each agent selects a mini-batch of transitions
from its respective experience replay pool for learning.
Instead of iteratively scanning the experience replay pool,
we update the TD-error only for the selected samples, which
effectively reduces the time overhead and alleviates the
TD-error hysteresis.

2) FOR GLOBAL-POOLS
To guarantee that each agent is able to select samples
with high information content in the later training, the
proposed method updates the TD-errors of the samples in
the global-pool. Consequently, samples that initially exhibit
high TD-errors but diminish after network updates can be
eliminated by the self-cleaning mechanism. Ultimately, our
method ensures that the samples beneficial for the current
training are delivered in the global-pool with constrained
capacity.

E. MULTI-BATCH SAMPLING MECHANISM
Since each agent selects samples from the global-pool,
it increases the time overhead. To address this issue,
we introduce a multi-batch sampling mechanism and a multi-
cache structure.

105274 VOLUME 12, 2024

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

FIGURE 5. Multi-cache structure. It consists of a global-cache and two
caches. The global-cache preserves samples transmitted from each
experience replay pool, and each agent is sampled in respective cache.

1) MULTI-BATCH SAMPLING MECHANISM
The conventional sampling approach retrieves a mini-batch
of transitions in a single operation. However, in the
asynchronous approach, each agent needs to select samples
from the global-pool, which consumes substantial process
interaction time. Thus, we introduce a multi-batch sampling
mechanism, that is, m1 mini-batch of transitions are sampled
from the global-pool at a time for agents to trainm1 iterations.
In this way, the number of interactions between the agent and
the global-pool can be reduced.

2) MULTI-CACHE STRUCTURE
Since Python is unable to be multi-processing and multi-
threading such as C++, we design a multi-cache structure
to reduce interaction time. As shown in Fig. 5, the designed
multi-cache structure comprises a global-cache and two
caches assigned to each agent. During the later stages of
training, each agent needs to select samples from the global-
pool. However, when multiple agents sample simultaneously,
resource conflict arise.

Consequently, we allocate m2 caches to each agent so
that each agent only needs to sample from its individual
cache. To enable the agent to adopt as many new samples as
possible as well as to avoid resource conflict, m2 is assumed
to 2. Similarly, the global-pool requires to sample from the
experience replay pool of each agent, which leads to the
identical issue. As a result, a global-cache is designed to store
the samples transmitted from each experience replay pool.
Once there are available samples in the global-cache, they are
delivered into the global-pool.

IV. EXPERIMENT AND ANALYSIS
We compared the performance of the proposedMP-TD3 with
TD3 [36], DDPG [18], Proximal Policy Optimization (PPO)
[39], Vanilla Policy Gradient (VPG) [40], A3C [15] and Soft

TABLE 1. Settings and hyperparameters.

Actor-Critic (SAC) [41]. The details of TD3 and A3C are
discussed in Sub-section II-A and II-B respectively. DDPG
employs value functions approximators and introduces a
model-free actor-critic algorithm that utilizes deep function
approximation to learn policies in high-dimensional and con-
tinuous action spaces. PPO samples data through interactions
with the environment and adopts stochastic gradient ascent to
optimize the objective function. VPG approximates a value
function to determine a policy, which is represented by its
own function approximator with independent of the value
function, and is updated according to the gradient of expected
reward with respect to the policy parameters. SAC employs
an actor-critic maximum entropy RL framework, the actor
intends to maximize the expected reward while maximizing
entropy.

A. EXPERIMENTAL ENVIRONMENT
To evaluate the proposed MP-TD3, we measured its perfor-
mance through a set ofMuJoCo continuous control tasks [42],
which are interfaced via OpenAI Gym [43]. In addition, the
original task set designed by Brockman et al. [43], without
modifications, is used to facilitate comparison with other
algorithms.

B. EXPERIMENTAL SETTING
In the proposed MP-TD3, both actor and critic networks
are designed with two hidden-layers comprising exponential
linear units (ELUs), each containing 256 neurons. Note
that the actor-network employs a tanh activation unit before
outputting the result. Furthermore, the Adam [44] optimizer
is used to update the parameters of both networks.

At each time-step, the network is trained by uniformly
sampling the mini-batch of transitions from the experience
replay pool. For a fair comparison, the proposed MP-TD3
utilizes the identical hyperparameters as the original TD3.
Table 1 presents the hyperparameter settings used throughout
our experiments. A series of experiments are performed to
validate the effectiveness of the proposed MP-TD3.

