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ABSTRACT The computer aided diagnosis of lung cancer is majorly focused on detection and segmentation
with very less work reported on volume estimation and grading of cancerous nodule. Further, lung cancer
segmentation systems are semi automatic in nature requiring radiologists to demarcate cancerous portions on
every slice. This leads to subjectivity and delayed diagnosis. Further, these techniques are based on standard
convolution leading to inaccurate segmentation in terms of actual boundary retention of the cancerous nodule.
Also, there is a need of automatic system that not only grades the lung cancer based on actual parameters but
also enables early warning for flagging of anomalies in periodic screening. This research work reports the
design of a fully automated end-to-end screening system that consists of 5 major models with an improved
performance on cancer detection, segmentation, volume estimation, grading, and an early warning system.
The traditional convolutional technique is modified to allow for retention of actual shape of cancerous
nodule. The simultaneous segmentation of cancer, lymph nodes and trachea is also achieved through a focus
module and a modified loss function to remove redundancy and achieve an accuracy of 92.09%. The volume
estimation model is developed using GPR interpolation to give an improved accuracy of 94.18%. A grading
model based on the TNMclassification standard is developed to grade the detected cancerous nodule to one of
the six grades with an accuracy of 96.4%. The grading model is further extended to develop an early warning
system for changes in the CT scans of lung cancer patients under treatment. The research is undertaken in
collaboration with Nanavati Hospital, Mumbai, and all the models are validated on a real dataset obtained
from the hospital.

INDEX TERMS Cancer segmentation, cancer grading, deep learning, lung cancer volume estimation, early
warning system.

I. INTRODUCTION
Lung cancer is the most widespread type of cancer and is the
second most common cancer after prostate cancer in males
and breast cancer in females. The early detection of lung
cancer plays an effective role in diagnosis and leads to an
early treatment increasing the likelihood of patient survival
rate [1], [2]. Chemotherapy, which is the main treatment
for lung cancer requires knowledge of accurate location
of the cancer along with its spread along all the 3 axes.
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Accurate volume estimation is required for determining the
stage of the cancer. Generally, 2D data is used to estimate
the slice wise area of cancer spread and then volume is
obtained using these area values. It is very difficult to get
accurately annotated data as manual segmentation is usually
performed by radiologists. The human intervention leads to
errors arising out of fatigue and subjectivity. To overcome this
problem, cancer segmentation models based on deep learning
were proposed but they require a large dataset along with
corresponding annotations of every CT scan for training to get
acceptable segmentation accuracy that leads to precise area
calculation. Also,majority of cancer segmentation algorithms
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fail to clearly define the boundaries of cancerous nodules.
While many software’s are available for calculating volume
automatically, they are semi-automatic in nature as they need
demarcations of cancerous portions to be done by radiologists
in every or at most on alternate slices. The segmentation
accuracy plays a crucial role in deciding the accuracy of the
overall cancer grading system. The grade of the cancer helps
oncologists determine the aggressiveness of the cancer and
tailor treatment plans accordingly. It is an important factor
in predicting the likely outcome of the disease. Monitoring
changes in the grade of the cancer over time can help assess
how well the treatment is working. If the grade increases
despite treatment, it may indicate that the cancer is becoming
more aggressive or resistant to therapy. Similarly, performing
timely screening of lung CT scans for the same patient
is critical for monitoring disease progression, detecting
recurrence, assessing treatment response, identifying new
abnormalities and providing long-term surveillance. So this
work proposes a fully automatic end-to-end lung cancer
screening system that includes cancer detection, cancer
segmentation, grading and an early warning module.

The paper is organized into several sections for easy read-
ing and understanding. Section II offers a thorough literature
review. Section III introduces the proposed methodology,
details of image pre-processing, the proposed segmentation
and grading algorithm, and the concept of an early warning
system along with the developed mathematical models.
Section IV includes the implementation details, experimental
results of the proposed techniques, and a comparison with
recent state-of-the-art methods. Lastly, Section V provides a
conclusion and outlines future research directions.

II. LITERATIURE REVIEW
A. ABNORMALITY AND CANCER DETECTION
In recent times CT scans have been dominantly used for
cancer detection and a lot of research on developing AI
(Artificial Intelligence) based cancer detection algorithms
is reported in the literature. Cancer detection using CAD
(Computer Aided Diagnosis) is in use since long and its
performance in terms of accuracies achieved has got settled
to a good extent. So, this section majorly focuses on the
work reported about the abnormality detection. Daykin et al.
used a One-Class Support Vector Machine (OCSVM) based
model to detect lung abnormality [1]. The method, however,
does not use complete images but patches of lung CT scans
majorly to increase the size of the data set. Automatic
feature extraction or the use of deep learning techniques is
also not explored fully. Other reported abnormality detection
algorithms [2], [3] majorly dealt with cancers other than lung
cancer. Irigoien et al. applied OCC (One Class Classification)
to medical data for the abnormality detection of various
diseases like breast cancer, liver disorders, leukemia, etc. [2].
The authors compared the performance of four different algo-
rithms namely Gaussian, mixtures of Gaussian, Parzen, and
typicality approach based on their average AUC (Area Under

Curve). The paper reported the best results with an average
AUC of 77.4% with the typicality approach. Tarassenko et al.
[3] also applied OCC to investigate normality using a large
number of available mammograms which do not show any
evidence of mass-like structures. The recent advancement in
deep learning techniques allows for automatically extracting
features from the images, thereby improving the overall
performance as compared to conventional CAD (Computer
Aided Diagnosis). The use of transfer learning techniques is
also reported in literature where fixed feature extraction is
done using a pre-trained network. Ardimento et al. [4] applied
three transfer learning models viz; VGG (Visual Geometry
Group), Xception, and ResNet for feature extraction and
combined the results using ensemble architecture to classify
the scans as cancerous and noncancerous. Similarly, the
state-of-the-art transferable architectures such as VGG-16,
VGG-19, GoogLeNet, Inception-V3, ResNet-18, ResNet-50,
ResNet-101, InceptionResNet-V2 and 3D multipath VGG
like network have also been used for lung cancer feature
extraction [5], [6], [7], [8], [9] and the performance of SVM
(Support Vector Machine) and AdaBoostM2 classifier is ana-
lyzed on the deep features extracted from publicly available
datasets. In [10] the performance of various machine learning
algorithms was evaluated on a lung cancer detection task. The
fusion of DenseNet201 with color histogram techniques was
used to extract a hybrid feature set. Similarly, an innovative
deep-learning model for lung cancer detection by integrating
markers from mRNA, miRNA, and DNA methylation was
developed [11]. The principal components analysis (PCA)
was implemented to streamline features and the synthetic
minority over-sampling technique (SMOTE) algorithm was
applied to ensure class balance. The PCA-SMOTE model
achieved F1 score of 0.97.

