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ABSTRACT For improving thermal characteristics and on-current (ION) in vertically stacked nanosheet
field-effect transistor (NSFET), the effect of parasitic channel height (Hparasitic) on thermal and electrical
characteristics has been investigated. By increasing Hparasitic, it has been demonstrated that the maximum
lattice temperature (Tmax) could be improved from 428 K to 416 K, and thermal resistance (RTH) could
be improved by 9.3 %. This thermal improvement has been achieved since the increased parasitic channel
height could lead to the formation of effective heat sink. The relationship between Hparasitic and the thermal
characteristics of the device has rarely been addressed in previous studies, and we have explored this
with a novel approach. In addition, regarding ION, it has been demonstrated that the proposed device
structure could have 19.7 % higher ION, due to the increased fringing field effect. The origin and benefits
of these thermal and electrical improvement have been thoroughly investigated through Synopsys Sentaurus
three-dimensional (3D) technology computer-aided design (TCAD) simulation tool. The proposed NSFET
structure is expected to be very strategic for the next-generation IC chip design with increased performance
(from ION improvement) and enhanced reliability (from thermal improvement), at the same time.

INDEX TERMS Nanosheet field-effect transistor (NSFET), on-current (ION), maximum lattice temperature
(Tmax), thermal resistance (RTH).

I. INTRODUCTION
Continuous downscaling of the semiconductor devices has
steadily required the reduction in the dimensions of transis-
tors such as gate length [1], [2], [3]. However, as gate length
decreases, a couple of undesirable short-channel effects
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(SCEs) concomitantly arise, posing challenges inmaintaining
good electrostatics [4]. To address this issue, several three-
dimension (3D) device structures such as fin field-effect
transistor (FinFET), gate-all-around (GAA) MOSFET, and
nanosheet field-effect transistor (NSFET) have been pro-
posed to enhance gate controllability [5], [6], [7], [8], [9].
Among these 3D structures, since gate fully encompasses the
sheet-shaped channel, NSFET shows excellent electrostatic

105878

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-5229-1693
https://orcid.org/0000-0001-7588-3723
https://orcid.org/0000-0002-3869-6520


Y. S. Song et al.: Improvement of Thermal Characteristics and On-Current

FIGURE 1. (a) 3-D schematic diagram and cross-sectional view of the
proposed vertically stacked NSFET with the explanation of the parameter
Hparasitic, and (b) Another cross-sectional view of the proposed vertically
stacked NSFET with various parameters.

characteristics, providing superior channel control, higher
on-current (ION), and better circuit-design flexibility from
flexible channel width design [10], [11], [12].

In addition to this structural development, NSFET has
been steadily developed with the vertically stacked structure,
since the vertically stacked NSFET enables an increased
number of channels, consequently providing higher ION.
Specifically, the vertically stacked NSFET could enable 2-3
times higher ION, compared to single channel NSFET [13],
[14]. Due to this ION advantage, it has been widely accepted
that the vertically stacked NSFET could be promising

FIGURE 2. Illustration describing step-by-step fabrication flow of the
proposed device [17]. The abbreviations of STI / depo. / ILD / HKMG
stand for shallow trench isolation (STI) / deposition (depo.) / interlayer
dielectric (ILD) / high-κ metal gate (HKMG), respectively.

candidate for next-generation high performance (HP) semi-
conductor applications with the improved device/circuit
performance [13], [14].

However, even though the vertically stacked NSFET has
better gate controllability and higher on-current, its thermal
characteristics are inferior to those of FinFET and single
channel NSFET [13]. This is because the gate dielectric
with low thermal conductivity completely encases the silicon
channels, thereby making it hard to dissipate the gener-
ated heat from the channels [13]. This issue is exacerbated
by the use of hafnium oxide (HfO2), which has a thermal
conductivity 2–3 times lower than that of silicon dioxide
(SiO2) [7], [12].

In addition, in the vertically stacked NSFET, its verti-
cally stacked structure even makes it difficult to dissipate
the heat generated from multiple channels as well. Conse-
quently, this heat issue, known as self-heating effects (SHEs),
simultaneously degrades the performance and reliability of
the vertically stacked NSFET [13], [14].

