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ABSTRACT In the evolving landscape of mixed human-machine driving environments, autonomous
vehicles (AVs) confront the challenge of anticipating the lane-changing intentions and subsequent driving
trajectories of neighboring vehicles. This capability is essential for optimizing safety, efficiency, and comfort
in decision-making processes. This paper introduces a novel hybrid prediction model, the LSTM-GAT-
Bilayer-GRU, which leverages deep learning to enhance predictive accuracy and real-time responsiveness in
dynamic traffic scenarios. The proposed model consists of two main components: a lane change prediction
model (LSTM-GAT) and a trajectory prediction model (G-BiLayer-GRU), to process and predict complex
vehicular interactions and environmental dynamics effectively. The efficacy of this integrated model was
tested using the HighD dataset for training, validation, and testing purposes. The results of a benchmark
analysis indicate that the proposed model demonstrated superior prediction performance and reliability over
the Support Vector Machine (SVM), Random Forest (RF), AlexNet and Back-Propagation Through Time
(BPTT) in the context of lane change intention recognition. Combining LSTM for temporal data processing
with GAT for spatial interaction analysis, along with the GRU’s precise trajectory prediction, achieved
the best error evaluation metric and balanced prediction time consuming metric under the six prediction
time-interval, marks a substantial advancement in AVs technology. This integration guarantees smooth
operation of AVs in intricate driving scenarios, fine-tuning their reactions to bolster road safety and passenger
comfort.

INDEX TERMS Lane change, vehicle trajectory, prediction, data, deep learning, autonomous vehicle.

I. INTRODUCTION
The integration of autonomous driving and vehicle-road
collaborative systems into everyday traffic settings is
swiftly transforming the landscape of modern transportation.
This mixed traffic environment, where autonomous and
human-driven vehicles coexist and interact, is increasingly
becoming the norm [1]. Within this context, the fusion of
human and machine driving behaviors has emerged as a cru-
cial facet of contemporary traffic dynamics. Understanding
the technical intricacies and evolutionary patterns of this
human-machine hybrid driving traffic flow is paramount for

The associate editor coordinating the review of this manuscript and

approving it for publication was Tariq Umer .

advancing autonomous driving technology and intelligent
transportation systems.

In traditional human-driven scenarios, drivers must con-
tinuously assess the surrounding environment, the vehicle’s
operational status, and adhere to traffic regulations to
make informed driving decisions in real-time. However,
these decisions are inevitably influenced by factors such as
individual driving style, skill level, and subjective cognitive
biases, introducing limitations and inherent risks [2], [3].
In contrast, AVs leverage objective environmental data
to predict neighboring vehicles’ movements and execute
optimal driving decisions within predefined constraints, such
as lane changes [4]. Thus, the core problem of autonomous
driving lies in intelligent decision-making technology, this
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technology enables safe and efficient navigation while
effectively managing the complexities and uncertainties of
the environment [5].

Consequently, the proficiency of intelligent decision-
making technology in navigating complex traffic scenarios
has emerged as a key benchmark for assessing the maturity of
autonomous driving systems [6]. Notably, research endeavors
focusing on human-machine mixed traffic flow, particularly
in understanding behaviors related to following and lane
changes, have garnered global scholarly attention, reflecting
their significance as research frontiers.

Kesting et al. [7] introduced the MOBIL model, which
incorporates an acceleration control feature to gauge lane
satisfaction based on the driver’s anticipated acceleration.
This model has shown to influence lane change behaviors
to achieve higher satisfaction levels, however, it may not
fully capture the complex interactions and dynamics of
real-world traffic scenarios. Moridpour et al. [8] developed
a fuzzy logic model for lane change decision-making,
addressing the impact of heavy truck lane changes on
surrounding traffic. While this model has demonstrated
positive results and improved macro traffic flow estimations,
its application in micro traffic models may still have
limitations in accurately predicting lane and vehicle trajectory
changes. Xu et al. [9] proposed a comprehensive threat
assessment algorithm that considers potential risks posed
by nearby vehicles. This algorithm aids decision-making
systems in AVs by determining safe trajectories in real-time.
Nonetheless, it may not fully account for the dynamic nature
of traffic patterns and driver behaviors. Cao [10] explored
the adaptability of decision-making models to dynamic
environments, utilizing Classification and Regression Trees
(CART) and Generative Adversarial Networks (GAN). This
approach shows promise but may require further validation
in real-world traffic conditions. Wang et al. [11] proposed
a decision planning method based on motivation and risk
assessment, considering real-time driving behavior and
trajectory planning. This method improves decision-making
efficiency and ensures safety, but its effectiveness in highly
dynamic and unpredictable traffic situations remains to be
tested. Jeong [12] developed a lane change decision algorithm
using a recurrent neural network (RNN) with Bi-LSTM units.
While this algorithm has been trained and validated using
data from various sensors, its performance in diverse and
complex traffic scenarios has not been extensively evaluated.
Hu et al. [13] introduced a probabilistic decision-making
and trajectory planning framework for autonomous heavy
trucks, which segments the decision-making process into
intent generation and feasibility assessment. Their frame-
work demonstrates human-like lane-changing decisions in
simulation experiments, but its applicability to different
types of vehicles and traffic conditions needs further
investigation.