B. CANCER SEGMENTATION
Lung nodule segmentation methods can be categorized
into traditional approaches and deep learning-based tech-
niques. Traditional methods encompass threshold and region-
growing methods, clustering methods, active contour models,
and mathematical models [12], [13], [14], [15], [16], [17],
[18], [19], [20]. On the other hand, deep learning-based
methods for segmentation can be further divided into
2D and 3D segmentation networks [21]. While traditional
segmentationmethods do not necessitate a substantial amount
of labeled data for model training, they heavily rely on human
intervention and are more focused in nature. These methods
primarily rely on shallow image features such as grayscale
and texture. In contrast, 2D segmentation networks utilize
2D convolution to extract features from images. The original
Fully Convolutional Neural Network (FCN) [22], has found
extensive use in various image segmentation fields but it lacks
global context information which is very important in the
case of medical image segmentation. Ronneberger et al. [23]
introduced a U-Net network based on the FCN architecture
for medical image segmentation. U-Net incorporates both

108516 VOLUME 12, 2024



P. Sathe et al.: End-to-End Fully Automated Lung Cancer Screening System

low-resolution and high-resolution information through skip
connections, which is particularly advantageous for segment-
ingmedical images with blurred boundaries. In this approach,
low-resolution information is used for target identification,
while high-resolution information aids in the localization
of the segmentation. Consequently, U-Net has served as a
foundation for several improved algorithms. The average IoU
of 77.5% ia achieved but the algorithm failed to consider the
multiscale information required for accurate segmentation.
So, to further improve segmentation results, some researchers
have explored the integration of Atrous Spatial Pyramid
Pooling (ASPP) [24] instead of the intermediate or output
layer of U-Net. This approach enables the extraction of
multi-scale image information through different perceptual
fields [25], [26], [27] but lacks in retention of exact
shapes. Though the average IoU of 81.3 was achieved, the
algorithm lacked complete recovery of spatial information.
Some 3D segmentation networks utilize 3D convolution to
extract features from volumetric images, allowing them to
better capture the spatial relationship between nodules and
surrounding tissues compared to 2D segmentation networks.
Duo et al. [28] introduced a 3D fully convolutional neural
network capable of automatically segmenting the liver and
cardiac great vessels. Milletari et al. [29] incorporated
residual connections inspired by ResNet [30] and employed
3D convolution in their V-Net architecture for prostate
volume segmentation, departing from the 2D convolution
used in U-Net. Deepseed [31] proposed 3D-squeeze-and-
excitation (SE) networks, incorporating dynamic scaling with
cross-entropy loss [32] to address the sample imbalance
problem. Their method was evaluated on the LIDC [33] and
LUNA16 [34] datasets, demonstrating promising results for
lung nodule segmentation. However, it is worth noting that
3D networks suffer from longer training times and may not
necessarily outperform 2D networks in terms of evaluation
metrics. Zhou et al. [35] proposed UNet++, an extension
of U-Net that incorporates dense skip connections to enable
multi-scale fusion and feature acquisition at different levels.
The model achieves an average IoU of 81.4% but as
the algorithm involves non-integral convolution, it fails in
maintaining the exact shape of nodules. In [36] the attention
module is used with the Unet algorithm having residual
connections for fast backpropagation. But model failed to
maintain the exact shape of cancerous nodules. Similarly, dif-
ferent deep learning segmentation models were evaluated on
different datasets, and the effects of different preprocessing
methods were examined [37]. Though the TransUet model
achieved the highest segmentation accuracy with an average
dice coefficient of 0.81, it failed to maintain the exact shape
of the cancerous nodule. Being a transformer-based model,
the decision-making process and interpreting predictions was
challenging. Also, In [38] a method to integrate feature
information through a dual-branch network framework and
multi-dimensional fusion module is proposed. By training
and validating with multiple data sources and different data
qualities, the method demonstrated leading performance on

the LUNA16, Multi-thickness Slice Image dataset, LIDC,
and UniToChest, with an average dice similarity coefficient
of 82%. This method failed to maintain the exact shape of the
cancer nodule leading to inaccurate segmentation. Accurate
segmentation of cancerous nodules is of high importance as
the accuracy of volume estimation and grading is directly
depending on the same.

C. CANCER GRADING AND EARLY WARNING
No constructive work either on the grading of lung cancer
or flagging of anomalies in timely screening is found in the
literature. In [39] grade classification of pulmonary nodules is
performed using multiscale DenseNet but these grades dealt
with the probability of malignancy indicating how severe
the disease is and not the actual TNM classification [40] of
lung cancer. Some basic image processing techniques and
feature extraction methods are used to find histogram, area,
perimeter, and centroid of cancerous nodules and grade is
predicted based on this information [41], [42]. But all other
important parameters required for grading are not covered
leading to incomplete analysis. CNN (Convolution Neural
Network) is used for feature extraction [43] of cancerous
nodule and they are categorized in following into four
grades, namely benign, primary lung cancer, malignant, and
suspicious malignant.

The primary contributions of our proposed research are as
follows:

1) We have proposed a two-stage cancer detection system.
The first stage of abnormality detection segregates the
scans as normal and abnormal, placing the abnormal
scans at top of the stack facilitating faster treatment
for other lung diseases. As normal scans are removed
from the system in first go, it reduces the burden of
radiologists

2) Designed an improved segmentation algorithm based
on modified convolution and focus module that
performs simultaneous segmentation of three classes
namely cancer, trachea and lymph nodes. We achieved
an improved segmentation accuracy in terms of
well-defined nodule boundaries and the retention of
actual nodule shape.