When it comes to performance degradation, ION decreases
due to the increased temperature caused by SHE. ION degra-
dation from SHE is particularly of great importance, since a
decrease in ION directly impacts a couple of performances
at the circuit level [13], [14], [15], [16]. For instance,
ION decrease at the transistor level could worsen the delay
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FIGURE 3. (a) Illustration explaining the overall workflow of this
research, (b) Calibration result with electrical characteristics [23], and
(c) Calibration result with thermal characteristics [20].

in a three-stage ring oscillator (RO3), inverter delay, and
resistance–capacitance (RC) delay, at the same time. For

these reasons, addressing the SHE issue is crucial not only
at the transistor level but also at the circuit level.

In order to improve the thermal characteristics of the verti-
cally stacked NSFET, several approaches have been proposed
by previous studies. For example, Tayal et al. have utilized
titanium dioxide (TiO2) as gate dielectric, instead of HfO2
[13]. However, TiO2 has lower bandgap (3.0-3.2 eV), com-
pared to HfO2 (5.3-5.7 eV). Therefore, the gate current (Igate)
might be significantly increased in the vertically stacked
NSFET shown in previous research [13].

On the other hand, Kim et al. have utilized two different
materials for spacer [9]. For example, they have utilized HfO2
as inner spacer and SiO2 as outer spacer. However, from
these dual-κ spacer structure, the device dimension should
be increased accordingly, which might be significantly unde-
sirable for device integration.

In this regard, we have explored a novel approach to
improve the thermal characteristics in vertically stacked
NSFETs without increasing the device size as in previous
approach [9], or increasing the gate current as in previous
approach [13]. Specifically, we have focused on the fact
that the fabrication of the vertically stacked NSFET has
concomitantly led to the formation of parasitic channel at
the bottom of the main channels [15], [16] and the parasitic
channel height (Hparasitic) could affect the overall electrical
characteristics and thermal characteristics of the transistor.

Therefore, we have investigated into the effect of Hparasitic
on the electrical and thermal characteristics of the verti-
cally stacked NSFET, and consequently demonstrated that
it is possible to design the vertically stacked NSFET with
decreased maximum lattice temperature (Tmax), decreased
thermal resistance (RTH), and increased ION, with the help
of parasitic channel height engineering. Importantly, the con-
nection between Hparasitic and the thermal characteristics of
the device has seldom been explored in earlier studies, and
we have investigated this using a novel approach.

This paper is organized as follows. To begin with, careful
calibration has been performed both electrically and ther-
mally, so that more accurate and precise research could be
conducted. Then, thermal characteristics such as Tmax and
RTH have been investigated by analyzing the location of
heat dissipation path. Thereafter, the improvement of elec-
trical characteristics such as ION has been analyzed. Finally,
potential benefits of the overall improvement of thermal and
electrical characteristics in the proposed vertically stacked
NSFET have been discussed.

II. DEVICE STRUCTURE AND CALIBRATION PROCESS
Fig. 1 shows the schematic structure of the vertically stacked
NSFET. This vertically stacked NSFET structure could be
fabricated through the gate-last fabrication process, and the
detailed fabrication steps could be found in Fig. 2 [17]. For
the detailed specification of this structure, device parame-
ters at 3-nm technology node presented in the International
Roadmap for Devices and Systems (IRDS, previously named
as ITRS) have been utilized [18].
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TABLE 1. Model parameters and the corresponding values.

A. STRUCTURE OF THE VERTICALLY STACKED NSFET
Fig. 1(a) and Fig. 1(b) illustrate the detailed structure of the
vertically stacked NSFET. The gate length (Lgate) is designed
with 16 nm [18]. Regarding silicon (Si) channel, channel
width (Wch) and channel thickness (Tch) are set as 10 nm and
5 nm, respectively. In addition, the gate stack is composed of
2.8 nm-thick hafnium oxide (HfO2) layer and 0.5 nm-thick
interfacial silicon dioxide (SiO2) layer, so that the equivalent
oxide thickness (EOT) could be designed as 1 nm [18]. More-
over, doping concentration for source/channel/drain regions
are set as 1 × 1020 / 1 × 1017 / 1 × 1020 cm−3, respec-
tively. The thermal conductivities of 0.27, 0.84, 8.9, 7.9,
175 W/(K×m) are applied for HfO2 [19], SiO2 [19], chan-
nel [20], source and drain [20], gate metal [21], respectively.
This structure has been investigated using Synopsys Sen-
taurus three-dimensional (3D) technology computer-aided
design (TCAD) simulation [22]. The detailed parameters
could be found in Table 1.

