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ABSTRACT The coming 6G wireless network is poised to achieve unprecedented data rates, latency, and
integration with newer technologies like AI and IoE. On the other hand, along with this kind of growth in
the AI domain and the large-scale connectivity in 6G. It is also going to raise many security concerns at the
level of intrusion detection and prevention. For intrusion detection, centralized approaches won’t be able to
work effectively, therefore there is an utmost need to design decentralized and privacy-preserving solutions.
In this work, we propose a novel secure gradients exchange algorithm for distributed intrusion detection
in 6G networks. Our method is designed to take into account the use of Federated Learning with secure
multi-party computation and blockchain technology. This way ensures that the collaborating parties are able
to conduct the training of intrusion detection models in a secure and collaborative manner by retaining
privacy in the data. Gradient compression and adaptive secure aggregation strategies are used to further
optimize communication overhead and computational complexity. Therefore, our design works in a robust
and efficient manner with the high data rates and huge connectivity that 6G networks will provide. To achieve
our goal, experiments using the CICIoT2023 dataset were performed, and results showed that our federated
learning-based hybrid model composed of CNN1D and a multi-head attention mechanism outperformed
other well-known deep learning models in terms of performance. It achieved the highest average accuracy
with 79.92%, the highest average detection rate with 77.41%, and a low false alarm rate with 2.55%.

INDEX TERMS 6G, computer security, network security, intrusion detection, IDS, blockchain, IoT, machine
learning, deep learning, multi-head attention CNN, LSTM, hybrid model, anomaly detection, federated
learning.

I. INTRODUCTION
Wireless communication has been one of the catalysts of
societal progress from audible primitive vibrations to data
transmission using radio waves. The wireless communica-
tion industry has seen rapid proliferation and significant
inventions in the past few decades, starting with the seminal
invention of the Advanced Mobile Phone System (AMPS),
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or 1G, by Bell Labs. The feature sets have improved
considerably in subsequent generations, including 2G, 3G,
4G, and the latest 5G networks [1]. The 5G technology
was supposed to bring a lot of advanced features, including
the IoE and enhanced broadband to MTC. Realization of
some of the hyped goals, such as wireless interconnectivity
of machines without human intervention, seems far-fetched
with the current 5G networks [2]. This realization makes
it important to critically reflect on whether 5G would be
able to satisfy the originally stated goals for conceived
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applications like IoE and whether the upcoming generation of
wireless network 6G shall demonstrate singular adaptability
and efficiency to cope with the large number of sophisticated
demands projected by 2030 [1].

Figure 1 summarizes an overview of connected intelli-
gence for future 6G networks. When the next generation
of wireless communication networks, the sixth-generation
(6G) network, is compared to its predecessors, a quantum
leap in communication is supposed to be experienced. These
networks are claimed to offer faster data speeds, lower
latency, and the ability to connect a much larger number
of devices [1]. Looking toward the realization of these
advances, 6G will probably have a network architecture
divided into layers, each catering to different functionalities.
The perception layer concerns transmitting signals and
their modulation techniques, which could possibly be done
through even higher frequency bands than the millimeter
wave bands for even higher capacity [3]. The Edge layer
encompasses intelligent devices capable of smart, efficient,
and tailored routing and processing capabilities [4], such as
cloud task offloading and edge caching. The core network
includes more processing and storage capabilities tailored for
more power-demanding tasks and operates as the brain of
the entire network, that does all the high-lifting tasks, such
as data mining and analytics. With such configurations, the
application layer will support the deployment of futuristic
applications, including real-time critical-mission tasks, such
as intelligent transportation and smart healthcare services.

The integration of artificial intelligence into 6G network
frameworks is heralded to have great potential in fostering
innovation and facilitating real-time intelligent decision-
making. However, this is also likely to introduce some
challenges in terms of security risks and potential attacks.
As AI becomes more deeply ingrained in network functional-
ities, it is increasingly necessary to address vulnerabilities and
establish solid security measures to protect the integrity and
privacy of these advanced systems [2]. An intrusion detection
system is either software or hardware that analyzes the traffic
in a network or host logs to detect any security policy
violations [5]. Utilizing AI, especially machine learning
and deep learning, is essential to enhance the capability of
intrusion detection systems in the IoT environment [6]. The
strategic deployment of IDS is a guarantee to ensure network
and system security and integrity. IDSs, long recognized
as stalwart guardians of network integrity, are faced with
new challenges in the dynamic and complex environment of
6G—borne out of the upsurge of data rates, growth of IoT
devices, and integration of AI [7]. Novel intrusion detection
approaches and secure collaborative learning are required to
meet these emerging challenges. In such a context, federated
learning has emerged as a promising paradigm that allows
collaborative machine learning to ensure data privacy [8].
Through model training on distributed data sources without
having to share the data, FL bypasses most of the privacy
concerns associated with the traditional, centralized machine
learning approach. However, the integration of FL in

6G networks introduces new security challenges, such as
unprotected exchange of model gradients during the training
phase.

This paper proposes a new secure gradients exchange-
based IDS that uses the synergy of FL, secure MPC, and
blockchain technology, specially designed for 6G wireless
networks; the algorithm provides the enabling of decentral-
ized, secure gradient aggregation; embedding techniques of
gradient compression and quantization; and adaptive secure
aggregation strategies for the optimization of communication
overhead and computation complexity. On top of that, the
algorithm is designed to be integrated with 6G network
slicing and virtualization, ensuring that efficient resource
allocation and Quality of Service (QoS) are guaranteed for
the process of secure gradient exchange. The architecture
proposed for the FBMP-IDS leverages a hybrid deep learning
model that adopts the powerful feature extractors of CNNs
combined with multi-head attention to detect intrusions in the
6G networks. This approach offers several benefits including
long-range dependencies and contextual analysis. Multi-
head attention component helps in uncovering long-range
dependencies inherent in the data [9]. This has the effect of
making the model scrutinize not just the data points but also
their relationships in a way that understanding the network
behavior is taken to a holistic level. In light of such contextual
information, the model will easily contrast normal network
traffic patterns from probable intrusions.