In summary, the current research on vehicle lane change
models is primarily based on the theoretical analysis and
modeling of human driving behavior, and these studies

have achieved certain results in theoretical and experimental
environments. However, in order to more accurately simulate
and understand human driving behaviors in the real world,
and improve the practicality and safety of automatic driving
systems, it is particularly important to use standardized and
highly reliable large sample road traffic measurement data
for parameter calibration and verification. Natural driving
datasets, provide rich and realistic traffic scenarios that
fully reflect the complex behaviors and interactions of
vehicles in real traffic environments. With the help of deep
learning technology for effective mining and learning of such
interactive behavior, we can more accurately capture the
dynamic evolution of vehicles and traffic environment. And
then improve the decision-making efficiency and adaptability
of the automatic driving system. Therefore, the combination
of natural driving data set and deep learning technology is of
profound necessity and significance for the advancement and
practical application of autonomous driving technology.

Based on the above analysis, the following research
contents will be carried out in this paper:

(i) Building the LSTM-GAT-Bilayer-GRU hybrid predic-
tion model for vehicle driving status, which consists of a
lane change prediction model (LSTM-GAT) and a trajectory
prediction model (G-BiLayer-GRU), to process complex
vehicular interactions in human-machine mixed driving
traffic flow, and accuratelypredict lane change intentions and
driving trajectories of target vehicles under different time
intervals.

(ii) Utilizing the Kalman filtering algorithm to refine
the HighD dataset firstly; Then, filter and collect vehicle
trajectory data based on car classification, lane change time,
and lateral displacement offset; Finally, define a starting and
end point discrimination model for the vehicle lane changing
process to enhance the accuracy and reliability of the original
training data.

(iii) Using the extensive natural driving data processed
from HighD dataset and the Deep Learning Toolbox learning
framework, we will train, validate, and test the LSTM-GAT
and G-BiLayer-GRU models. Subsequently, we will conduct
a comparative analysis between the proposed model and
commonly used models, evaluating them based on error
indexes, time-consuming indexes, and classification indexes.
The aim is to underscore the notable advantages of the
proposed hybrid prediction model in characterizing vehicle
dynamic features and enhancing prediction accuracy within
complex traffic environments.

II. MODEL FRAMEWORK
In view of the deficiency of traditional models in describing
vehicle dynamic feature and the insufficiency of current V2X
vehicle-to-road collaboration facilities, this paper proposes
an hybrid model, called LSTM-GAT-Bilayer-GRU (shown in
Figure 1), integrating the features of Long short-termmemory
(LSTM), Graph

Attention Network (GAT), and Gate Recurrent Unit
(GRU). The LSTM-GAT-Bilayer-GRU model consists of a

VOLUME 12, 2024 106433



L. Wang et al.: Predicting Lane Change and Vehicle Trajectory With Driving Micro-Data and Deep Learning

FIGURE 1. Structure of the hybrid prediction model (LSTM-GAT-Bilayer-GRU).

lane change prediction model (LSTM-GAT) and a trajectory
prediction model (G-BiLayer-GRU). The LSTM-GATmodel
is composed of a data pre-processing model, LSTM encoder
and GAT decoder, while the G-BiLayer-GRU is composed
of an encoder model, a feature splitter model and a decoder
model. The fully connected layers (FCL(1) and FCL(2)) in the
LSTM-GAT-Bilayer-GRU, integrate the high-dimensional
feature extracted from the previous network layer and achieve
effective dimensionality reduction, and remove redundant
information to output the most relevant feature.

The proposed model input, the spatio-temporal trajectory
sequence T (t)

r of a target vehicle, can be formulated as Eq. 1
below.

T (t)
r =

[
P(t)r , S(t)

]
, t ∈ (tP − TL , tP−T + 1, · · · , tP − 1, tP)

(1)

where at time t,P(t)r is the processed historical state feature
of the target vehicle, S(t) is the processed historical feature
of the neighboring vehicles in the surrounding environment;
TL is the length of sliding time window [14]; tP is the end
trajectory point of the sliding time window. We set P(t)r =

[x(t), y(t), v(t)x , v(t)y , a(t)x , a(t)y , θ (t),L(t)p ] for the target vehicle,
wherein x(t), y(t) is the coordinates; v(t)x , v(t)y represent the
longitude and latitude speeds; a(t)x , a(t)y is the longitude and
latitude accelerations; θ (t) is the heading angle; L(t)P is the lane
position. The vehicles’ feature parameters discussed above
are illustrated in Figure 2.

FIGURE 2. Feature information of vehicles.

The neighboring vehicles for the target vehicle consists of
six angles: front left (f1), front (f2), front right (f3), back left
(r1), back (r2)
and back right (r3). Thus, the six features of the neighbor-

ing vehicles S(t) can be expressed as Eq. 2:

S(t) = [S(t)f1 , S(t)f2 , S(t)f3 , S(t)r1 , S(t)r2 , S(t)r3 ] (2)

The attributes of the j-th vehicle denoted as S(t)j include
position, speed and acceleration, expressed as Eq. 3:

S(t)j = [x(t)j , y(t)j , v(t)x,j, v
(t)
y,j, a

(t)
x,j, a

(t)
y,j], j ∈ [f1, f2, f3, r1, r2, r3]

(3)

Input the T (t)
r to the LSTM network layer, LSTM gradually

processes the data of each time point in the trajectory time
sequence through the input gate, the forgetting gate and the
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FIGURE 3. Schematic diagram of road section for vehicle data collection in HighD dataset.

output gate, captures the long-term time dependence of the
vehicle trajectory through the hidden stateHt and thememory
unit state Ct , to obtains the key features. By extracting the
output of the last layer of the LSTM network as the feature
vector containing the historical trajectory feature, which is
input into the GAT model, constant and dynamical iteration
process of attention coefficient and feature tensor of target
vehicle is executed in the GAT model, finally, FCL(1) outputs
the probability of lane change intent vectors and convert it to
One−hot vector according to the default thresholds. At the tP
time, P(t)r extracted by LSTM andOne−hot vector output by
FCL(1) are combined and input into the Bilayer-GRU model
to obtain the multi-dimensional predicted trajectory, which is
input into FCL(2) to calculate the final predicted trajectory
Ŷf = (x̂f , ŷf ), f ∈

(
tP + 1, tP + 2, · · · , tP + tpred

)
, wherein

x̂f and ŷf are the longitude and latitude coordinates of
the vehicle’s predicted trajectory; tpred is the advanced
prediction intervals. The ŷf can be optimized by adjusting the
appropriate weights and biases of the neural network to bring
it as close as possible to the actual trajectory of the vehicle.