B. WORKFLOW OF RESEARCH AND CALIBRATION
PROCESS
Fig. 3(a) shows the overall workflow of this research. First,
calibration of GAA MOSFET has been conducted, and then
structure of the proposed vertically stacked NSFET has
been validated through thermal characteristics and electrical
characteristics.

In order to analyze the electrical and thermal charac-
teristics of the vertically stacked NSFET, thermodynamics,
Shockley-Read-Hall (SRH) recombination, and Fermi mod-
els are applied by Synopsys Sentaurus 3D TCAD simulation.
In addition to these model physics, Trap-assisted-tunneling
(TAT) and direct tunneling are applied to carefully investigate
electrical characteristics of the vertically stacked NSFET.

During the calibration process, quantum correlations are
performed through IDS-VGS calibration under Synopsys

Sentaurus 3D TCAD simulation [22]. During this process,
we have used mobility model (phumob / Enormal (Lom-
bardi) / high field saturation) to apply Coulomb scattering
and interfacial surface roughness scattering. Firstly, IDS-VGS
calibration has been carefully conducted by applying the
quantum model and velocity saturation model and gate metal
work function (WF). Secondly, thermal conductivity, heat
dissipation paths, and thermal boundary conduction (300 K)
to each heat dissipation path have been adjusted to con-
sider thermal characteristics of the vertically stacked NSFET.
Fig. 3(b) and Fig. 3(c) show that our simulation fits electri-
cally and thermally with the previous research [20], [23].

III. RESULT AND DISCUSSION
A. IMPROVEMENT OF THERMAL CHARACTERISTICS IN
THE VERTICALLY STACKED NSFET
Fig. 4(a) and Fig. 4(b) illustrate how Tmax and RTH could
be changed according to parasitic channel height (Hparasitic)
[Fig. 1(a)]. Specifically, as Hparasitic increases from 5 nm to
19 nm, Tmax could be improved from 428K to 416K, andRTH
could be improved by 9.3 %. RTH could be calculated from
the gradient of Fig. 4(b), and the equation for RTH could be
found in the following [20], [21], [24], [25], and [26].

RTH =
1T
1P

[K/µW] (1)

This thermal improvement could be explained by the phe-
nomenon that increased Hparasitic leads to the formation of
heat sink at the bottom of channel [Fig. 4(c)]. Specifically,
whenHparasitic is 5 nm, SiO2 is located next to parasitic chan-
nel (as shown in the first cross-sectional view in Fig. 4(c)).
Since insulator (SiO2) has low thermal conductivity, heat
generated by parasitic channel could not pass easily when
Hparasitic is 5 nm. On the other hand, when Hparasitic is 17 nm,
metal becomes located next to parasitic channel (as illus-
trated in the fourth cross-sectional view in Fig. 4(c)). Since
metal has high thermal conductivity [Table 1], heat generated
by parasitic channel could pass easily through metal when
Hparasitic is high. Namely, since the gate metal could act as an
effective heat sink, heat could be easily dissipated asHparasitic
increases.