The rest of this paper is organized as follows. Section II
reviews existing works on intrusion detection systems (IDS)
and especially points out the relevant state-of-the-art in
deep learning and federated learning techniques applied to
6G network security. Section III explains the FBMP-IDS
architecture and focuses on its component design and
functionalities. Section IV deals with the computational
complexity analysis of the proposed architecture FBMP-IDS
with respect to communication complexity, compression
overhead, and communication overhead of federated learn-
ing. Section V explains the experimental setup, including the
intrusion detection dataset, evaluation metrics, used models,
and implementation details, and presents the results of the
evaluations in terms of key performance metrics such as
TPRs for different types of intrusions and AUC-ROC scores.
Analyze the performance comparison of our hybrid model
compared to the individual deep learning models inside the
FBMP-IDS framework. Section VI concludes this paper.

II. RELATED WORKS
The quest to harden the security infrastructure of 6G networks
has seen many remarkable studies, which discuss novel
methods of intrusion detection and prevention. Each one of
them targets a different type of network and aims at different
problems. This section details the most important ones on
the topic of 6G intrusion detection, looking at methodologies
applied to vehicular networks, IoT settings, and more general
network scenarios, their key strengths and limitations, and
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FIGURE 1. Vizualization of connected intelligence for future 6G Networks.

what exactly they bring new to the ever-changing landscape
of network security.

For the purpose of detecting intrusion or attacks in 5G
and IoT networks, a deep auto-encoded dense neural network
technique has been developed by Rezvy et al. [10]. The
benchmark Aegean Wi-Fi Intrusion dataset served as the
basis for the authors’ method evaluation. The system only
detects three sorts of attacks, which are Flooding (or DoS),
Injection, and impersonation type of attacks, making it
infeasible for additional types and unable to protect against
them. Nevertheless, the findings demonstrated excellent
performance with an overall detection accuracy of 99.9%.
Moudoud et al. [12] presented a detection and prediction
stochasticMarkov-basedmodel to prevent false data injection
and DDoS attacks and secure the 5G-enabled IoT. The pro-
posed multi-layer IDPS system by Abdulqadder et al. [14]
secures entities such as switches, domain controllers/smart
controllers, NFV infrastructure, and other networking and
data acquisition devices. In addition, many levels of security
are employed. Zhang et al. [15] proposed a novel ensemble
machine-learning algorithm based on weight techniques.
Their purpose was to handle the challenges of dynamic and
heterogeneous vehicular networks and meet the requirements

of the sixth-generation network, particularly in terms of
highly reliable and robust security measures. The experi-
mental evaluations are conducted by taking into account
5 different CAN bus ID data packets and show good
results with an increase in AUC of 13% and 15% in
F-measure. However, the proposed system is only considered
for centralized deployments.

Almiani et al. [17] proposed the use of the
Kalman-backpropagation neural network in constructing
an IDS model for detecting DDoS attacks in 5G-enabled
IoT networks. The system was benchmarked using the
CICDDoS2019 dataset and achieved an average detection
accuracy of 94%. However, only one attack was considered.
Chen et al. [19] recommended using fuzzing to evaluate
NIDS’s (Network Intrusion Detection Systems) rules. When
compared to the speed of anomaly-based IDSs, the processing
time variability is deemed inefficient.

Alotaibi et al. [20] proposed a software-driven FL-based
IDS, integrated into the network architecture and making
use of the advantages that 6G technologies have to offer.
Within IDSoft, they created the hierarchical FL framework
for intrusion detection. This framework features both syn-
chronous and asynchronous aggregation techniques, as well
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TABLE 1. Comparison of related works.

as a further offloadingmechanism, for an overall performance
increase of the system. The MNIST dataset was used [21].
When using three clusters, the number of communication
rounds was reduced by 30%, and when using four clusters,
the number of communication rounds was reduced by 60%.
However, the system’s security and the jeopardizing of the
entire system in the presence of malicious nodes were not
considered.

Vinita et al. [22] presented an FL-based IDS designed for
the IoV, compatible with 6G networks. The improvement
of security within cars, where training and detection are
made, was their main priority. Their research showed
that using a small number of global aggregations might
hit a high detection accuracy rate of 87%. Their system
also encompasses a Sybil attack detection where the data
instances are differentiated between normal and Sybil attacks.
However, it doesn’t take into consideration that normal

clients can be targeted and rendered malicious nodes.
Prasad et al. [24] proposed an approach using the Fuzzy
Logic System for performance reliability evaluation and
introduced an ML-based IDS to effectively secure MANETs.
The experiments are run in a virtual network environment
with benign and hostile nodes to replicate black-hole and
wormhole attacks.

Recent research investigated new paradigms, such as
over-the-air computation technology [25], which efficiently
encodes and decodes information using superimposed
wave-forms to mitigate issues such as interference and data
integrity. Other lines of research highlighted the problems
that arise while dealing with the management and exchange
of information within blockchain-based intrusion detection
systems secured by Multi-Party Computation (MPC) in real-
world scenarios. On the other hand, it has been shown
that Software-Defined Networking (SDN) can effectively
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manage network resources. Meanwhile, SDN has proven
effective in the efficient allocation of network resources.
Integration of these technologies is increasingly recognized
as a pivotal area of investigation to overcome practical
hurdles [26].