The experiments are conducted on a computer equipped
with Intel(R) Xeon(R) gold 6152 CPU@2.10GHz, Tesla

VOLUME 12, 2024 105275

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

FIGURE 6. The results of different algorithms in each environment for 1 million time-steps.

V100 32GB and a maximum of 256GB of RAM. The algo-
rithms are implemented by Python, compiled by PyCharm
under a Linux operating system.

C. COMPARISON EXPERIMENT
Each algorithm is executed for 1 million time-steps with
evaluations every 5000 time-steps. In addition, exploration
noise is removed during testing, and each algorithm is
evaluated in at least 10 trials to ensure accurate results.

Fig. 6 illustrates learning curves of MP-TD3 and other
state-of-the-art algorithms over 1 million time-steps. The off-
policy algorithms, i.e., MP-TD3, TD3, SAC, and DDPG, are
ranked as the top three 20 times out of 21. In contrast, the on-
policy algorithms, i.e., PPO, VPG, and A3C, are ranked as the
top three only 1 time out of 21. Moreover, in the first 500,000
time-steps, the off-policy algorithms are ranked as the top
three 19 times out of 21, while the on-policy algorithms are
ranked as the top three only 2 times out of 21. This indicates
that off-policy algorithms are superior in convergence speed
and performance. Such algorithms leverage the experience
replay pool to store the experiences accumulated by agents
interacting with the environment, so that the agents are
able to update the model based on a blend of previous
and recent experiences. On the one hand, this mechanism
mitigates the correlation between training data. On the
other hand, it facilitates the repeated sampling of high-value
experiences, which improves the learning efficiency and
stability.

In addition, we compare the performance of seven
algorithms, including three on-policy and four off-policy
algorithms. The results reveal a marked superiority of the
off-policy algorithms. Specifically, the off-policy algorithms
ranked top 5|0|2|0 times across all the environments, while

the on-policy algorithms ranked top 0|0|0 times. During the
initial 500,000 time-steps, the off-policy algorithms ranked
top 5|0|2|0 times, while the on-policy algorithms remained
at 0|0|0. Consequently, the off-policy algorithms demonstrate
significant advantages in RL.

Among the four off-policy algorithms, our MP-TD3
achieves the top ranking on five occasions. In comparison,
SAC, TD3 and DDPG ranked top 2|0|0 respectively. Overall,
the final results of MP-TD3 and TD3 are significantly
better than those of SAC and DDPG. This superiority
can be attributed to the dual-q clip mechanism and the
delayed update mechanism, which effectively mitigates over-
estimation and policy degradation. However, our MP-TD3
performs better than the original TD3. This is attributed
to introducing asynchronous updating and the proposed
multi-pool prioritized experience replay mechanism, which
stimulates the experience interactions among different agents,
thus improving the convergence speed and performance.

It is noteworthy that in the Reacher environment (see
Fig. 6(f)), the final cumulative rewards obtained by other
algorithms exhibit negligible differences, with the except for
the VPG and A3C algorithms. This likely stems from the
relative simplicity of the Reacher environment, where most
algorithms are able to explore the optimal policy rapidly.

To further evaluate the performance of the proposed
MP-TD3, Table 2 depicts the cumulative rewards obtained
by each algorithm across seven environments from 10e5 to
10e6 time-steps, where red, blue and green indicate the first,
second and third ranked algorithms respectively. As can be
seen from Table 2, our MP-TD3 exhibits the suboptimal
performance compared with other algorithms in the early
stages. This can be attributed to the implementation of
an asynchronous updating mechanism, each agent updates

105276 VOLUME 12, 2024

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

TABLE 2. Cumulative rewards obtained after 1e5-1e6 time-steps from learning different methods.

parameters at varying rates, thus leading to instability during
the initial stage. However, upon reaching a certain time-
steps, our MP-TD3 attains greater stability. In addition, the
performance metrics across the seven environments over
ten iterations are documented, encompassing a total of
70 comparisons. Our MP-TD3 is ranked among the top three
algorithms for 69 times and ranked as the first algorithm
for 37 times out of 70 regarding time-step, respectively.
This indicates that our MP-TD3 exhibits great performance

and competitiveness compared with other state-of-the-art
methods in different environments.