3) We have developed the cancer volume estimation
system using the interpolation technique.

4) Proposed the grading system that estimates grade of
lung cancer using actual parameters specified in the
TNM classification.

5) We have developed an early warning system that
monitors the periodic CT scans for changes in param-
eters and recurrence of cancer. This system is useful
for monitoring changes and raising a concern after
follow-up periodic scanning.

III. PROPOSED METHODOLOGY
A. IMAGE AUGMENTATION
A significant obstacle in training deep learning models
for various tasks is the abundance of data required. This
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FIGURE 1. (a) Original CT scan (b) Vertical flipping (c) Horizontal flipping
(d) PCA with 20 principal components (e) image overlay.

FIGURE 2. Layered architecture of VGG-16.

challenge is particularly pronounced in the field of medicine,
where limited access to costly imaging resources or a scarcity
of study subjects can hinder progress. Additionally, the
requirement of annotations for every cancerous scan puts a
limit on data collection. Consequently, there is a growing
trend of employing data augmentation techniques in research
involving small data sets [44], [45]. The demand for extensive
data in deep learning networks has spurred the development
of various strategies. Only those strategies are used in this
work that provide a different visual impact compared to
an original image. Vertical flipping, horizontal flipping,
PCA (Principal Component Analysis) and image overlay
techniques are used in our work for data augmentation.
Figure 1 shows the images generated using corresponding
data augmentation methods for a sample CT scan.

Figure 2(a) shows the original CT scan. The irregularly
shaped cancerous nodule is highlighted using the red
bounding box. Figures 2(b) and 2(c) show the results of
the flipping operation performed on the original CT scan.
After vertical and horizontal flipping the position of the
cancerous nodule changed, making it appear as a new
image for a deep-learning model. Figure 2(d) shows the
result obtained by performing Principal Component Analysis
(PCA) with 20 components. Similarly, figure 2(e) shows the
new image generated using the image overlay technique.
Image augmentation was performed only on the cancerous
scans. A total of 596 cancerous scans (of 97 patients in
total) were augmented to 2384. Thereafter, features are
extracted using VGG (Visual Geometry Group) and applied

to the abnormality detection and cancer detection models
as explained below. In the proposed system, only the first
13 convolutional layers out of the 16 layers of VGG were
used for feature extraction as the remaining 3 layers do not
contribute to feature extraction. They are used to reduce
extracted feature size and hence not used. Figure 2 shows the
layered architecture of VGG-16.

B. ABNORMALITY DETECTION
The Figure 3(a) shows the block diagram of an existing
system of cancer detection. Raw CT scans are applied to the
image augmentation and feature extraction model and then
extracted features are applied to the cancer detection system.
The existing cancer detection model is trained to classify the
applied scans as cancerous or normal. So the radiologists need
to exclusively assess the segregated normal scans to check for
any other abnormality. So we modified the existing system
by adding an abnormality detection block to form a proposed
cancer detection system as shown in the Figure 3(b). In our
case, applied scans are applied to the abnormality detection
model which is trained to classify applied scans as normal or
abnormal. This successfully removes all normal scans from
the further checking. Only abnormal scans are applied to the
cancer detection model that classifies them as cancerous or
non cancerous but abnormal scans giving radiologist a small
set to investigate further for any other abnormality.

In the proposed two stage system, the very first step of
prescreening removes all normal scans. Only the identified
abnormal scans are applied to the cancer detection model.
It segregates the applied scans as cancerous and non-
cancerous scans. The rejected lot of this model are flagged
off as non-cancerous but abnormal scans, which may belong
to any other lung abnormality like Tuberculosis, Covid-19,
Pneumonia, etc.

The example given in Figure 4 above indicates that with
the proposed system radiologists will need to check just
one-fourth of the scans as compared to the current practical
scenario where a radiologist manually and sequentially
checks scans of approximately a minimum of 50 patients
on an average, every day. While the proposed system uses
one additional module for abnormality detection, it needs
only normal CT scans for training that are easier to obtain as
compared to cancerous scans. Also, there is no need of using
data augmentation methods as sufficient normal CT scans are
available.

The abnormality detection model was trained using only
normal lung CT scans. 3250 normal lung CT scans were
used to train the model. The model learned the distribution
of normality when many instances of normal samples were
used to train it. Once the model was trained, test samples
were applied to see how much they differed from normality
to classify them as abnormal and normal. The abnormality
detection model not only separated abnormal scans but also
helped establish the priority of processing for radiologists.
A comparative study was conducted using two classifiers;
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FIGURE 3. Block diagram of (a) The existing cancer detection system (b) The proposed cancer detection system.

FIGURE 4. (a) Flowchart of the existing system (b) Flowchart of the
proposed system.

Isolation Forest and OCSVM (One Class Support Vector
Machine).

C. CANCER DETECTION
The CT scans classified as abnormal by the abnormality
detection model were applied to the cancer detection model
in the second stage. The cancer detection model was trained
using both normal and cancerous CT scans. 3250 normal and
2384 cancerous CT scans leading to a total of 5634 scans
were used in training. This model was designed to separate
cancerous scans from abnormal scans. The extracted features
were applied to three different classifiers namely SVM
(Support Vector Machine), Decision Tree and Random Forest
and their comparative study follows in the sections below.

D. CANCER SEGMENTATION
Currently existing segmentation algorithms are based on
standard convolution or its variants. The standard convolution
can not extract multi-scale features because of the fixed
size of the receptive field [46]. Also, it can not locate the
exact location of the feature as the convolution operation
takes place at the fixed locations. Because of these reasons,
the segmentation of medical images is challenging in terms
of boundary detection and retention of the exact shape of
irregularly shaped objects like cancer. This paper proposes
a modified convolution that overcomes the problems of the
standard convolution.