In Table 1, we summarize the related approaches adopted
for each study, strengths, and limitations. Clearly, most of the
current approaches are based on deep learning and machine
learning techniques that provide high detection rates but
incur some major limitations. The current approaches face
various limitations. 1. Limited attack scope: several works
target a particular set of attacks (DDoS, FDI) or specific
network environments (Vehicle CAN bus). 2. Centralized
learning limitation: the centralized learning architecture is
often criticized because it raises privacy concerns and might
not be scalable for large-scale 6G networks. 3. High False
Positive Rates: approaches that produce high false positives
will lead to unnecessary disruptions in the network. 4. Limited
dataset representation: datasets used in some works might
not characterize the complex attack landscape that could
appear in 6G networks.

The major contributions of the proposed system are:

1) DECENTRALIZED AND SECURE GRADIENT AGGREGATION
The system removes the requirement for a centralized
aggregation server by distributing the gradient aggregation
process across a blockchain network and client devices.
Gradients are aggregated securely by using MPC protocols,
ensuring that individual gradients remain private while
correctly computing global model updates.

2) GRADIENT COMPRESSION
This system, to meet the challenges of high data rates and
massive connectivity issues in 6G networks, uses gradient
compression and quantization. In this way, we reduce the
communication overhead associated with the transmission of
gradients, thereby improving efficiency without significantly
compromising model accuracy.

3) ADAPTIVE SECURE AGGREGATION STRATEGIES
The system has a set of MPC protocols with varying
complexity, communication overhead, and security guaran-
tees. Given the real-time network conditions and participant
characteristics, the system will dynamically choose the most
appropriate MPC protocol in each round of FL to ensure
secure aggregation, optimally trading off between security,
communication overhead, and computational complexity.

4) BLOCKCHAIN-ENABLED DECENTRALIZATION AND
TRANSPARENCY
This system includes blockchain technology to make the
FL process decentralized, transparent, and immutable. The
blockchain network collectively manages the global state of
the model, verifies the gradients’ authenticity and integrity,

and broadcasts the updated model weights to participating
clients.

5) HYBRID MODEL BASED ON CNN1D AND MULTI-HEAD
ATTENTION
With the aim of reaching the best performance regarding
the detection rate and false alarm rate, we devised a hybrid
model that combines lightweight design, high performance,
and efficient training. For this purpose, we incorporate both
CNNs with multi-head attention in the architecture of the
FBMP-IDS, which are very promising techniques for the
conception of performing intrusion detection on the complex
6G network environment. Such techniques are designed to
guarantee better feature extraction, better contextual analysis
of network traffic data, and possibly even superior learning
efficiency as compared to models based on a single learning
paradigm.

III. THE FBMP-IDS: AN OVERVIEW
In this paper, we have proposed a secure gradients
exchange-based IDS for FL in a 6G wireless network
environment, as provided in Alg. 1. The algorithm uses
the synergy of FL, secure MPC, and blockchain to enable
privacy-preserving and secure collaborative model training in
a decentralized manner.

A. MOTIVATION
The motivation for the present work, of course, lies in
the foreseen challenges and requirements of 6G wireless
networks, such as massive connectivity, stringent latency
and reliability constraints, and efficient resource utilization
and network slicing issues [1], [2], and not to forget the
issues related to privacy and security in the backdrop
of collaborative machine learning and data sharing [7].
Combining FL, MPC, and blockchain technology into our
proposed system,we are able to respond to these challenges in
a holistic and innovative manner. It allows privacy-preserving
and secure collaborative model training while harnessing
the unique characteristics of the 6G networks, such as
network slicing and virtualization, high data rates, and the
potential integration of blockchain-enabled infrastructure.
The resilience is better enhanced through the inherent
distributed nature of the algorithm hence avoiding single
points of failure. The adaptive secure aggregation strategies
and gradient compression techniques further optimize the
trade-offs among security, communication overhead, and
computational complexity [14]. Overall, the present work is
a contribution in view of realizing privacy-preserving and
secure FL-based IDS for next-generation wireless networks
to realize collaborative and distributed machine learning for
a wide range of applications and services in the 6G era.

B. THREAT MODEL
To model the network for distributed intrusion detection in
6G networks, a number of potential threats and security
vulnerabilities would have to be taken seriously that could
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compromise the system’s integrity and effectiveness. With
this, it would help to develop a more comprehensive threat
model that appreciates the adversarial landscape with regard
to the designing of effective countermeasures.

1) MALICIOUS INTRUSION DETECTION AGENTS
Intrusion Detection Agents are responsible for providing
local network traffic data and computing resources to the
collaborative training process. On the other hand, some
of these agents might be compromised or controlled by
adversaries, which will cause the following threats:

• Poisoning attacks: Malicious agents could inject cor-
rupted or manipulated data into the training process
to degrade the performance of the intrusion detection
model [7].

• Model extraction attacks: Adversaries could attempt
to extract or reconstruct the global intrusion detection
model by exploiting the gradients or model updates
exchanged during the training process [27].

• Privacy violations: Malicious agents could try to infer
sensitive information about other participants’ network
traffic data from the exchanged gradients or model
updates [28].

2) INSECURE COMMUNICATION CHANNELS
The secure exchange of gradients and model updates relies
on communication channels between the Intrusion Detection
Agents, Security Edge Nodes, and the Blockchain Network.
Some of the potential threats include:

• Eavesdropping attacks: Adversaries could intercept and
monitor the communication channels, making unau-
thorized access to sensitive information, for example,
gradients or model updates [27].

• Man-in-the-middle attacks: Adversaries can intercept
and tamper with the data being exchanged, possibly
being injected with malicious payloads or corrupting the
gradients or model updates [29].