III. DATA PROCESSING AND FRAGMENT EXTRACTION
A. DATA SOURCE
HighD is a drone dataset of naturalistic vehicle trajectories on
German highways [15], which is suitable for research in vehi-
cle motion trajectory prediction, driving behavior analysis,
and autonomous driving decision planning. The total length
of the collection section is 420 m, the sampling frequency
is 25Hz, and the collection information includes vehicle
ID information, vehicle external size, vehicle coordinates,
running speed, horizontal/longitudinal vehicle acceleration,
and vehicle lane. The origin of the coordinate system of
HighD data starts from the upper left, and the position of the
vehicle is marked by the upper left end of the bounding box
rather than the center point. Figure 3 is a schematic diagram
of a collection section [15].

B. DATA PREPROCESSING
To obtain high-quality training data for training the model,
this paper employs MATLAB 2023b to filter out trajectory
data specifically for non-continuous lane-changing cars in
the middle lane, excluding other vehicle types to minimize
training interference, then collects data of neighboring
vehicles at each trajectory point to construct a dataset,

classified them based on driving behavior (shifting left,
moving straight, shifting right), and labels them accordingly
with lane information.

For observation data with random errors and measurement
noise in a system, the filtering technologies commonly used
to improve data quality include moving average method [16],
local polynomial method [17], wavelet analysis [18] and
Kalman filter [19], [20]. Since the HighD dataset has pro-
cessed the position, velocity and acceleration of the vehicle
in the X and Y coordinate directions before publication, the
Rauch-Tung-Striebel (RTS) algorithm (Under the Kalman
filter framework) and the uniform acceleration model are
used to refine the vehicle trajectory, thus greatly reducing
the error and sensors’ white noise. After inspection with
the algorithm of wavelet analysis and physical constraint
limit values [21], the acceleration in the dataset is within the
range of -3 m/s2 to 3 m/s2, which is in line with vehicles
performance and human tolerance, with small fluctuation
range and smooth curve, so it is no longer necessary to smooth
the trajectory data of the HighD dataset [22]. As a example
in this paper, longitude and lateral accelerations data of a
lane change vehicle at 8:38 on Tuesday, September 2017, are
shown as Figure 4 (a) and (b). In Table 1, it shows the data for
a car in the middle lane at 8:21 AM on Monday, September
2017. The first 8 columns show the raw data of the HighD
dataset which is the real-time observation value of the vehicle
in driving state, such as the position, speed and acceleration of
the vehicle. The last 12 columns of data is the relative spatial
distance between the target vehicle and the neighbor vehicles
deduced from the raw data.

C. DATA FILTERING
(i) The HighD dataset comprises both cars and trucks.
Notably, trucks predominantly drive in the right lane and
rarely change lanes compared to cars. To accurately represent
the lane-changing behaviors of vehicles on highways, only
the driving data of cars are selected from the dataset.

(ii) The vehicle trajectory data in the dataset is recorded
in a time series and includes many instances of abnormal
lane changes. To isolate trajectories that represent typi-
cal lane changes, we impose constraints on the duration of
the lane change, which must not exceed 8 seconds, and the
vehicle must remain in the new lane for at least 10 seconds
following the lane change. A lateral displacement of less than
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TABLE 1. Vehicle trajectory data of HighD dataset after processing.

FIGURE 4. Acceleration feature data of sample vehicle.

0.5 meters during the trajectory collection is classified as
non-lane change behavior.

(iii) From the dataset, a total of 4,191 sets of vehicle tra-
jectory data were filtered, consisting of 2,123 sets involving
lane changes and 2,068 sets without lane changes.

D. EXTRACTION OF DATA FRAGMENTS
In order to better study lane change prediction model, it is
necessary to focus on the starting and ending point data
of vehicle trajectory. For a single lane change trajectory in
the HighD dataset, it is necessary to extract the starting
point of lane change and the corresponding characterization
parameters of the starting point time. In order to avoid
misjudgment and interference on the starting point of lane
change caused by small lateral displacement of the vehicle
or continuous lane change, the lateral displacement and

trajectory curvature of the vehicle are used as the judging
criteria for whether the vehicle changes lane. For a single
complete lane change process, the lateral displacement and
trajectory curvature at the starting and ending point of the lane
change should meet the Eq. 4.{

L − D ≤| y(t + ct ) − y(t) |≤ L + D
k(t + ct) = k(t) ≤ kt0

(4)

In Eq. 4, y(t) is the lateral position of the vehicle at the
t time; ct is the lane change time; L is lane width; D is the
lateral displacement offset; k(t) is the slope of vehicle driving
trajectory at the t time; kt0 is the slope threshold of the starting
point of lane change.

For the change prediction model, it is necessary to divide
the extracted trajectory fragments into three classification as
shifting left, shifting right and straight-line driving, and label
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FIGURE 5. Definition of critical trajectory for lane change process.

the three categories. In this paper, the starting point and end
point of lane change are determined as follows:

(ii) The intersection point of vehicle trajectory and lane line
is defined as the lane change point.