In this work, we have proposed the CLT (Cancer-Lymph-
Trchea) multiclass segmentation model that simultaneously
segments three classes namely cancerous nodules, lymph
nodes and the trachea. Instead of drawing annotations for
all 3 classes in the same mask, we generated three different
annotation masks for three classes. We know that, depending
on the stage of cancer there is a high chance of overlap of
cancer on lymph or trachea. So if we mark annotations for
all three classes in the same mask, learning of the model
becomes difficult because of the overlapping between classes.
This leads to the poor segmentation of the classes in terms
of perfect shape and boundary extraction. We can not take
any risk of imperfect segmentation as the grade of the cancer
heavily depends upon the highest dimension of cancer and
the reach of cancer to the lymph or trachea. So in the
training of images of size (512, 512, 3), we used three masks
each of size (512, 512, 1) containing annotation of single
class. The simultaneous segmentation of three classes led
to reduced redundancy and computation time of the model.
Also, the modified convolution, focus module and modified
loss function are proposed in the CLT segmentation model
to overcome the segmentation constraints of the irregularly
shaped objects resulting into the better performance.

The proposed CLT segmentation model is as shown in
Figure 5. Various parts of the architecture are explained in
the sections to follow.
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FIGURE 5. The proposed segmentation model.

FIGURE 6. (a) Sample standard grid of size 3 × 3 used in the standard
convolution (b) Corresponding fixed integral locations.

1) MODIFIED CONVOLUTION
The main problem with the standard convolution is that the
receptive field remains constant regardless of the size of the
object being analyzed. However, this approach is not ideal
when dealing with objects of varying sizes. In the context of
medical image target segmentation, the lesions that need to be
segmented often have irregular shapes and sizes. Also, it is
incapable of capturing exact features spatially. In standard
convolution, at any pixel the weighted addition with a
particular convolution mask of a fixed size is performed for
surrounding pixels to extract the features. The sample grid of
size 3 × 3 used in the standard convolution is as shown in
Figure 6(a). Corresponding fixed integral locations at which
convolution takes place are shown in Figure 6(b). Because of
the fixed grid size and fixed integral locations, the standard
convolution is incapable of capturing multi-scale features and
their exact locations.

Mathematically the standard convolution is represented as

y(P0) =

∑
PnϵR

w(Pn).x(P0 + Pn) (1)

Here, as shown in equation (1) pixel value at P0 is replaced
by weighted addition performed between image pixels and
convolution mask at locations Pn where

Pn ∈ R (2)

and R = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} (3)

FIGURE 7. Grid of proposed modified convolution.

as we have considered an example of grid of size 3 × 3.
We have proposed a modified convolution that allows
convolution grid to change its receptive field to capture local
and global features collectively and to perform convolution
process at best possible locations within the feature map to
capture exact features spatially.

Figure 7(a) shows the grid of the proposed modified
convolution with dilation rate of 2 and arrows indicate the
non-integral locations at which convolution takes place to
capture exact location of features. As the model is capable of
extracting edges of the cancerous nodules, it leads to better
segmentation in terms of retaining the exact shape of it. It is
important to have a higher accuracy of the segmentation of
cancerous nodule as the accuracy of volume estimation and
grading is depending on it.

The mathematical model of the proposed convolution is
given below.

yi(P0) =

∑
PnϵR

w(Pn).x(P0 + Di.Pn + 1Pn) (4)

P =
1
j

∑
j

Wj.Pj (5)

Wjα
1
Dj

(6)

Y(P0) =
1
i

∑
i

yi(P0) (7)
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Mathematically the proposed modified convolution can be
represented as shown in equation (4) where Di represents
the ith dilation rate and 1Pn indicates the learnable distance
offset for the best location to perform convolution. The
image information at non-integral location is required to
perform convolution operation. It is obtained using bilinear
interpolation operation as shown in Figure 7(b). If as per
the model a point marked in a pink color is the most
appropriate place to perform convolution and extract feature,
then the pixel value is obtained for that point first. It is
obtained as a weighted sum of four adjacent pixels as shown
in equation (5). The weights are inversely proportional to
the distance from the pixel as indicated by equation (6).
It allows the convolutional kernel to sample input features
from non-integer locations, effectively enablingmore flexible
and adaptive sampling of the input feature map based on
the predicted offsets. Finally, to combine local and global
features, features extracted using modified convolution with
different dilation rate are combined together as shown in
equation (7). The proposed modified convolution allows the
model to focus more on the relevant regions of the input
feature map by dynamically adjusting receptive field and
performing convolution at the most appropriate location.

2) ENCODER
Every encoder layer extracts the contextual information by
performing a modified convolution operation on a feature
map received from the encoder of the previous layer.
It is followed by ReLU and max pooling operations. The
mathematical model of the proposed encoder is as given
below.

Let x i,j be the output of X i.j convolution block.

x i,0 = Y(x i−1,0) (8)

n(x i,0) = max(0, n (x i,0)), for every n ϵ I (9)

MP(r, s) = max(I[r:r + t, s : s + t]) (10)

Here n indicates all number of pixels in a feature map I.
The location of a point in a feature map is denoted by (r,s).
The equations (8) and (9) indicate modified convolution and
ReLU operation respectively. The max pooling operation is
shown in equation (10) that halves the height and width of
feature map as value of ‘t’ used is 2. The hierarchical nature
of the encoder enables the segmentation model to capture fine
details from the applied CT scans. These features are further
used by the decoder to generate accurate segmentation mask.

3) SKIP PATHWAYS
Skip pathways are used to club the features from different
levels together and provide spatial information to the decoder
to contribute to better segmentation. All the modified
convolutions performed in skip pathways, maintain the
dimension of the feature map of that layer intact and only the
number of filters gets changed. Mathematically, functions of
skip pathway is represented in equation (11).

x i,j = Y([[x i,k ]j−1
k=0, U(x i+1,j−1)]) (11)

where Y indicates the modified convolution operation
followed by an activation function, U denotes an up-sampling
operation, and [ ] denotes the concatenation. Basically, nodes
at level j = 1 receives two inputs, both from the encoder
sub-network but at two consecutive levels; and nodes at level
j > 1 receive (j + 1) inputs, of which j inputs are the outputs
of the previous j nodes in the same skip pathway and the last
input is the up-sampled output from the lower skip pathway.
So features belonging to different levels are combined first
and then modified convolution is performed over it.

4) FOCUS MODULE
It is proposed to enhance the segmentation model’s ability
to selectively focus on the important features leading to
better segmentation accuracy. It receives feature information
from the lower layer and spatial information from the skip
connection of the same layer. The focus module adds these
informations and adjusts the weights accordingly leading to
strengthening of the important features.