C. NETWORK MODEL
Network architectures have to be designed for the distributed
intrusion detection problem arising from integrating FL and
AI in 6G wireless networks. This architecture corresponds to
our new architecture featuring a network architecture tuned
for distributed intrusion detection and designed in a way to
take advantage of network slicing, virtualization, and edge
computing for effective resource allocation, low latency, and
high security for collaborative training of intrusion detection
models. In this network model, we consider the 6G network
infrastructure that offers network slicing and thereby makes
possible the creation of multiple logical network instances
dedicated to specific security services or applications [30].
Each network slice can further be divided into multiple
sub-slices that can be dynamically allocated and orchestrated
based on the needs of the distributed intrusion detection
system [30]. The network consists of three main parts: the

Intrusion Detection Agents, the Security Edge Nodes, and the
Blockchain Network, as can be seen in Figure 2.

1) INTRUSION DETECTION AGENTS
The contributing devices or nodes are called Intrusion
Detection Agents in this case, and they contribute their
local network traffic data and computing resources to a
collaborative training of the intrusion detection models.
Therefore, the agents can represent any IoT device, network
router, firewall, or any other kind of connected device that can
capture network traffic and undertake local model training
and computing of gradients [27]. Each agent will be assigned
a specific sub-slice in the slice of the network reserved for the
application of intrusion detection. This sub-slice will ensure
isolated and secure communication channels for gradient
exchange and resource allocation, while it provides QoS
guarantees.

2) SECURITY EDGE NODES
The Security EdgeNodes are distributed computing resources
placed on the network edge and closest to the Intrusion
Detection Agents. These nodes become secure transmission
points for the gradients in the collaborative training process,
using the basic tenets of edge computing to reduce the
overhead of latency and communication [27]. Security Edge
Nodes are tasked with coordinating the secure gradients
exchange algorithm, thereby helping the secure aggregation
of gradients from the agents in their respective sub-slices.
They also handle the integration with the Blockchain Net-
work, broadcasting the aggregated gradients for verification
and global model updates [28].

3) BLOCKCHAIN NETWORK
The Blockchain Network is the decentralized and immutable
platform for secure gradient aggregation and management
of the global intrusion detection model. Each node in the
distributed network maintains and validates the blockchain
ledger, ensuring transparency, traceability, and resilience
against single points of failure [31]. Within the Blockchain
Network, smart contracts are employed to encode the secure
gradients exchange algorithm, enabling the verification of
gradients, the computation of global model updates, and the
distribution of the updated global intrusion detection model
to the participating agents [31]. The Blockchain Network
is integrated with the Security Edge Nodes and Intrusion
Detection Agents to ensure a secure and decentralized
collaborative training process. It makes use of blockchain
technology to provide this functionality while keeping the
integrity and privacy of the participating entities’ network
traffic data [27].

With network slicing, virtualization, edge computing, and
blockchain techniques, our proposed networkmodel provides
a secure and strong frame for the deployment of distributed
intrusion detection in 6G wireless networks. It will meet the
challenges of resource allocation, latency, and security in a
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FIGURE 2. Network model for the FBMP-IDS system.

framework that allows for efficient and privacy-preserving
collaborative training of intrusion detection models for the
enhanced security of 6G networks.

D. SYSTEM MODEL
1) INITIALIZATION

• a. The global model MG is initialized with random
weights.

• b. Participants P1,P2, . . . ,Pn engage in an MPC setup
phase, establishing secure communication channels
and generating shared secrets or cryptography keys
necessary for MPC computations.

• c. A set of MPC protocols P with varying levels
of complexity, communication overhead, and security
guarantees are defined.

2) ROUND PREPARATION
For each round r of FL, an MPC protocol Pr ∈ P is selected
based on the current network conditions and participant
characteristics.

3) CLIENT TRAINING
• a. Each participant Pi initializes a local model Mi with
the same architecture as the global modelMG.

• b. Pi copies the current weights ofMG to Mi.
• c. Pi trains Mi on their local data using a suitable
optimization algorithm and loss function.

• d. Pi computes the gradients ∇i ofMi with respect to the
initial weights copied fromMG.

• e. Pi compresses the gradients ∇i using the compression
function Q(·) to obtain compressed gradients Q(∇i).

• f. Pi secret-shares the compressed gradients Q(∇i)
using the selected MPC protocol Pr , obtaining shares
[Q(∇i)]1, [Q(∇i)]2, . . . , [Q(∇i)]n.

4) SECURE AGGREGATION USING MPC
• a. Participants execute the secure aggregation protocol
defined by Pr , where each Pi holds shares [Q(∇j)]i of
every other participant’s compressed gradients Q(∇j).

• b. Through the secure aggregation protocol, participants
jointly compute the sum of their shared compressed
gradients without revealing individual values, yielding
shares [Q(∇)]i =

1
n

∑n
j=1[Q(∇j)]i of the average

compressed gradients for each Pi.

5) RECONSTRUCTION AND BLOCKCHAIN INTEGRATION
• a. Participants reconstruct the final average compressed
gradients Q(∇) from the shares [Q(∇)]1, [Q(∇)]2, . . . ,
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Algorithm 1 FL-Based Blockchain-Powered Lightweight
MPC-Secured IDS for 6G Networks
Require: Participants P1,P2, . . . ,Pn, Blockchain BC ,

Global Model MG, Compression Function Q(·), Set of
MPC Protocols P

1: InitializeMG with random weights
2: Perform MPC setup: establish secure channels and

generate shared secrets
3: for each round r do
4: Select MPC protocol Pr ∈ P based on network

conditions and participant characteristics
5: for each participant Pi do
6: Initialize local model Mi with same architecture

as MG
7: Copy weights ofMG to Mi
8: Train Mi on local data of Pi using optimization

algorithm and loss function
9: Compute gradients∇i ofMi with respect to initial

weights fromMG
10: Compress gradients: Q(∇i)
11: Secret-share Q(∇i) using Pr to obtain shares

[Q(∇i)]1, [Q(∇i)]2, . . . , [Q(∇i)]n
12: end for
13: Execute secure aggregation protocol in Pr to

compute [Q(∇)]i =
1
n

∑n
j=1[Q(∇j)]i for each Pi

14: Reconstruct average compressed gradients Q(∇)
from shares [Q(∇)]1, [Q(∇)]2, . . . , [Q(∇)]n

15: BroadcastQ(∇) to BC and verify using participants’
signatures

16: Update MG weights using Q(∇): W (t+1)
MG

= W (t)
MG

−

ηQ(∇)
17: end for

[Q(∇)]n using the MPC reconstruction protocol defined
by Pr .