(ii) Calculate the slope kt =
yt−yt−4
xt−xt−4

between the position
(x, y) at t time and the position (xt−4, yt−4) at t−4 time of the
vehicle trajectory. This calculation method can eliminate the
problem of unclear slope differences between adjacent points
caused by dense sampling and noise in the HighD dataset.

(iii) The slope kj of each sampling point is traversed
from the lane change point to both the positive and negative
directions. If the trajectory time sequence has 4 consecutive
sampling points

∣∣kj∣∣ ≥ kt0, the position that reaches the
threshold kn0 for the first time is positioned as the starting
point of the lane change, and the ending point of the lane
change is determined in the same way, and the continuous
four-point confirmation here is to avoid misjudgment caused
by noise. The points between the start and end of the lane
change are defined as the lane changing process points,
as shown in Figure 5.

In this paper, the sliding time window method is employed
to extract the trajectory time sequence of the specified length,
and 15 sampling points are updated forward each time.
Let the length of the intercepted sequence be n sampling
points, then the information of n − 15 trace points in the
adjacent two sequences is the same. The method of sliding
time window can maximize the use of data. The sampling
frequency is 25Hz, when the time domain of the input
sequence is the length of the sliding time window TL , then
the length of the trajectory time sequence is n = 25TL . If the
extracted trajectory time sequence contains the lane changing
process points, the sequence is marked as the trajectory time
sequence of lane change; otherwise, it is the trajectory time
sequence of moving straight driving. This paper labels the
lane change of shifting left as ‘1’, moving straight as ‘2’,
shifting right as ‘3’, to meet the requirement of deep learning
models.

IV. LANE CHANGE PREDICTION MODEL
The lane change process is a comprehensive behavior process
in which the driver adjusts the decision intent and completes
the driving goal strategy by estimating the vehicle operating
environment and vehicle operating state [23]. In this paper,
the lane change prediction model consists of data processing
model, LSTMencoder, GAT decoder and FCL(1) output layer.

After preprocessing steps such as normalization, data
tiling, and format conversion, the spatio-temporal trajectory
sequence T (t)

r of the target vehicle is obtained, then it is
then input into the LSTM for encoding, outputting the target
vehicle’s historical trajectory feature vector L(t) at time t. The
mathematical principle is shown in Eq. 5, whereinW (t) is the
weight parameter of the LSTM.

L(t) = LSTM
(
L(t−1),T (t)

r ,W (t)
)

(5)

The attention mechanism model comes from people’s
visual attention mechanism, people usually use their limited
attention to get the most effective information from a large
number of information sources [24]. Due to the different
driving state parameters and sizes of neighboring vehicles, the
interaction effects of target vehicles under the same Euclidean
distance are different, so the conventional Euclidean distance
models cannot describe the complex spatial interaction
feature between vehicles well. In this paper, a novel type
of spatial interaction relationship is defined. Considering
the factors such as coordinate component x(t), y(t), velocity
component vx , vy, acceleration component ax , ay, a spatial
interaction topology is established between the target vehicle
and the neighboring vehicles, and the adjacency matrix is
used to express this complex topological relationship. The
feature vector L(t) extracted from the LSTM is dimensionally
reduced and normalized, and then input into GAT model
as point feature to capture the complex spatial interaction
relationship between the target vehicle and the neighboring
vehicles at any t time, then generate the spatial-temporal
feature tensor representing the structural information of the
topological graph, H⃗ (t)

= {H⃗ (t)
i , H⃗ (t)

j }, H⃗ (t)
i ∈ RF , H⃗ (t)

j ∈

RF , whereinH (t)
j is the point feature tensor of the neighboring

vehicles; F is the feature dimension; R is real number.
Namely, the vehicle feature information of six directions
for the target vehicle: front left (f1), front (f2), front right
(f3), back left (r1), back (r2) and back right (r3). In order
to better capture the interaction between the target vehicle
and the neighboring vehicles, the original space-time feature
tensor H⃗ (t) is mapped to a new feature space by the use
weight matrix W (t)

H : RF ′×F , and splice new vehicle feature
vectors. Then, according to the degree of multi-dimensional
influence of neighboring vehicles on target vehicles, the
corresponding influence coefficient e(t)ij,k is calculated by

multi-head a(t)k : RF ′
× RF ′, wherein k is the number of

attention heads [25], k attention heads calculate different
attention coefficients and calculate their average to get the
final attention coefficient. Each attention head independently
calculates the influence coefficients of different factors which
are normalized by LeakyRelu nonlinear activation function
and soft max function to get the attention coefficient α

(t)
ij,k

reflecting the importance of different neighboring vehicles
to the target vehicle, wherein, the LeakyRelu function is
used to alleviate the gradient disappearance and enhance
the nonlinear expression of the model, and the attention
coefficient is obtained by the normalization of the softmax
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FIGURE 6. Calculation process of influence coefficient of attention
mechanism.

function, as shown in Figure 6. Utilizing α
(t)
ij,k as weights, the

weighted summation of the transformed point feature tensors
of neighboring vehicles is executed to obtain the aggregate
features that fuse the information of neighboring vehicles,
and then update the feature matrix H ′(t)

i of target vehicles in
future time, as shown in Figure 7. The updating calculation
process of influence coefficient e(t)ij,k , attention coefficient

α
′(t)
ij,k and feature matrixH ′(t)

i is shown in Eq. 6, 7 and 8. Then,

as the output of GAT model, H (t)
i was transmitted to FCL(1).

e(t)ij,k = LeakyReLU
(
a(t)k

[
W (t)
H ·

−→
H (t)

i ||W (t)
H ·

−→
H (t)

j

])
(6)