Further, three separate focus modules are introduced in the
uppermost layer. They use class-wise multiplication factors
to adjusts the weights so as to have a perfect segmentation of
all the three classes. Figure 8 shows the block diagram of the
proposed focus module. Also, the mathematical model of the
proposed focus module is presented below.

Spatial information coming from multiple convolution
blocks of a particular layer is first concatenated as shown
in equation (12). Then 1 X 1 convolution is performed on
it with stride 2 to match the size with feature information
so as to perform addition. Parallely, 1 X 1 convolution with
stride 1 is performed on the feature information received
from the lower layer (equation 13) and is then multiplied
by the class-specific multiplication factors (equation 14).
These factors are set to 1 for all focus modules except the
uppermost layer (equation 15). Then the addition of spatial
features and information features is performed as shown in
equation (16). The resulting addition will be higher for a
particular pixel only if both the feature maps are strong
at that pixel. So, the higher addition is the indication of
the important pixel and it should be assigned with higher
weight and vice-versa. The addition operation is followed
by ReLU activation and 1 X 1 convolution to adjust the
weight tensor size (equation 17). The sigmoidal activation
is then applied to bring all weight values within the range
of 0 to 1. Then, the weights are upsampled to match with
the tensor size of spatial information (equation 18). Finally,
the multiplication of weights with the spatial information is
performed to increase the importance of important features
(equation 19).

si,j = ϕ2([x i,k ]
j−1
k=0) (12)

t i,j = ϕ1(x i+1,j−1) (13)

wi,j(h, k) = c(h, k) ∗ t i,j(h, k) if j = 4 (14)

c(h, k) = 1; j < 4 (15)

mi,j(h, k) = wi,j(h, k) + si,j(h, k) (16)
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FIGURE 8. The proposed focus module.

mi,j(h, k) = ϕ1(max(0,mi,j(h, k))) (17)

M = U(σ (m)) (18)

F i,j = si,j ∗M i,j (19)

In the uppermost layer, the focus module allows the
segmentation model to focus its attention to the class to be
segmented. Three separate focus modules are used leading to
the better segmentation of all the three classes.

5) DECODER
The decoder plays the crucial role of generating accurate
segmentation masks. It upsamples the low resolution feature
map obtained from the lower layer decoder and concatenates
upsampled feature information with the scaled spatial infor-
mation received from the focus module. Then it performs
modified convolution to refine the feature map that helps
model learnmore abstract representation and nuance required
for a perfect semantic segmentation. Mathematically the role
of decoder can be represented as shown in equation (20).

x i,j = Y([F i,j, U(x i+1,j−1)]) (20)

where F i,j is the output of focus module of the same layer.

6) LOSS FUNCTION
The loss function quantifies the discrepancy between the
predicted output of the model and the ground true values.
The primary goal during the training phase of a deep learning
model is to minimize the loss function. By minimizing the
loss function, the model learns to make better predictions and
improve its performance on the segmentation task.

For a mask of any class, we expect to have the foreground
white and the background black. Binary cross-entropy is
the most commonly used loss function in the literature.
But, it can be problematic in scenarios with a severe class

imbalance between foreground and background classes, as in
our case where background pixels significantly outnumber
foreground pixels. In such cases, the model may focus more
on correctly classifying the abundant background pixels
since they contribute more to the overall loss calculation.
As a result, the loss value can become dominated by the
background class, potentially leading to misguidance in
the training process as we mainly aim to have a perfect
classification of the foreground class.

In this work, we used the loss function as a combination of
dice loss and focal loss instead of binary cross-entropy loss.
The focal loss is beneficial to address the class imbalance
issue. Focal loss is just an extension of the cross-entropy
loss function that down-weights easy segmentation portion
and assigns more weightage to hard segmentation portion i.e.
foreground pixels.

The Focal Loss can be represented as shown in
equation (21)

FL(Pi) =
1
N

N∑
i=1

− α(1 − Pi)γ . log(Pi) (21)

where
Pi is the predicted probability of the true class of ith pixel.
N is total number of pixels.
α is the balancing factor to mitigate class imbalance.
γ is the focusing parameter to down-weight easy examples
The dice Loss is a metric used in segmentation tasks where

the actual delineation of the region of interest is essential for
decision-making. It is well suited for applications involving
irregular structures like cancer.

The equation of dice loss is given below (equation 22)

DL = 1 − {(2 ∗ |X ∩ Y|)/(| X| + |Y|)} (22)

108522 VOLUME 12, 2024



P. Sathe et al.: End-to-End Fully Automated Lung Cancer Screening System

Here, X and Y represent the sets of pixels that belong to
predicted segmentation and the ground truth respectively.
So the loss function used for a single class looks like as shown
in equation (23).

TL = FL + DL (23)

The proposed Final Loss Function (FLF) is obtained as a
weighted sum of the total losses of all the 3 classes as shown
in equation (24). The weights are directly proportional to the
total loss values of the classes (equation 25). So class with
higher loss gets penalized with higher weight resulting into
the further higher weighted loss. As FLF is dominated by the
poor performing class, model is forced to pay attention to that
class in the next epoch. This will ensure that the segmentation
performance of all the classes is balanced.

FLF =

3∑
j=1

(Wj)x(TL j) (24)

where Wj and TL j are the weight value and the total loss
associated with the jth class. The weight values are obtained
as

Wj = K x TL j (25)

where K is the controlling parameter that determines how
severely we want to reduce the imbalance between the three
classes. We have used K=3.

The proposed algorithm provides the segmentation
approach that uses not only modified convolution to club
features from different resolutions but also an focus module
that scales the feature map based on spatial and feature
information leading to more accurate segmentation.

E. VOLUME ESTIMATION
When a series of CT scans of the patient is applied to the
cancer segmentation model, it provides corresponding masks
having cancerous portions highlighted for every CT scan.
These annotated masks are applied to the volume estimation
model that calculates the area of the cancerous portion of
every scan and uses the interpolation method to find the
volume of the tumor. From the segmented mask, a number of
white pixels are obtained. The area of the cancerous portion
is calculated by multiplying the number of white pixels by
the area of each pixel which is obtained from pixel height and
pixel width functions of the Python library. Likewise, the area
is calculated for all consecutive CT scans and then the volume
is obtained from these area values using the interpolation
method. Figure 9 shows the consecutive cancerous scans for
one sample patient case. Corresponding area values are 0.435,
2.966, 4.104, 3.8 and 1.755 respectively.