Especially, RTH continuously improves with increasing
Hparasitic. This might be explained by the structural difference
between nanosheet-shaped channel and fin-shaped channel.
When it comes to nanosheet-shaped channel, the heat gen-
erated by nanosheet-shaped channel is difficult to dissipate,
because gate dielectric fully surrounds nanosheet-shaped
channel. In contrast, when it comes to fin-shaped channel, the
heat generated by fin-shaped channel could dissipate either
through gate dielectric or the bottom substrate. For these
reasons, it has been widely accepted that fin-shaped channel
(like FinFET) is superior to thermal characteristics, com-
pared to nanosheet-shaped channel. Therefore, as Hparasitic
increases, the effect of fin-shaped channel (parasitic chan-
nel) might be relatively increased, compared to the effect of
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FIGURE 4. (a) Effect of parasitic channel height on maximum lattice
temperature and thermal resistance, (b) Change of maximum lattice
temperature according to the normalized DC power, and
(c) Cross-sectional view illustrating distribution of lattice temperature.

nanosheet-shaped channel (main channels). Because of this,
RTH has been continuously improved.

FIGURE 5. (a) Comparison of on-current according to parasitic channel
height, and (b) Comparison of on-current/off-current ratio according to
parasitic channel height.

B. IMPROVEMENT OF ELECTRICAL CHARACTERISTICS IN
THE VERTICALLY STACKED NSFET
In addition to the thermal improvement discussed in the
previous section, improvement of electrical characteristics
has been investigated as well. Fig. 5(a), Fig. 5(b), and
Fig. 5(c) show ION, ION/IOFF ratio, and transfer characteris-
tics, respectively.

When it comes to ION, it has been demonstrated that ION
could be improved by 19.7 %, asHparasitic changes from 5 nm
to 19 nm [Fig. 5(a)]. This phenomenon could be explained
by increased fringing field effect. For example, as shown
in Fig. 6(a), as Hparasitic increases, fringing field (EF) at
SiO2 region gradually increases. This increased EF leads to
increase in electron current density [Fig. 6(b)]. For these
reasons, as Hparasitic increases, ION consequently increases
[Fig. 5(a)]. In a similar context, regarding ION/IOFF ratio,
the increase in Hparasitic improves ION/IOFF ratio as well,
as described in Fig. 5(b). Specifically, ION/IOFF ratio becomes
saturated as Hparasitic increases, because IOFF is increased
as Hparasitic increases. This phenomenon will be carefully
explained in the next following section IV.
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FIGURE 6. (a) Cross-sectional view illustrating amount of electric field
(under VGS = VDS = 0.7 V), and (b) Cross-sectional view describing
electron current density (under VGS = VDS = 0.7 V). As Hparasitic increases,
the amount of electric field increases. This increased electric field leads
to an increase in electron current density, thereby increasing on-current.

C. INVESTIGATION OF THERMAL CHARACTERISTICS
UNDER AC CONDITION
Furthermore, the thermal characteristics of the proposed
structure have been investigated under various alternating
current (AC) conditions. Given the practical operating con-
dition of modern IC chips, it is also important to analyze
the thermal characteristics of transistor under AC conditions.
It has demonstrated that the thermal characteristics under
AC signals varies from thermal characteristics under direct
current (DC) signals, since the heat accumulation / heat dis-
sipation happens repeatedly in AC condition [Fig. 7].

Specifically, it has been demonstrated that heat accumula-
tion phenomenon could be found duringON states, while heat

FIGURE 7. Maximum temperature change under AC condition with
(a) 100 MHz, (b) 1 GHz, and (c) 10 GHz.

dissipation phenomenon could be found during OFF states
[Fig. 7].

In this analysis, a gate voltage of 0.7 V, an increasing time
of 5 % of a period, a decreasing time of 5 % of a period, and a
duty cycle of 50 % are applied to gate terminal [27]. Fig. 7(a),
Fig. 7(b), and Fig. 7(c) show the thermal characteristics of the
proposed structure (Hparasitic = 19 nm) under 100 megahertz
(MHz) band, 1 gigahertz (GHz) band, and 10 GHz band,
respectively. Specifically, in the 100 MHz band, as described
in Fig. 7(a), heat accumulation and heat dissipation occur over
and over again, however, the overall Tmax rises as more cycles
are applied.