• b. Q(∇) is broadcasted to the blockchain network BC .
• c. The authenticity and integrity of Q(∇) are verified
using the participants’ digital signatures.

6) GLOBAL MODEL UPDATE
• a. Once the average compressed gradients Q(∇) are
verified on the blockchain, the global modelMG weights
are updated using the verified gradients:

W (t+1)
MG

= W (t)
MG

− ηQ(∇)

where η is the learning rate, and t represents the current
round of FL.

E. GRADIENT COMPRESSION APPROACH
DNN quantization has emerged as a pivotal technique in
optimizing the deployment of neural networks on resource-
constrained devices [32]. DNN quantization is defined as the
process of reducing the precision inweights and activations of
neural networks from higher bit-widths (e.g., 32-bit floating
point) to lower bit-widths (e.g., 8-bit integers) [33], [34]. This

reduction is strongly driven by the quest for improvements
in computational efficiency and memory footprint, with
an additional inference speed boost and no large losses
in terms of model accuracy [35]. In our framework we
implemented this stage using the QKeras quantization library
from Google [35], [36], [37]. The library is built upon
the work of [38], in creating Quantized Neural Networks
(QNNs), where during training, all activations and weights
are quantized to Q bits in a fixed point representation. The
quantization function in the forward pass can be formulated
by [38]:

q = clip(
round(2Q−1

×W )
2Q−1 , −1, 1 − 2−(Q−1)) (1)

The quantization function is a mathematical transforma-
tion applied to the weights of the neural network during
the training process. The equation provided describes how
a weight W is quantized to Q bits using a fixed-point
representation.

• Rounding and Scaling: The expression round(2Q−1
×

W ) scales the weight W by 2Q−1 and then rounds it to
the nearest integer.

• Normalization: The result is then divided by 2Q−1 to
normalize it back to the range of the original weight
values.

• Clipping: The clip function ensures that the quantized
value q stays within the range [−1, 1 − 2−(Q−1)]. This
prevents the values from exceeding the re-presentable
range for the given bit-width Q.

By quantizing the weights and activations to lower bit-
widths, significant improvements in computational efficiency
and memory usage are achieved, making it feasible to deploy
complex neural networks on resource-constrained devices
without substantial loss in accuracy. This has been proven by
several works including [33], [37].

F. DYNAMIC SELECTION AND EXECUTION OF MPC
PROTOCOLS
The secure aggregation protocol within our system is crucial
for ensuring that the gradients from participants are aggre-
gated securely without revealing individual contributions.
The dynamic selection of MPC protocols is based on
current network conditions and participant characteristics,
as presented in Alg. 2.
The scoring function S(Pr ,NC,PC) can be defined

based on various factors such as communication overhead,
computational complexity, and security guarantees. The
scoring function can be defined as:

S(Pr ,NC,PC) = α · s(Pr ) − β · o(Pr ,NC)
− γ · c(Pr ,PC) (2)

where s is the security guarantees, o is the communication
overhead, c is the computational complexity, and α, β, γ are
weights assigned to each factor based on their importance.
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Algorithm 2 Dynamic Selection and Execution of MPC
Protocols
Require: Set of MPC ProtocolsP , Network ConditionsNC ,

Participant Characteristics PC
1: function SelectMPCProtocol(P,NC,PC)
2: Define a scoring function S(Pr ,NC,PC) that

evaluates the suitability of each protocol Pr ∈

P based on current network conditions NC and
participant characteristics PC

3: Initialize an empty list scores
4: for each protocol Pr ∈ P do
5: Compute the score sr = S(Pr ,NC,PC)
6: Append (Pr , sr ) to scores
7: end for
8: Sort scores based on sr in descending order
9: Select the protocol with the highest score: Pbest =

scores[0], [0]
10: return Pbest
11: end function

G. ADVANTAGES
By incorporating secure multi-party computation techniques,
this system achieves an additional layer of security and
privacy protection for the gradients exchange process [39].
Individual gradients remain private throughout the compu-
tation, and the aggregated gradients are computed correctly,
even in the presence of compromised or malicious par-
ticipants, thanks to the properties of MPC protocols [40].
Moreover, the system uses gradient compression to reduce
communication overhead and adaptive secure aggregation
strategies that dynamically choose the most appropriate
MPC protocol according to the network conditions and the
characteristics of the participants. This makes the algorithm
more suited to the challenges and requirements of the 6G
wireless network while preserving security and privacy.

H. OUR SYSTEM VS. TRADITIONAL FL-BASED IDSS
The system is a decentralized secure gradients exchange
algorithm tailored for 6G networks, there is no centralized
aggregation server [8]. The role traditionally played by a
central server is distributed across the blockchain network
and the participating clients [31]. The key aspects of the
server’s functionality are handled as follows:

1) GLOBAL MODEL INITIALIZATION AND UPDATE
A global model MG is randomly initialized; its weights
are further updated with the aggregated gradients from the
set of clients participating in a given round. Yet, all these
activities are performed not by a central server but are
collectively managed by the blockchain network through
consensus mechanisms and smart contracts.

2) GRADIENT AGGREGATION
The process of aggregating gradients from participating
clients is performed in a decentralized manner by the

blockchain network and the secure multi-party computation
(MPC) protocols. Each client secret-shares their compressed
gradients using the selected MPC protocol [40], and the
participants jointly compute the average compressed gradi-
ents without revealing their individual values. This secure
aggregation is facilitated by the MPC protocols and the
blockchain network’s consensus mechanisms.