Each slice is 5 mm thick. This means the real area of cancer
spread is known only at intervals of 5 mm each and not in
between. Considering the same cancerous area throughout
the slice thickness will lead to wrong volume calculation. For
better volume estimation, interpolation is used to predict the

FIGURE 9. Consecutive cancerous scans of a sample patient.

area values of the cancerous portion 0.01 mm apart slice-
wise. Various types of interpolations like linear, bilinear,
cubic, Lagrange, GPR were tried to determine the volume of
cancer, and their results are comparedwith the actual volumes
obtained from radiologists. GPR interpolation is found to be
the best approach.

1) GPR INTERPOLATION
The basic idea of GPR is to model the relationship between
the input data and the output values as a Gaussian process.
A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.
In GPR, we assume that the output values follow a Gaussian
process with a mean function µ(x) and a covariance function
k(x, x’) that captures the similarity between given data
points and interpolation points. The most commonly used
covariance function is the Radial Basis Function (RBF)
kernel. This interpolation is the most suitable for irregular
data as it can better capture underlying trends and patterns.
This property makes GPR a most suitable interpolation
method in cancer volume estimation. The key idea of GPR
interpolation is to use Bayesian inference to compute the
posterior distribution over the unknown value ŷ conditioned
on the observed data. The posterior distribution is a Gaussian
distribution with a mean µ̂ and a covariance 6̂. The mean
µ̂ represents the estimated value of ŷ, and the covariance 6̂

quantifies the uncertainty associated with the estimation.
Mathematically GPR interpolation can be derived as

follows:
First, the mean function µ(x) and the covariance function

k(x, x’) were defined. Then the covariance matrix K(X, X)
between the observed input points in X and the covariance
vector k(X, x̂) between the observed input points in X and
the new input point x̂ were computed. The covariance scalar
k(x̂, x̂) between the new input point x̂ and itself was then
calculated. Finally, the mean vector µ̂ and the covariance
matrix 6̂ of the posterior distribution were obtained using the
formulae [31] given in equations (26) and (27)

µ̂ = k(X, x̂)T[K(X,X) + σ 2I]−1.y (26)

6̂ = k(x̂, x̂) − k(X, x̂)T[K(X,X) + σ 2I]−1k(X, x̂) (27)

VOLUME 12, 2024 108523



P. Sathe et al.: End-to-End Fully Automated Lung Cancer Screening System

FIGURE 10. Lung cancer grade estimation factors.

FIGURE 11. (a) Raw DICOM CT scan (b) binarized image (c) boundary
cleared image (d) result of erosion and dilation.

where σ 2 is the noise variance parameter and I is the identity
matrix.

The estimated output value ŷ at the new input point x̂ was
obtained by the mean µ̂, and the uncertainty associated with
the estimation was quantified by the covariance 6̂. Various
types of interpolations like linear, bilinear, cubic, Lagrange,
GPR (Gaussian Process Regression) are checked in this work
and their results are compared.

F. CANCER GRADING
Accurate grading is required for the correct treatment of lung
cancer in terms of dosage and duration. Figure 10 shows the
factors on which grade of the lung cancer majorly depends
upon.

1) HIGHEST DIMENSION ESTIMATION
The highest dimension of the tumor is a key factor in cancer
staging which helps determine the severity of the cancer. The
cancer segmentation model provides the cancer annotations
forming a 2D data. The third dimension information is added
from the slice width. The highest dimension of the nodule is
obtained from the longest distance between the 3D cancerous
voxels.

2) CHECK OF CANCER SPREAD TO OTHER LUNG
Though grading mainly focuses on the characteristics of
the primary tumor, one factor deciding grade still requires
the presence of the secondary nodules to be checked in the
other lung. The annotated mask obtained from the cancer

segmentation module is checked against the masked lung
portion for overlap. Initially, the raw DICOM lung CT scan
as shown in Figure 11(a) was converted into Hounsfield
units (HU), a standardized quantitative scale for representing
radio density. Each tissue type possesses a distinct HU range,
which remains consistent across different individuals. Lung
tissues typically fall within the range of −400 to −600 HU.
Subsequently, the image was binarized using a threshold
value of−600, as depicted in Figure 11(b). Boundary clearing
was then conducted on Figure 11(b) to isolate the lung
area, resulting in Figure 11(c). Boundary clearing includes
edge detection and noise reduction using median filtering.
To further refine the image, an erosion followed by dilation
process was implemented to eliminate pixels on the object
boundaries morphologically. The complete lung portion
demarcated in white is shown in Figure 11(d). Then overlap
is checked between this lung portion and the annotation mask
obtained from the cancer segmentation model. The ANDing
operation is performed to obtain an overlap image. If it has
white demarcation in both lungs, it indicates that cancer has
reached another lung as well.

3) CHECK OF CANCER SPREAD UPTO LYMPH NODE
In the lung, several groups of lymph nodes play crucial
roles in the immune system and lymphatic drainage. Lymph
nodes contain immune cells such as lymphocytes (B cells
and T cells) and macrophages, which play crucial roles
in recognizing and attacking pathogens (such as bacteria,
viruses, and other foreign substances) that enter the lungs.
Lymph nodes also act as filters for lymphatic fluid, removing
pathogens and cellular debris before returning the fluid to the
bloodstream. They help prevent the spread of infection and
facilitate the removal of waste products from the lung tissue.

When cancer cells spread to nearby lymph nodes, it sig-
nifies a more advanced stage of cancer and can have several
harmful implications requiring additional surgery to remove
affected lymph nodes or radiation therapy to target cancer
cells in the lymph nodes. The risk of metastasis increases
when the cancer cells spread up to the lymph nodes as cancer
cells can travel through the lymphatic system to reach distant
parts of the body. Involvement of lymph nodes by cancer
can lead to complications such as lymphedema, impaired
lymphatic drainage, and compromised immune function,
further impacting the patient’s quality of life and overall
health. So it is of high importance to find whether cancer cells
have reached lymph nodes and especially tracheobronchial
lymph nodes to decide on grade and associated further
treatment of the cancer. Our segmentation algorithm provides
separate annotated masks of cancer, trachea and lymph. So by
ANDingmethod, we found overlap between classes as shown
in Figure 12.