α
(t)
ij,k = softmaxk (e

(t)
ij,k ) =

exp
(
e(t)ij,k

)
3∑

k=1
exp

(
e(t)ij,k

) (7)

H⃗ ′(t)
= σ (

1
k

3∑
k=1

6∑
j=1

α
(t)
ij,k •W (t)

H • H⃗ (t)
tj ) (8)

Finally, processed by FCL(1), the lane change intent vector
4 = (ξ1, ξ2, ξ3) of target vehicle is obtained, wherein
ξ1, ξ2, ξ3 is the probability of shifting left, moving straight
and shifting right respectively. Making decisions according to
the probability of lane change intents calculated by the model
above, will lead to low reliability prediction for target vehicle
trajectories. In order to improve the prediction confidence of
the model, a threshold based on logical decision mechanism
is introduced, and the conviction threshold of shifting left and
shifting right is set as 85%, moving straight is set as 75%.The
lane change intent exceeding the corresponding threshold is
regarded as the driver’s definite intent, and the probability
of the corresponding classification is adjusted to 100%, and
the remaining two probabilities are reduced to 0, convert 4

into One − hot vector to ensure high decisiveness in the
model output. In the case that the threshold is not reached,
the original probability distribution is maintained to keep the
original uncertainty assessment of the lane change intent.
This method aims to optimize the prediction accuracy and
practicality of the model through threshold judgment, and

FIGURE 7. Update process of target vehicle features.

FIGURE 8. Internal working mechanism of GRU model.

enhance the ability of intelligent driving systems to cope with
complex environments.

V. VEHICLE TRAJECTORY PREDICTION MODEL
Gate Recurrent Unit (GRU) has similar prediction effect with
LSTM model but with simpler internal structure, and would
greatly improve efficiency in training and prediction. In order
to ensure real-time and safety in vehicle trajectory prediction,
GRU is preferred, and the internal working mechanism of
GRU model is shown in Figure 8.

Combined with the prediction results of LSTM-GAT
model, we propose the G-BiLayer-GRU model to predict the
future trajectory of vehicles. In order to effectively capture
more complex historical vehicle sequence features and time
dependence, the two-layer GRU (Bilayer-GRU) model is
employed to increase the depth of the network. In the Bilayer-
GRU model, the first layer may learn fundamental features
about the trajectory (such as changes in lane changing
intention, speed and direction), and the second layer may
capture more advanced patterns (such as long-term trends or
cyclical patterns in driving behavior).

In order to make the decoder output trajectory prediction
based on intent prediction, a new trajectory coding tensorR′(t)

i
is obtained by combining theOne−hot vector of lane change
intent from the GAT model.
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The trajectory coding tensor R′(t)
i is used as input, it is

transmitted to the first level Gate Recurrent Unit (GRU′).
At this level, the GRU′ is responsible for processing the
feature tensor of each time step in the sequence and updating
its internal hidden state in real time. For each time step in
the feature tensor, the GRU′ accepts the input feature of the
current time step and the hidden state of the previous time
step as a joint input, then calculate the hidden state h′(t)

i of
the current time step by z′(t)i (refresh gate, r ′(t)

i (reset gate)
and h̃′(t)

i (system state) to capture the timing dependency
in the feature tensor. By extracting useful information from
the input through z′(t)i and filtering out useless information
and noise, the current hidden state is updated to capture
short-term dependencies in time-series data. r ′(t)

i retains
historical vehicle feature information that is useful for the
future, thereby capturing long-term dependencies in time
sequences. h̃′(t)

i combines the current input and filtered
historical information to generate a candidate hidden state.
The hidden state uses the update gate to measure the
importance of the previous hidden state and the candidate
hidden state for forgetting and updating to obtain the final
hidden state at the current moment. The aforementioned
calculation process is shown in Eq. 9-12.

z′(t)i = σ (W ′
z · [h′(t−1)

i ,R′(t)
i ]) (9)

r ′(t)
i = σ (W ′

r · [h′(t−1)
i ,R′(t)

i ]) (10)

h̃′(t)
i = tanh(W ′(t)

h · [r ′(t)
i ⊙ h′(t−1)

i ,R′(t)
i ]) (11)

h′(t)
i = (1 − z′(t)i ) ⊙ h′(t−1)

i + z′(t)i ⊙ h̃′(t)
i (12)

In Eq. 9-12, z′(t)i is the update gate, which is used to control
the inflow of information; r ′(t)

i is the reset gate; h̃′(t)
i is the

candidate hidden state, and the input information R′(t)
i of the

current moment is reserved with the hidden state h′(t−1)
i of

the previous moment; h′(t)i is the hidden state of the current
moment; W ′

z,W
′
r and W ′(t)

h is the weight matrix; σ is a
sigmoid function that changes data into a value between 0 to
1; tanh changes the data to a value between -1 to 1.

The output of the GRU′ is the hidden state of each time
step, dropout operation is executed to randomly ‘‘discard’’
partial feature of the vehicles to obtain a new feature tensor
R′′(t)
i , to serve as the input of the second layer Gate Recurrent

Unit (GRU′′). At each time step, GRU′′ accepts the hidden
state from GRU′ as an external input, and combined with the
hidden state of its own previous time step, then GRU′′ updates
the hidden status of the current time step through its internal
department control mechanism. GRU′′ captures higher levels
of time dependence and patterns because it is further analysis
and learning based on GRU′’s processing of input sequences
and feature extraction. The calculation process of GRU′′ is
shown in Eq. 13-17.