To evaluate the computational complexity of our MP-TD3,
we compare Floating Point Operations (FLOPs) required
to train a time-step for the proposed MP-TD3 and the
original TD3 in seven environments. As shown in Table 3,
the proposed MP-TD3 suffers from higher FLOPs than the
original TD3. This is due to the introduction of the multi-pool
structure in ourMP-TD3, in which each agent selects samples

VOLUME 12, 2024 105277

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

FIGURE 7. The effectiveness of self-cleaning mechanisms compared.

FIGURE 8. The effectiveness of self-updating mechanisms compared.

not only from its respective experience replay pool, but also
directly from the global-pool. Moreover, to prioritize the
samples in each time-step, it is necessary to compute their
TD-errors. However, our MP-TD3 is superior to the original
TD3 in convergence speed and performance. Consequently,
the proposed method is still considerably competitive.

In summary, the above experimental results indicate that:
• The proposed our MP-TD3 possesses fast conver-
gence speed. It is due to the incorporation of a
multi-pool prioritized experience replay mechanism,

which enables each agent to utilize excellent experiences
acquired by other agents interacting with the environ-
ment, thus facilitating the acquisition of high-value
samples.

• The proposed our MP-TD3 achieves superior cumula-
tive rewards in several benchmark environments. It is
attributed to the implementation of two self-cleaning and
self-updating mechanisms, which maintain the diversity
and high information content of the samples delivered in
the experience replay pool.

105278 VOLUME 12, 2024

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

TABLE 3. The FLOPs for the original TD3 and the proposed MP-TD3.

D. ABLATION EXPERIMENT
We further conducted ablation experiments to explore the
effectiveness of the proposed MP-TD3.

1) THE EFFECTIVENESS OF SELF-CLEANING MECHANISM
• MP-TD3 without clean: MP-TD3 without self-cleaning
mechanism;

• MP-TD3: the final MP-TD3.

To evaluate the effectiveness of the proposed self-cleaning
mechanism, we compare the performance of MP-TD3 and
MP-TD3 without self-cleaning mechanism. From Fig. 7, it is
evident that MP-TD3 is significantly more effective than
MP-TD3 without clean in most environments, with MP-TD3
featuring higher cumulative rewards. This is attributed to the
use of the proposed self-cleaning mechanism, which reduces
the similarity among the samples. Consequently, agents are
able to acquire more diverse samples, contributing to the
ability of the model to learn better in complex environment
and improving performance. Furthermore, the self-cleaning
mechanism enhances the information content of the samples
through removing redundant samples from the global-pool,
which means that agents acquire more beneficial samples
and accelerates the convergence speed. In general, compared
with the traditional TD3 algorithm, the proposed MP-TD3 is
able to leverage excellent experience, which accelerates the
convergence speed.

2) THE EFFECTIVENESS OF SELF-UPDATE MECHANISM
• MP-TD3 without update: MP-TD3 without the self-
update mechanism;

• MP-TD3: the final MP-TD3.

To evaluate the effectiveness of the proposed self-updating
mechanism, we compare the performance of the proposed
MP-TD3 and theMP-TD3 without self-updating mechanism.
As illustrated in Fig. 8, the performance of MP-TD3 is
significantly improved compared to MP-TD3 without update
in most environments, with MP-TD3 featuring higher cumu-
lative rewards. This is due to the utilization of self-updating
mechanism, which enables the samples in the global-pool
to maintain the most recent TD-error constantly. Therefore,
the agents are able to select samples with the maximum

global TD-error for training, effectively accelerating the
convergence speed. Moreover, the self-updating mechanism
enables the agents to prioritize samples with high information
content. As the samples frequently update TD-error in the
global-pool, it is ensured the samples that are more beneficial
for the current training are stored as much as possible in the
limited capacity of global-pool, thus improving the efficiency
of the model. In a word, compared with the traditional TD3,
MP-TD3 utilizes a self-updating mechanism that assures the
real-time and usefulness of the samples, which significantly
improves the convergence speed and performance.