3) GLOBAL MODEL DISTRIBUTION
After updating the global model weights, the new global
model state needs to be distributed to the participating
clients for the next round of training. In this approach,
the updated global model weights can be broadcasted as
transactions on the blockchain, which achieves transparency
and immutability [31]. The updated model can be stored in
a distributed file system for access by all participants [27].
Without a centralized aggregation server, the proposed
algorithm may avoid potential single points of failure and
enhance the security, resilience, and decentralization of the
FL process. The blockchain network provides a decentralized
and transparent basis, enjoying the properties of decentral-
ization, immutability, and consensus mechanisms, for secure
gradient aggregation and global model management.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the algorithm proposed can
be decomposed into communication overhead, compression
overhead, and the number of training rounds.

A. COMMUNICATION COMPLEXITY
The choice of MPC protocol in each round (Pr ) is highly
influential in the choice of the time complexity. Popular MPC
protocols typically have communication complexity scaling
with O(nd .K ), where n is the number of participants and d
and K are variable factors depending on the exact protocol
used. [41], [42].

B. COMPRESSION OVERHEAD
Employment of the compression function Q(·) comes with
some computational overhead compared to uncompressed
gradients. However, the compression ratio attained will
directly impact communication overhead. An efficient com-
pression function with a higher ratio can hugely reduce the
amount of data transmitted during secure aggregation. This,
therefore, calls for care in the choice of the compression
function, since there is a trade-off between the overhead
incurred in compression and the reduction of communication.

C. TRAINING ROUNDS
The global model is then iterated with many rounds of
training to achieve convergence. Total communication cost
scales with the number of rounds, linearly (R).
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FIGURE 3. Simplified illustration of dataset pre-processing, model training, and evaluation.

1) TIME COMPLEXITY
Now, this complexity can be written in Big O notation as:
T = O(R · CMPC + Ccompression) where:

• R is the number of rounds of training.
• CMPC denotes the communication complexity of the
MPC protocol chosen for each round.

• Ccompression denotes the computational cost associated
with the application of the compression function Q(·).

V. EXPERIMENTATION
To conduct our experiments, we follow the steps illustrated in
Figure 3.We start with the pre-processing steps. Then, we use
the training dataset for the training phase, splitting it into five
subsets. Each subset is used to train only one federated client.
After completing the various rounds of federated learning,
we use a model from any client to evaluate the performance
using the test dataset. Various experiments were done using
different deep neural network models: simple deep neural
network, DNN; convolutional neural networks, CNNs; long
short-term memory, LSTM, networks; and a hybrid model
that combines 1D CNN with Multi-Head Attention. We use
the Flower framework for simulation using TensorFlow in
training such models with Federated Learning [43]. The
CICIoT2023 dataset [44] is used to train the different clients
and to test one of them. This choice of dataset is due to
its realistic gathered traffic and accurate representation of
modern IoT network traffic.

1) THE CICIoT2023 DATASET [44]
The CICIoT2023 dataset is one of the most recent datasets,
aiming to assist in the design of security analytics for the IoT
environment. It offers full data generated through different

IoT attack scenarios. The authors developed a complex IoT
network topology with more than 100 devices and subjected
these devices to 33 different attacks. These attacks were part
of a large set of categories, including Distributed Denial-
of-Service (DDoS), Denial-of-Service (DoS), reconnaissance
(Recon), web-based attacks, brute-force attacks, spoofing
attacks, and Mirai botnet-related attacks. Worth mentioning,
that all attacks were initiated from compromised IoT devices
to target another device in the network. The process of
data collection was three-fold: generating, extracting, and
labeling the data. In the first step, the attacks were initiated by
simulating various attack scenarios against the prepared IoT
network. Next, the generated network traffic through these
attacks was captured in pcap format using the Wireshark
network protocol analyzer. Finally, the traffic data was
captured and labeled against the attack scenario that each
segment represents. The captured pcap files formed a
substantial amount of data, exceeding approximately 548GB.
To make the data easy to analyze in the next steps, the authors
applied a chunking process to the data, dividing it into 10-
MB chunks. This chunking allowed for parallel conversion
from its pcap format to CSV format, which is more readily
analyzable. After chunking the data, the authors used the
DPKT library to extract a rich set of features from the traffic
data. Table 2 provides a summary of the benign traffic and
different attack types, along with their sub-types and the
number of instances per type.

2) PRE-PROCESSING
As illustrated in Figure 3, to conduct our experiments,
we initially concatenated all CSV files from the CICIoT2023
dataset into a single data frame. Subsequently, we removed
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FIGURE 4. Models used for the experimental evaluation.

redundancy, rows with missing values, and columns with the
same value for all rows. Following this, we selected a fixed
number of rows for each type of attack and benign activity,
as specified in Table 3. Then, we applied normalization
to every value within each column using Equation 3.
Subsequently, we divided the selected dataset into the training
set and the test set. Finally, we split the training set into
different training sub-sets, where each sub-set is used to train

the model deployed in one node.

xi(j) =
xi(j) − min(x(j))

max(x(j)) − min(x(j))
(3)

A. USED MECTRICS
To evaluate the performance of the proposed models,
we employed the True Positive Rate (TPR) for each class,
Global Accuracy, Average Detection Rate, False Alarm
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TABLE 2. The CICIoT2023 dataset classes distribution.

Rate, and Average Accuracy, which are respectively detailed
in Equation 4, Equation 5, Equation 6, Equation 7, and
Equation 8. These metrics are based on the confusion matrix
illustrated in Table 4. Besides, we further employ the Receiver
Operating Characteristic curve and Area Under the Curve as
metrics for performance evaluation. Also, the communication
overhead that is presented in Equation 9, where R represents
training rounds, N represents the total number of clients, and
CMS or the Compressed Model Size, which represents the
final model size, after introducing the 8bit quantization using
the TensorFlowModel Optimization Toolkit [45] and making
it resource constrained friendly using the TensorFlow Lite
Framework [46].