This phenomenon could be explained by the phenomenon
that each cycle of heat accumulation and heat dissipation
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FIGURE 8. (a) Transfer characteristics with log scale and linear scale
(under bias condition VDS = 0.7 V), (b) drain-source resistance (RDS)
according to Hparasitic, and (c) Cross-sectional view illustrating electron
current density.

consequently leaves residual heat. The same pattern is also
observed in 1 GHz band and 10 GHz band as well [Fig. 7(b)
and Fig. 7(c)]. Importantly, as the frequency increases
from 100 MHz to 10 GHz, lower Tmax is observed [Fig. 7].
This is because, compared to 100 MHz, higher frequency
band such as 10 GHz has shorter heat-accumulation time.

TABLE 2. Performance comparison with previous research.

As a result, the lower frequency band, 100MHz shows higher
Tmax, while the higher frequency band 10 GHz shows lower
Tmax.
The overall performance of the proposed structure has

been summarized in Table 2. As shown in Table 2, our
proposed structure could be expected to have improved elec-
trical characteristics and thermal characteristics at the same
time.

IV. LIMITATION OF THE RESEARCH AND FUTURE SCOPE
OF THE RESEARCH
All in all, the proposed vertically stacked NSFET (Hparasitic =

19 nm) could operate with increased ION and improved
thermal characteristics (improved reliability) at the same
time. Given these factors, it is expected that the proposed
NSFET configuration will be very strategic for design-
ing next-generation high performance (HP) IC chips with
improved performance and enhanced reliability.

Nevertheless, our proposed device structure has some lim-
itation as well. For example, even though it could be true that
the increased Hparasitic could lead to thermal and electrical
improvement in the vertically stacked NSFET, it might be
difficult to fabricate the vertically stacked NSFET asHparasitic
increases.

Specifically, considering the fact that our simulation struc-
ture has Wchannel of 10 nm, it might be possible to fabricate
the vertically stacked NSFET with 19 nm Hparasitic (with the
aspect ratio about 2:1) [28], [29], [30]. However, it might
be difficult to fabricate with higher Hparasitic (over the aspect
ratio 3:1). Even though there was previous research show-
ing aspect ratio of the fin-shaped silicon channel over 10:1,
it might be difficult to fabricate this kind of fin-shaped chan-
nel with high yield rate [31]. In this regard, the authors would
like to suggest the future research addressing the fabrication
of vertically stacked NSFET with various Hparasitic values,
so that the parasitic channel height engineering could be
understood not only from the modelling perspective but also
from the fabrication perspective.

In addition, ION/IOFF ratio becomes saturated as Hparasitic
reaches 19 nm, despite ION continuing to increase [Fig. 5(c)].
This is because the increased Hparasitic leads to higher off-
current (IOFF) as well [Fig. 8(a) and Fig. 8(b)].

This phenomenon could be explained by illustration of
electron current density during OFF-state. As shown in
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Fig. 8(c), it can be interpreted that most of IOFF is derived
by the parasitic channel (also known as ‘parasitic resis-
tance’), which leads to increased IOFF in the proposed
device structure. Because of this phenomenon, drain-source
resistance (RDS) during OFF-state could be decreased as
Hparasitic increases, thereby leading to undesirable increased
IOFF [Fig. 8(b)]. Therefore, even though our proposed
structure could be strategic for high performance (HP)
IC chip design, for designing low power (LP) IC chip
design, other strategies such as incorporation of low power
devices such as tunnel field-effect transistor (TFET) will be
needed [32], [33], [34].

V. CONCLUSION
In this paper, simultaneous improvement of thermal charac-
teristics and electrical characteristics in the vertically stacked
NSFET has been demonstrated. As the height of parasitic
channel increases, maximum lattice temperature and ther-
mal resistance have been improved, since the increase of
parasitic channel height leads to formation of effective heat
sink. In addition to this thermal improvement, it has been
demonstrated that the parasitic channel height engineer-
ing could increase on-current by 19.7 % in the vertically
stacked NSFET, since the increased fringing field leads to
increase of electron current density, thereby increasing on-
current. The connection between parasitic channel height
and the thermal characteristics of the device has rarely been
researched in earlier studies, and we have explored this
with a novel approach. Our proposed structure with the
increased parasitic channel height would be strategic for
future scaling technology with enhanced thermal charac-
teristics and improved electrical performance, at the same
time.
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