V. CONCLUSION
To tackle the problem of slow model convergence caused
by applying the prioritized experience replay mechanism
to asynchronous RL, we propose a Multi-pool Prioritized
experience replay-based asynchronous Twin Delayed Deep
Deterministic policy gradient algorithm (MP-TD3). To stim-
ulate the experience interactions among different agents,
a multi-pool prioritized experience replay mechanism is
designed. Subsequently, a self-cleaning mechanism based
on sample diversity and a self-cleaning mechanism based
on TD-errors are separately designed to remove redundant
samples and preserve the diversity of samples. Furthermore,
a self-updating mechanism based on TD-errors is proposed
to alleviate the TD-error hysteresis. Experimental results
demonstrate that the proposed MP-TD3 significantly accel-
erates the convergence of asynchronous RL with competitive
performance compared to state-of-the-art methods. However,
our MP-TD3 suffers from high computational complexity.
Consequently, in our future work we will focus on the
following directions: a) develop a more efficient asyn-
chronous method to further improve convergence efficiency;
b) simplify the MP-TD3 framework to reduce computational
costs.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2018.
[2] L. Lyu, Y. Shen, and S. Zhang, ‘‘The advance of reinforcement learning

and deep reinforcement learning,’’ in Proc. IEEE Int. Conf. Electr. Eng.,
Big Data Algorithms (EEBDA), Feb. 2022, pp. 644–648.

[3] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, ‘‘Safe learning in robotics: From learning-based control
to safe reinforcement learning,’’ Annu. Rev. Control, Robot., Auto. Syst.,
vol. 5, no. 1, pp. 411–444, May 2022.

[4] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, ‘‘How
to train your robot with deep reinforcement learning: Lessons we have
learned,’’ Int. J. Robot. Res., vol. 40, nos. 4–5, pp. 698–721, Apr. 2021.

[5] D. Han, B. Mulyana, V. Stankovic, and S. Cheng, ‘‘A survey on deep
reinforcement learning algorithms for robotic manipulation,’’ Sensors,
vol. 23, no. 7, p. 3762, Apr. 2023.

[6] B. R. Kiran, I. Sobh, V. Talpaert, P.Mannion, A. A. A. Sallab, S. Yogamani,
and P. Pérez, ‘‘Deep reinforcement learning for autonomous driving: A
survey,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6, pp. 4909–4926,
Jun. 2022.

[7] J. Wu, Z. Huang, and C. Lv, ‘‘Uncertainty-aware model-based reinforce-
ment learning: Methodology and application in autonomous driving,’’
IEEE Trans. Intell. Vehicles, vol. 8, no. 1, pp. 194–203, Jan. 2023.

[8] R. N. Boute, J. Gijsbrechts, W. van Jaarsveld, and N. Vanvuchelen, ‘‘Deep
reinforcement learning for inventory control: A roadmap,’’ Eur. J. Oper.
Res., vol. 298, no. 2, pp. 401–412, Apr. 2022.

VOLUME 12, 2024 105279

W. Tan, D. Huang: MP-TD3: Multi-Pool Prioritized Experience Replay

[9] J. Gijsbrechts, R. N. Boute, J. A. VanMieghem, andD. J. Zhang, ‘‘Can deep
reinforcement learning improve inventory management? Performance on
lost sales, dual-sourcing, and multi-echelon problems,’’ Manuf. Service
Operations Manage., vol. 24, no. 3, pp. 1349–1368, May 2022.

[10] F. Rupp, M. Eberhardinger, and K. Eckert, ‘‘Balancing of competitive two-
player game levels with reinforcement learning,’’ in Proc. IEEE Conf.
Games (CoG), Aug. 2023, pp. 1–8.

[11] K. Souchleris, G. K. Sidiropoulos, and G. A. Papakostas, ‘‘Reinforcement
learning in game industry—Review, prospects and challenges,’’ Appl. Sci.,
vol. 13, no. 4, p. 2443, Feb. 2023.

[12] C. J. C. H.Watkins, ‘‘Learning from delayed rewards,’’Robot. Auton. Syst.,
vol. 15, no. 4, pp. 233–235, 1989.

[13] O. Sigaud and O. Buffet, Markov Decision Processes in Artificial
Intelligence. Hoboken, NJ, USA: Wiley, 2013.

[14] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[15] V. Konda and J. Tsitsiklis, ‘‘Actor-critic algorithms,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 12, 1999, pp. 1008–1014.

[16] L.-J. Lin, ‘‘Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,’’ Mach. Learn., vol. 8, nos. 3–4, pp. 293–321,
May 1992.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[20] X. Liang, X. Du, G. Wang, and Z. Han, ‘‘A deep reinforcement learning
network for traffic light cycle control,’’ IEEE Trans. Veh. Technol., vol. 68,
no. 2, pp. 1243–1253, Feb. 2019.