TPRclassX =
TPclassX

TPclassX + FNclassX
(4)

AccuracyGlobal =

∑NBclass TP∑NBclass(TP + FP)
(5)

DRAverage =

∑
TPRAttackX

NBOfAttackX
(6)

FAR = 1 −
TPBenign

TPBenign + FNBenign
(7)

ACCAverage =
1

NBClass

∑
TPRX (8)

Overhead = R · N · (N − 1) · CMS (9)

B. MODELS USED FOR FEDERATED LEARNING
Figure 4 summarized the different models used as initial
models for federated learning. These models are broadcast
to all the participating clients. The models employed are as
follows:

• CNN1D model: This is a sequential model architecture.
Two convolutional layers (Conv1D) are employed: the
first with kernel size 3 × 1×64 and a bias of 64.
Following the first convolutional layer is a max pooling
layer to reduce the dimensionality of the data. The
second convolutional layer is applied, with 128 biases
and a kernel size of 3 × 64×128. A non-linear
activation function is applied. Following this, a global
average pooling is applied to reduce the data along the
spatial dimension. A dropout layer is used to prevent
over-fitting. Finally, there exists a fully connected
layer.

• CNN2D model: The first layer is a convolutional 2D
layer with a kernel size of 2 × 2×1 × 32 and applies
a bias of 32. After that, a max pooling 2D layer is
applied to reduce the data dimensionality. A second
convolutional layer 2D is applied with a kernel size of
2×2×32×64 and applies a bias of 64, with an activation
layer. Then amax pooling 2D is applied to further reduce
the data. A flattening layer into a 1D vector is applied
before a fully connected layer. A dropout layer is applied
to prevent over-fitting. Finally, we find a fully connected
layer.

• RNN model: The structure is sequential with an input
layer, 2 RNN layers—SimpleRNN, and then there
are the dense layers. The input layer gets a vector
corresponding to the first element in the sequence. Then
an activation function adds non-linearity to the output
coming from the RNN layer. A dense layer finally
transforms the sequence data that is processed into the
desired output vector.

• LSTM: The same network architecture is used for the
RNN model, except we will replace the Simple RNN
layers with the LSTM layer.

• Hybrid model: It will amalgamate CNN with a Trans-
former block. A CNN—1D tries to extract features
from the networking traffic data, while a multi-head
attention analyzes the relationships between different
data points in sequences and could therefore show
long-range patterns of attacks.

1) USED HYPERPARAMATERS
To reach our purpose and achieve high performance
of the FBMP-IDS system, different values of various
hyper-parameters were tried. After several attempts, we iden-
tified the optimal hyper-parameters and their corresponding
models, which are detailed in Table 5.
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FIGURE 5. ROC curve and AUC ROC of the different models using federated learning.

C. RESULTS
The effectiveness of the FBMP-IDS architecture is
assessed in this part. In the process of evaluation,
we used the different training sub-datasets for the

training steps of the different nodes, and the test
sub-set for the test step. Table 6 and Figure 6 summa-
rize the results obtained for the various deep learning
models.
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TABLE 3. Distribution of attacks and benign classes on training and test subsets extracted from CICIoT2023 dataset.

TABLE 4. Confusion matrix.

1) SPECIFIC METRICS
The table groups the True Positive Rates (TPRs) that
each model has achieved in detecting various intrusion
categories. Results can be seen in the FBMP-IDS with the
Hybrid Model, attaining the highest overall performance
and highest detection rate with 99.43% in Mirai attacks,
70.39% in Recon-based attacks, and 96.76% in DDoS-based
attacks while being powerful in the identification of other
attack types. As depicted in Figure 6, the following
are the comparisons of the models based on the TPR
obtained:

• Benign Traffic: The majority of models obtained high
TPR values, demonstrating how these models are
capable of distinguishing between normal and malicious

traffic. The best of thesemodels was CNN1Dwith a TPR
of 98.45% and the second one is the Hybrid Model with
a TPR of 97.45%.

• Distributed Denial-of-Service Attacks: Again, the
Hybrid Model was better than the rest with a TPR of
96.76%. The DNN and RNN models performed very
well in detecting DDoS attacks, with TPR values of
96.25% and 96.06% respectively.

• Denial-of-Service (DoS) Attack: As in the DDoS attack,
the HybridModel was the best of all models, with a TPR
of 94.65%. While CNN2D, RNN, and others had lower
rates.

• Reconnaissance Attacks: The Hybrid Model achieved
the highest TPR (70.39%) in the case of reconnaissance
attack detection. A good TPR value was received
by DNN at 57.15%. All other models showed lower
performance.

• Web-based Attack: Again, the Hybrid Model showed
strong performance at 74.39% in the case of web-based
attack detection. A notable TPR (80.63%) is achieved by
CNN2D, too, while others showed lower detection rates.
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TABLE 5. Hyperparamaters of the different models used for the experimental evaluation.

TABLE 6. Obtained results for the different used models.

• Brute-Force Attack: Hybrid Models showed significant
improvement in the case of brute-force attack detection
over the other models and achieved a TPR of 51.56%.
While all others showed much lower TPR.

• Spoofing Attack: Again, the Hybrid model showed the
best performance at a TPR of 54.70% in the case of
spoofing attack detection. Also, moderate TPRs are
shown by CNN1D and DNN models, while others
showed lower detection rates.

• Mirai Botnet Attack: All models achieved exceptionally
high TPRs for detecting Mirai botnet attacks and
obtained values over 99%, demonstrating how these are
very capable of finding that threat. And the best among
them was the hybrid model at 99.43%.