4) CHECK OF CANCER SPREAD UPTO TRACHEA
The trachea, also known as the windpipe, is the main airway
that carries air to and from the lungs. When lung cancer
reaches the trachea, it can physically obstruct the airway,
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FIGURE 12. Block diagram of lymph node detection.

leading to difficulty breathing, shortness of breath, wheezing,
and potentially life-threatening respiratory distress. This
obstruction can significantly impair the exchange of oxygen
and carbon dioxide, leading to hypoxia (low oxygen levels)
and hypercapnia (high carbon dioxide levels) in the blood.
Lung cancer reaching the trachea often indicates advanced
disease progression andmetastasis (spread) beyond the lungs.
So, using the same logic as shown in Figure 16, we found
overlap between trachea and cancer.

G. EARLY WARNING SYSTEM
In case of lung cancer, there is always a risk of recurrence
and so performing timely screening of lung CT scans for the
same patient is important. For individuals at high risk of lung
cancer, such as current or former smokers, periodic lung CT
scans allow healthcare providers to monitor changes in the
lungs over time. Comparing scans taken at different intervals
can help detect any new or growing abnormalities, indicating
possible progression of disease. It helps in early detection of
recurrence and an identification of new abnormalities. The
CT scans belonging to periodic screening for a sample patient
are shown in Figure 13.
We have modified the grading model that incorporates the

red flagging in periodic screening. Four red flags are defines
as follows

i) RF1 - distance between trachea and cancer is less than
5 cm

ii) RF2 - Cancer spread to lymph and 3 < H < 5
iii) RF3 - Cancer spread to lymph and 5 < H < 7
iv) RF4 - H > 7
At present, there is no automatic system for monitoring

changes and raising a concern after follow-up periodic
scanning. As the follow-up may not indicate a change in
stage of the cancer, a change in the volume or spread
may go undetected. The proposed grading model was
further modified to develop an early warning system that
monitors the periodic CT scans for changes in parameters
and recurrence of cancer. Four relevant warning flags were
designed to give clarity on a particular irregularity detected.
The Figure 14 shows the Flowchart of early warning system.

FIGURE 13. CT scans belonging to timely screening for a sample patient.

The Figure 15 shows the schematic of the developed end-
to- end system that performs abnormality detection, cancer
detection, cancer segmentation, volume estimation, Cancer
grading and early warning as shown in the schematic below.
(Figure 15)

IV. RESULTS AND DISCUSSION
A. ABNORMALITY AND CANCER DETECTION
The abnormality detection model was validated on a test
dataset of 160 normal and 160 abnormal scans. The
classification results of Isolation Forest and OCSVM are
summarized in the table 1 part (a) and (b). Table 1 part (c)
shows the comparison of evaluation metric values obtained
for isolation forest and OCSVM classifiers.

As the recall (or sensitivity) obtained is 100%, it is clear
that all abnormal scans were correctly classified by OCSVM.
Also, the AUC plot for each classifier is shown in Figure 16.
It is seen that the ROC curve of OCSVM is closer to the ideal
ROC curve.
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FIGURE 14. Flowchart of early warning system.

FIGURE 15. The schematic of the proposed system.

FIGURE 16. AUC plot of abnormality detection classifiers.

The model was validated on a test dataset of 200 normal
and 200 cancerous scans. Tables 2(a), (b) and (c) show

confusion matrices of SVM, Decision Tree and Random
Forest algorithms respectively. It was found that classification
results are optimum for random forest classifier when
compared to other classifiers. It’s confusion matrix shows
that all 200 cancerous scans and 199 scans out of 200 non-
cancerous scans were correctly classified. Table 2(d) shows a
comparison of evaluation metric values obtained for the three
classifiers. Again, the evaluation metrics for random forest
classifier outperformed the other two. As all the cancerous
scans were correctly classified by Random Forest, recall (or
sensitivity) obtained is 100%. The AUC plot (Figure 17) for
each classifier shows that the random forest classifier gives
the best performance.

Based on the comparative study of classifiers for the two
models, OCSVM was used for abnormality detection and
Random Forest was used for cancer detection.
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TABLE 1. Classification results of abnormality detection classifiers (a)
Confusion matrix for isolation forest classifier (b) Confusion matrix for
OCSVM classifier (c) Comparison of evaluation parameters.

FIGURE 17. AUC plot of cancer detection classifiers.

B. CANCER SEGMENTATION
In this work, the Intersection over Union (IoU), Dice
Similarity Coefficient (DSC), Relative Volume Difference
(RVD), Average Surface Distance (ASD) and Hausdorff
Distance (HD) were used to evaluate the image segmentation
results. Results of segmentation of three classes using
proposed algorithm are as discussed below. The performance
metrics for 3 patients CTP1, CTP2 and CTP3 for cancer
segmentation are highlighted in Table 3.

Figure 18 shows the results of segmentation obtained
using U-net++ and the proposed algorithm for patients. It is
seen clearly that the proposed algorithm retains the shape
of a nodule by correctly demarcating its boundaries and
provides more accurate segmentation compared to U-net++.
The spider chart showing the comparison of U-net++ and
the proposed algorithm for various segmentation metrics
is shown in Figure 19. The larger difference in the areas
covered by the two algorithms in the spider chart indicates
the difference in their performance.

TABLE 2. Classification results of cancer detection classifiers (a)
Confusion matrix for SVM classifier (b) Confusion matrix for decision tree
classifier (c) Confusion matrix for random forest classifier (d) Comparison
of evaluation parameters.

FIGURE 18. (a) Original CT scan (b) Ground truth (c) result of U-net++

(d) result of proposed algorithm.

The average value of segmentation, an IoU of 0.9035,
obtained with the proposed segmentation algorithm is nearly
5% higher than that given by the U-net++ algorithm.