[21] G. Dao andM. Lee, ‘‘Relevant experiences in replay buffer,’’ in Proc. IEEE
Symp. Ser. Comput. Intell. (SSCI), Dec. 2019, pp. 94–101.

[22] J. Yang and G. Peng, ‘‘DDPG with meta-learning-based experience replay
separation for robot trajectory planning,’’ in Proc. Int. Conf. Control,
Autom. Robot. (ICCAR), Apr. 2021, pp. 46–51.

[23] Q. Wei, H. Ma, C. Chen, and D. Dong, ‘‘Deep reinforcement learning with
quantum-inspired experience replay,’’ IEEE Trans. Cybern., vol. 52, no. 9,
pp. 9326–9338, Sep. 2021.

[24] S. Sinha, J. Song, A. Garg, and S. Ermon, ‘‘Experience replay with
likelihood-free importance weights,’’ in Proc. Learn. Dyn. Control Conf.,
2022, pp. 110–123.

[25] X. Liu, T. Zhu, C. Jiang, D. Ye, and F. Zhao, ‘‘Prioritized experience replay
based on multi-armed bandit,’’ Expert Syst. Appl., vol. 189, Mar. 2022,
Art. no. 116023.

[26] A. W. Moore and C. G. Atkeson, ‘‘Prioritized sweeping: Reinforcement
learning with less data and less time,’’ Mach. Learn., vol. 13, no. 1,
pp. 103–130, Oct. 1993.

[27] D. Andre, N. Friedman, and R. Parr, ‘‘Generalized prioritized sweeping,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 10, 1997, pp. 1001–1007.

[28] H. Van Seijen and R. Sutton, ‘‘Planning by prioritized sweeping with small
backups,’’ in Proc. Int. Conf. Mach. Learn., 2013, pp. 361–369.

[29] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
‘‘Deep reinforcement learning: A brief survey,’’ IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.

[30] C. Zhang, P. Patras, andH. Haddadi, ‘‘Deep learning inmobile andwireless
networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3,
pp. 2224–2287, 3rd Quart., 2019.

[31] S. Fujimoto, D. Meger, and D. Precup, ‘‘An equivalence between loss
functions and non-uniform sampling in experience replay,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 14219–14230.

[32] M. Brittain, J. Bertram, X. Yang, and P. Wei, ‘‘Prioritized sequence
experience replay,’’ 2019, arXiv:1905.12726.

[33] X. Cao, H. Wan, Y. Lin, and S. Han, ‘‘High-value prioritized experience
replay for off-policy reinforcement learning,’’ in Proc. IEEE 31st Int. Conf.
Tools with Artif. Intell. (ICTAI), Nov. 2019, pp. 1510–1514.

[34] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[35] X. Zhao, S. Ding, and Y. An, ‘‘A new asynchronous architecture for tabular
reinforcement learning algorithms,’’ in Proc. Int. Conf. Extreme Learn.
Mach. (ELM), Oct. 2019, pp. 172–180.

[36] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approx-
imation error in actor-critic methods,’’ in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1587–1596.

[37] L.-J. Lin, ‘‘Programming robots using reinforcement learning and
teaching,’’ in Proc. 9th Nat. Conf. Artif. Intell., 1991, pp. 781–786.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[40] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, ‘‘Policy gradient
methods for reinforcement learningwith function approximation,’’ inProc.
Adv. Neural Inf. Process. Syst., vol. 12, 1999, pp. 1057–1063.

[41] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[42] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for model-
based control,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 5026–5033.

[43] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

[44] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

WENWEN TAN is currently pursuing the B.Eng.
degree with the College of Engineering, Huaqiao
University, Quanzhou, China. Her research inter-
ests include reinforcement learning and its related
applications.

DETIAN HUANG (Member, IEEE) received the
B.S. degree in electronic information engineering
from Xiamen University, China, and the Ph.D.
degree in circuits and systems from the University
of Chinese Academy of Sciences, China. He is
currently an Associate Professor with the College
of Engineering, Huaqiao University. He has pub-
lished more than 40 papers in well-known journals
and conferences, including one Best Student
Paper Award in the International Symposium on

Intelligent Signal Processing and Communication Systems 2022 (ISPACS
2022). His research interests include computer vision, image restoration,
object tracking, and deep learning.

105280 VOLUME 12, 2024