R′′(t)
i = h′(t)

i · δdropout (13)

z′′(t)i = σ (W ′′
z · [h′′(t−1)

i ,R′′(t)
i ]) (14)

r′′(t)i = σ (W ′′
r · [h′′(t−1)

i ,R′′(t)
i ]) (15)

h̃′′(t)
i = tanh(W ′′(t)

h · [r ′′(t)
i ⊙ h′′(t−1)

i ,R′′(t)
i ]) (16)

h′′(t)
i = (1 − z′′(t)i ) ⊙ h′′(t−1)

i + z′′(t)i ⊙ h̃′′(t)
i (17)

In Eq. 13-17, wherein z′′(t)
i , r ′′(t)

i , h̃′′(t)
i ,R′′(t)

i , h′′(t−1)
i , h′′(t)

i ,

W ′′
z ,W ′′

r and W ′′(t)
h with the same definition as Eq.9-

12; δ
(t)
dropout is dropoutlayer , some output of GRU′ layers

neurons is randomly discarded before input GRU′′, which
helps to prevent overfitting and improve the generalization
performance of themodel. In theG-Bilayer-GRUmodel, each
layer is extracting and transforming information, making
the data flow from input to output show the feature of
deeper by deeper, so that the model can capture complex
and multi-dimensional time dependence.The 8-dimensional
predicted trajectory of the target vehicle output by the GRU′′

is transmitted to the FCL(2) for dimensionality reduction.
Finally, processed by FCL(2), output the 2-dimensional
predicted trajectory Ŷf of the target vehicle in the future
moment under different lane change decisions.

VI. EXPERIMENT AND ANALYZE
A. CONFIGURATION OF EXPERIMENTAL ENVIRONMENT
(i) The feature data presented in this paper comprises 198,397
sets for shifting left, 265,244 sets for moving straight, and
70,422 sets for shifting right, totaling a comprehensive
dataset.

(i) Parameters of related modes, LSTM accepts 44-
dimensional vector input, which include 8-dimensional
vector of target vehicle and 36-dimensional vector of neigh-
boring vehicles, 128 neurons to capture timing dependencies
is adopted, and output 44-dimensional coding vector. Both
GRU′ and GRU′′ accept an 8-dimensional feature vector
of vehicles as input, 128 neurons are used and outputs
8-dimensional vector. FCL(1) accepts the 8-dimensional
vector output by the GAT as its input, single hidden layer
with 128 neurons, Xavier weight initialization, offset is
initialized to 0, softmax activation function, Elastic Net
regularization, output 3-dimensional vector. FCL(2) accepts
the 8-dimensional vector output by the GRU′′ as its input,
with single hidden layer of 128 neurons, Xavier weight
initialization, offset is initialized to 0, no activation function,
Elastic Net regularization, output 2-dimensional vector.

(iii) The prediction models are trained with Window10,
MATLAB R2023b, Intel Xeon W-2295 CPU, NVIDIA RTX
A2000 GPU. Using Deep Learning Toolbox 23.2 as the
learning framework. The paper balanced model performance
and efficiency by selecting hyperparameters guided by theory
and empirical optimization. Learning Rate (0.001) balances
convergence speed and stability, commonly used in deep
learning. Batch Size (128) compromises gradient accuracy
and training efficiency, often yielding good generaliza-
tion. Dropout Rate (0.2) mitigates overfitting, enhancing
robustness without hindering learning. Training Epochs (500
rounds) ensured convergence based on cross-validation,
monitoring early stopping to avoid overtraining.
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TABLE 2. Confusion matrix of lane chane intent prediction.

TABLE 3. Performance test of different drive intent prediction models.

For robust model evaluation, we systematically split the
HighD dataset into 8:1:1 for training, validation, and testing.
The validation set tunes hyperparameters and monitors
unseen data performance to prevent overfitting. Early stop-
ping halts training if validation loss stagnates, preserving
generalization capabilities.

B. COMPARATIVE ANALYSIS OF MODELS
(i) Comparison of lane change intent models

Early traditional research on lane change prediction
mainly focused on the application of physical or rule-based
models [26], by assuming the applicability of physicalmodels
and using Kalman filter [27], Bayes [28], Decision Tree [29],
Support Vector Machine [30], Random Forest [31] and
other models, vehicle lane change intention recognition was
executed. However, when the forecast time interval is longer,
the error of lane change prediction based on physical or rule
model will increase as the uncertainty of vehicle trajectory
will be greatly increased.

The performance of the lane change prediction model
directly affects the quality of trajectory prediction. In order
to test the performance of the LSTM-GAT model proposed
in this paper, the commonly used models of SVM classifier,
RF, AlexNet andBPTT are taken as the benchmark algorithm,
and the Accuracy Rate, Recall Rate, F1-Score and Precision
Rate were compared. Taking the sliding time window TL =3s
as an example, the performance of LSTM-GAT, SVM, RF,
AlexNet andBPTTmodels for lane change intent is compared
and analyzed. Table 2 is the confusion matrix of lane change

intent prediction, and Table 3 is the performance test of the
different drive intent prediction models.

As can be seen from Table 3, the LSTM-GAT model
presents better prediction performance than traditional
machine learning models of SVM classifier and RF, common
deep learningmodels of AlexNet andBPTT in the recognition
of all lane change intents: shifting left, moving straight and
shifting right. Through comparative analysis, the LSTM-GAT
model is superior to the comparison model in key evaluation
indexes such as Precision Rate, Recall Rate, F1 Score and
AccuracyRate, which verifies the effectiveness and reliability
of the model.