C. VOLUMETRIC ESTIMATION AND GRADING
Table 4 shows the results of the interpolation methods
applied to CT scans of 3 patients. VP1, VP2 and VP3
are the volumes estimated for 3 patients P1, P2 and P3
respectively. These volumes are compared with ground truth
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TABLE 3. Comparison of various segmentation metrics for Unet++ and the proposed segmentation algorithm.

FIGURE 19. The spider chart of comparison of U-net++ with proposed
algorithm.

volumes calculated by the radiologists. It is clearly seen that
there is a huge difference in calculated volume and ground
truth volume when interpolation is not used. In the case of
VP3, volume estimation accuracies with quadratic, cubic,
spine, lagrange and GPR interpolations are 88.13%, 88.91%,
90.27%, 91.63% and 94.36% respectively. Similarly, for the
other patients it is found that GPR gives the best volume
estimation accuracy with an average value of 94.18%.

For comparison purpose, we applied GPR interpolation
on the segmentation masks obtained using the U-net++

algorithm. Table 5 indicates volumes obtained using GPR
interpolation applied to the Unet++ algorithm and our
proposed algorithm for VP1, VP2 and VP3. It is seen that
the accuracy of the proposed algorithm is approximately 4%
higher than that of U-net++. For all volumes VP1, VP2 and
VP3 as well as for average it is seen that the volume estimated
using the proposed algorithm is closer to the ground truth
compared to that of the U-net++ algorithm.

The table 6 shows the comparison of highest dimension
values obtained using standard unet++ and that by the
proposed model.

FIGURE 20. (a) Original image (b) ground truth (c) segmentation results
of Unet++ (d) Segmentation results of the proposed model.

Though cancer grading depends on multiple factors,
highest dimension of the tumor is considered to be the most
important factor. So if that goes wrong, it may lead to the
inaccurate prediction of the stage of the cancer and hence
the corresponding dosage and the treatment. A similar case is
observed in the case of patient P1 of Table 6. The ground truth
value of the highest dimension is 3.27 cm. It belongs to the
cancer stage 2A as per the TNM classification32 as it is in the
range of ‘3 to 5 cm’. With the original U-net++, the obtained
dimension value is 2.96. Though it is 90% accurate it falls in
the category of ‘less than 3 cm’ and hence belongs to cancer
stage 1. This scenario will lead to the wrong prediction and
incorrect treatment. On the other hand, the highest dimension
value obtained by the proposed algorithm is 3.13 cm and it
correctly belongs to stage 2A.

The results of lymph node segmentation for sample cases
are shown in Figure 20 and corresponding IoU values are
specified in Table 7.
The results of the trachea segmentation for sample cases

are shown in Figure 21 and corresponding IoU values are
specified in Table 8. It is clearly seen that performance of
the proposed model is much better than standard unet++.
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TABLE 4. Volume estimations (in cubic cm) for various interpolation methods.

TABLE 5. Comparison of volume estimations (in cubic cm) for U-net++ and proposed algorithm.

TABLE 6. Comparison of highest dimension estimations (in cm) for U-net++ with standard convolution and proposed algorithm.

Further, the grading model is tested on 56 patients out of
which model predicts 54 grades accurately leading to an
accuracy of 96.4%.

V. CONCLUSION
In this paper an end-to-end fully automated lung cancer
screening system is designed that includes modules on
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FIGURE 21. (a) Original image (b) ground truth (c) segmentation results
of Unet++ (d) Segmentation results of the proposed model.

TABLE 7. Comparison of IoU values for standard Unet++ versus for the
proposed model for lymph node segmentation (average for 188 samples).

TABLE 8. Comparison of Unet++ results for different types of
convolutions for trachea segmentation (average of 54 samples).

cancer- detection, segmentation, volume estimation, grading,
and a built-in early warning system. The cancer detection
module consists of two stages; the first of abnormality detec-
tion followed by second stage classifying abnormal scans into
cancerous scans and non-cancerous scans indicating other
lung disease. This facilitates not only priority attention to
the cancerous scans but also ensures further investigation
of other lung diseases. An accuracy of 90.5% and 99.7%
was achieved for abnormality detection and cancer detection
models respectively.

The segmentation model was then designed to capture
multiscale information at non-integral locations within the
feature map. The standard convolution is incapable of extract-
ing multi-scale features at correct spatial location because
of the fixed size of the receptive field leading to inaccurate
segmentation in terms of capturing the actual shape of the
cancerous nodule.With the proposed modification in the con-

volution technique, an improved accuracy of segmentation in
terms of well-defined nodule boundaries and the retention
of actual nodule shape is reported. Further, the proposed
model was designed to segment cancer nodules, lymph nodes
and trachea simultaneously. This led to reduced computation
time and redundancy of the process. A focus module
was designed additionally to include learnable class-wise
multiplication weights for separating three annotation masks.
The loss function was modified to balance the segmentation
performance of three classes by penalizing poor-performing
classes. The overall accuracy of the proposed segmentation
was improved to 92.09% from the reported 87% in the
literature.

With a view to improve an accuracy of volume estimation,
interpolation was used and the best interpolation technique
was identified through a comparative analysis of several
techniques. After a thorough analysis, GPR was found to be
the best technique, improving the accuracy of the volume
estimation to 94.18%.

In thework reported on cancer grading, TNMclassification
norms are not used leading to grading done at a very
superficial level without checking for any of the specified
parameters in TNM. The proposed grading system in this
research work is designed to detect whether cancer has
reached to the second lung, lymph nodes and trachea. It also
estimates the highest dimension of the cancerous nodule for
determining the grade of the cancer. The proposed grading
system graded the cancerous nodule into one of the six grades
as per the TNM classification with an accuracy of 96.4%.

Currently, there is no automatic system for monitoring
changes and raising a concern after follow-up periodic scan
of patients treated for cancer. While the follow-up may not
indicate a change in stage of the cancer but a change in the
volume or spread may go undetected. The designed grading
system was further extended to develop an early warning
system that monitors the periodic CT scans for changes in
parameters and recurrence of cancer. The module is designed
to raise one of the four relevant warning flags to clearly
indicate a particular irregularity in the detected stage, helping
the doctors initiate a quick informed treatment plan.
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