2) GLOBAL PERFORMANCE METRICS
As shown in Table 6, the Global performance metrics include
Accuracy, False Alarm Rate (FAR), Average Detection Rate
(DR), and Average Accuracy. Figure 6 shows that the Hybrid
Model has the highest overall Accuracy of 91.35% and
Average Accuracy of 79.92%, along with a very low FAR
of 2.55%. Hence, the results indicate the performance of the
Hybrid Model in terms of an adequate balance between the
accurate detection of intrusions and low false alarms.

3) ROC ANALYSIS FOR THE DIFFERENT MODELS
The performance evaluation of the FBMP-IDS was not
limited only to True Positive Rates of each intrusion class. For
a better description of the performance of models, Receiver
Operating Characteristic curves were also constructed for
each deep learning model that can be used in the FBMP-IDS
framework, as illustrated in Figure 5. TheROC curve plots the
trade-off between the True Positive Rate (TPR) and the False
Positive Rate (FPR) at different classification thresholds.

In this part, we go through the strengths and weaknesses
of each model using micro-averaged ROC curves and
individual class ROC curves. Analysis of the ROC curves
indicated distinct performance levels among the compared
classification models. Importantly, for a model’s capability to
separate between the positive and negative instances among
all classes, the Hybrid model (Figure 5 (f)) scored the highest
micro-averaged ROC score of 0.993%, which definitely
denoted superior overall classification performance. This
means that the model has satisfactory robustness to deal
with potential class imbalances within the dataset. The
micro-averaged ROC curve, however, does not show any
possible weaknesses at the level of individual classes.
To further delve into the matter, we analyze the class-specific
ROC curves. Herein, we note that several models, including
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FIGURE 6. TPR and global metrics for the different used models.

CNN2D (Figure 5 (b)), LSTM (Figure 5 (d)), and DNN
(Figure 5 (e)), perform poorly in certain classes; this is

evidenced by lower AUC values and less defined curves in
their class-specific ROC plots. In contrast, the Hybrid model
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TABLE 7. Models sizes and the network overhead.

shows a consistently good performance across most classes
from its individual class ROC curves.

While the micro-averaged ROCs provided a very good
initial idea regarding the performance of the models, the
single-class ROCs proved to be very interesting. For instance,
while the CNN1D model (Figure 5 (a)) managed a good
micro-averaged ROC score of 0.991%, it showed its limits in
handling the ‘‘Recon’’ class. On the other hand, the CNN2D
(Figure 5 (b)) model was poor in both the ‘‘Recon’’ and
‘‘Spoofing’’ classes. Surprisingly, both the RNN and LSTM
models performed similarly but were marked with certain
inconsistencies at the class level. For instance, the Hybrid
model performed better than the LSTMmodel on the ‘‘Brute-
force’’ class with an AUC of 0.96% against 0.89%. However,
the DNN models performed worst of all, with AUCs less
than 0.9 for three classes: ‘‘Recon’’, ‘‘Bruteforce’’, and
‘‘Spoofing’’. These observations underline the importance of
looking both at micro-averaged and single-class ROC curves
for a proper evaluation. Though a model can have strong
performance in general, it may still have problems with some
classes due to some inherent limitations in the architecture or
some potential biases in the training data. It’s very important
to be aware of weaknesses in class performance for real-world
applications since class importance may vary. For instance,
it may be imperative to correctly classify the ‘‘DoS’’ class,
whereas the misclassification of the ‘‘Recon’’ class may not
be very serious.

D. COMPARISONS
Comparisons presented in Figure 6, show that across various
assessment metrics, the effectiveness of the FBMP-IDS
architecture, particularly the Hybrid Model, is very effective
in detecting a wide range of intrusion types. The Hybrid
Model consistently achieved superior performance across
most intrusion categories, which shows how the model is
flexible and robust. Furthermore, the Hybrid Model showed
the best AUC-ROC across different intrusion categories. This
finding strengthens the conclusion that the Hybrid Model
shows superior performance compared to other models of
individual deep learning models within the FBMP-IDS
framework. Table 7 presents the communication overhead
for the different models. While the analysis shows that the
hybrid model has the highest communication overhead due
to its large number of parameters, this apparent drawback
does need to be weighed against possible benefits. With

this, the hybrid architecture can leverage the strengths of
the CNNs and Multi-Head Attention synergistically to come
up with superior performance on the task in question.
This becomes significantly interesting for tasks that involve
complex relationships in the data or that require high
accuracy. Therefore, if optimal performance is the objective,
then probably the marginally increased overhead of the
hybrid model can be justified as a concession in light of the
possible gains.

VI. CONCLUSION
Coupled with the realization of 6G wireless networks
are unprecedented opportunities and challenges in network
security and privacy. Leveraging the power of AI in
network connectivity foreseen in 6G networks demands
network intrusion detection and prevention mechanisms that
scale and dynamically adapt to the constantly changing
network topology and distributed nature of these networks.
In this work, we propose a new secure gradients exchange
algorithm for distributed intrusion detection in 6G networks,
synergistically combining the power of federated learning
with secure multi-party computation and blockchain. Our
proposed system allows collaborative training of intrusion
detection models, preserving data privacy and secure gradient
aggregation through MPC protocols, ensuring adaptivity in
secure aggregation to optimize communication overhead and
computation complexity in real time. Blockchain technology
is used to offer a decentralized, transparent, and tamper-proof
FL process. Finally, a hybrid model architecture is presented,
where Convolutional Neural Networks are used for feature
extraction and Multi-Head Attention for better contextual
analysis in order to enhance detection rates and reduce
the occurrence of false alarm rates. We have demonstrated
the feasibility of the proposed approach through extensive
experimental evaluations and comparisons against several
baseline models.
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