In the recognition of shifting left intent, the Precision Rate
of LSTM-GAT is 0.88, which is 33.95% higher than SVM,
16.02% higher than RF, 21.04% higher than AlexNet and
14.52% higher than BPTT. The Recall Rate of LSTM-GAT
was 0.89, which was 30.70% higher than SVM, 14.74%
higher than RF, 9.60% higher than AlexNet and 3.10% higher
than BPTT. The F1 Score of LSTM-GATwas 0.88, compared
with SVM improved by 32.34%, comparedwith RF improved
by 15.37%, compared with AlexNet improved by 15.28%,
and compared with BPTT improved by 8.78%. The F1 Score
is the balanced average of accuracy and Recall Rate, and a
higher F1 Score indicates that LSTM-GAT achieves a better
balance between accuracy and comprehensiveness.

In moving straight intent prediction, the Precision Rate of
LSTM-GAT is 0.93, which is 17.54% higher than SVM and
8.8% higher than RF, 3.70% higher than AlexNet and 1.26%
higher than BPTT. The Recall Rate of LSTM-GAT was 0.92,
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which was improved by 20.48% compared with SVM and
9.81% compared with RF, 10.39% higher than AlexNet and
7.50% higher than BPTT. The F1 Score of LSTM-GAT was
0.92, compared with SVM improved by 19.02%, compared
with RF improved by 9.29%, compared with AlexNet
improved by 7.03% and compared with AlexNet improved
by 4.36%; It further confirms the superiority of LSTM-GAT
in the accuracy and comprehensiveness of moving straight
intent prediction.

In shifting right intent prediction, the Precision Rate of
LSTM-GAT is 0.83, which is 35.09% higher than SVM and
14.19% higher than RF, 14.46% higher than AlexNet and
13.16% higher than BPTT. The Recall Rate of LSTM-GAT
was 0.87, which was 22.09% higher than SVM and 10.82%
higher than RF, 20.46% higher than AlexNet and 11.26%
higher than BPTT. The F1 Score of LSTM-GAT was 0.85,
compared with SVM improved by 28.76%, compared with
RF improved by 12.54%, compared with AlexNet improved
by 17.54%, and compared with BPTT improved by 12.19%.
It shows its high efficiency and accuracy in recognizing intent
of shifting right.

Due to the interaction between vehicles and the high
complexity and uncertainty of traffic environment, lane
change prediction of vehicles has a highly complex nonlinear
feature. SVM can select appropriate kernel function to deal
with nonlinear problems, but compared with RF and GAT,
SVM is not effective in predicting driving intent affected
by various factors. The basic classifier of RF is a decision
tree that adopts the decision-making method of a single
classifier, which is more likely to fall into the local optimal
solution. In the processing of massive data, due to the
imbalance of data set classification, it is easy to prefer the
classification with a large number of samples, resulting in a
decrease in the prediction accuracy of themodel. AlexNet and
BPTT models excel in data processing capabilities, but their
limited ability to handle time sequences data results in their
inability to achieve the level of performance in lane change
intention prediction demonstrated by the model proposed in
this paper. The superior performance of LSTM-GAT model
compared to SVM and RF across multiple metrics is due
to its proficiency in efficiently handling time series data,
capturing long-term temporal dependencies, and leveraging
a graph attention mechanism to prioritize crucial features,
ultimately enhancing the accuracy and robustness of lane
change prediction.

According to relevant literature, in a highway environment,
the duration of a lane change is generally between 3.5 and
6.5 s, with an average of 5 seconds being sufficient for a
complete lane change process [32]. The change prediction
model can ‘‘observe’’ the road condition and ‘‘understand’’
the changing law of the traffic environment from the view of
the target vehicle, andmake reasonable prediction in advance.
Now, a representative complete trajectory time sequence of
shifting left (the 28th shifting left vehicle; middle lane; y-axis
forward; the 34th day) is selected from the test dataset, and
the lane change prediction model proposed in this paper is

FIGURE 9. Probability conversion diagram of lane change intent.

applied to conduct dynamic pattern recognition of the driving
behavior for the target vehicle, as shown in Figure 9. 4s after
the target vehicle has departed from the starting point of the
trajectory, the LSTM-GAT model recognizes that the vehicle
is likely to shift left. At this time, the probability ξ1 of shifting
left increases somewhat, but the condition of lane change
point is far from being met, so the probability increases
slightly.When the target vehicle drives to the position 2s away
from the lane change point, the LSTM-GAT model predicts
that the vehicle will take a shifting left behavior. At this time,
the probability of shifting left ξ1 starts to rise rapidly, but it
does not reach 85% of the certainty threshold, so output the
three classification of probabilities 4 = (ξ1, ξ2, ξ3) derived
from the FCL(1) layer. When the target vehicle travels to
the position 1s away from the lane change point, the model
recognizes that the probability of shifting left ξ1 has exceeded
85%, and the corresponding probability is adjusted to 1.
At this time, the probabilities of shifting left, moving straight
and shifting right output by LSTM-GAT are 4 = (1, 0, 0),
and the trajectory output model only outputs one type of
position distribution. When the target vehicle reaches the end
point of lane changing process, the recognition of shifting left
intent rapidly decreases to 0, the intent probability of moving
straight ξ2 rapidly increases to 1, and the probability returns
to the initial state 4 = (0, 1, 0).

(ii) Comparison of trajectory prediction models
In order to comprehensively evaluate the performance

of the G-BiLayer-GRU model in vehicle trajectory pre-
diction, longitudinal and horizontal comparison verification
methods are used in this paper. In the longitudinal com-
parison verification of this paper, six different advanced
prediction intervals (called tpred in this paper, shown in
Figure 5) of 3.0s, 2.5s, 2.0s, 1.5s, 1.0s, and 0.0s were
selected to the opposite direction of vehicle travel by
taking the lane change point as the reference point,
to observe the prediction effect of the model in different
tpred. In the horizontal comparison, this paper selected five
common trajectory prediction models, including Triple layer
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FIGURE 10. Trajectory scatter at different advanced prediction intervals.

GRU [33], LSTM-BiLayer-GRU, BiLayer-LSTM [34], Tri-
LSTM [35] and LSTM-RBF [36], and compared them
with G-BiLayer-GRU by using RMSE(Root Mean Square
Error), ADE(Average Displacement Error), FDE (Final
Displacement Error) and prediction time consuming(called
PTC in this paper) as the evaluation indexes.

In practical applications, the trajectory prediction mod-
els of the AVs need to have the ability to predict the
future trajectory distribution of the target vehicle in real

time. Therefore, the G-BiLayer-GRU employs a dynamic
adjustment mechanism, that is, the input historical trajectory
data is updated at each sampling point to adjust the latest
prediction results adaptively. In order to demonstrate this
dynamic adjustment process concretively, this paper selects
a typical shifting left trajectory time sequence from the test
set. Figure 10 shows the trajectory distribution prediction
of target vehicle and real-time changes of RMSE/ADE of
each comparison model under six tpred conditions above,
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TABLE 4. Prediction index data of different trajectory models.

which can directly reflect the real-time position relationship
between the real trajectory of target vehicle and the predicted
trajectory.

In the evaluation indexes of real-time trajectory prediction,
both RMSE and ADE are used to measure the average
difference between the predicted trajectory and the real tra-
jectory, and they are essentially equivalent. According to the
analysis of Figure 10, The graph of RMSE and ADE for G-
BiLayer-GRU model is always positioned below the graphs
of other models, which shows that the precision, stability and
robustness of G-BiLayer-GRU model in real-time state are
significantly better than those of other five models.

The information of error and prediction time consuming
for different prediction models at different tpred times is

shown in Table 4 and Figure 11. The RMSE, ADE and
FDE indexes of each prediction model in different advanced
prediction intervals are compared and analyzed, which is
helpful to comprehensively evaluate the performance of the
model, and the prediction time consuming indexes are helpful
to make a trade-off between accuracy and efficiency.

In Table 4, Figures 11 and 12, RMSE, ADE and FDE
index values of all trajectory prediction models show an
upward trend with the increase of tpred value, indicating that
the difficulty of prediction increases with the increase of
time. G-BiLayer-GRU and BiLayer-LSTM models perform
well and are significantly superior to other models in various
indexes, especially with short advanced prediction interval.
The prediction time consumption of LSTM-RBF model
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FIGURE 11. Distribution of trajectory prediction error indexes of different models.

FIGURE 12. Prediction time consuming curve of different models for trajectory
prediction.

is significantly more than that of other models, several
times or even ten times, which is related to its complex
modeling process. The performance of G-BiLayer-GRU
and BiLayer-LSTM models is more balanced in various
indexes, which not only ensures the prediction accuracy,
but also controls the prediction time consuming. In contrast,
Tri-LSTM and LSTM-RBF models have shortcomings in
accuracy and efficiency. G-BiLayer-GRU model combines

the lane change prediction results and the double-gated cycle
unit structure, and exhibits the most excellent performance
in the vehicle trajectory prediction task, with good prediction
accuracy, small prediction deviation and high computational
efficiency, and can most vividly ‘‘restore’’ the real trajectory
of the target vehicle in the actual traffic environment. It can
improve the driving safety of AVs in the high-speed traffic
flow environment.
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VII. CONCLUSION
This paper presents the LSTM-GAT-Bilayer-GRU hybrid
prediction model, a novel approach harnessing deep learning
techniques to enhance predictive accuracy and real-time
responsiveness in dynamic traffic environments. The LSTM-
GAT-Bilayer-GRU consists of a vehicle lane change pre-
diction model (LSTM-GAT) and a trajectory prediction
model (G-BiLayer-GRU), which has demonstrated itself
remarkable efficacy in processing complex vehicular interac-
tions and environmental dynamics in human-machine mixed
driving traffic flow. The Lstm-GAT model performs well
in processing time sequence data and capturing long-term
dependencies, and significantly improves the accuracy and
robustness of lane change intent prediction by weighting
key features through the graph attention mechanism. For
the prior information of lane change intention prediction
combined from LSTM-GAT model, G-BiLayer-GRU model
represents the highest precision prediction and the lowest
prediction time consuming under different advanced pre-
diction intervals, showing good ability of high precision,
stability and real-time dynamic adjustment in vehicle tra-
jectory prediction. After undergoing numerical experiment
verification, the LSTM-GAT-Bilayer-GRU model proposed
in this paper has fully demonstrated its effectiveness and
reliability. This accomplishment not only presents novel
perspectives for research in AVs and intelligent transportation
but also boosts the application of deep learning in these
domains. The study elevates the intelligent perception and
decision-making capabilities, empowering AVs to swiftly and
precisely anticipate lane changes and driving trajectories of
neighboring vehicles amidst dynamic and intricate traffic
patterns, promising safer and more efficient navigation in
real-world scenarios, expected to provide substantial support
for optimizing traffic quality, preventing traffic accidents and
comprehensively promoting intelligent transportation.

Although our research offers significant contributions,
we must also acknowledge its limitations, such as the
fact that our proposed model does not consider factors
such as vehicle dynamics, vehicle dimension, and sudden
road conditions. Future research could further enhance our
model by incorporating factors such as denser neighboring
vehicles, weather conditions, road infrastructure, and traffic
regulations. Furthermore, improving the model’s efficiency
would enable its application in a wider range of fields,
such as smart cities, intelligent transportation systems, and
autonomous logistics, bringing greater efficiency and safety
to these areas.
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