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ABSTRACT Regression testing is carried out to ensure that changes or enhancements are not impacting
previous working software. Deciding how much retesting is required after modifications, bug fixes or before
product deployments are difficult. Therefore, Test Case Selection (TCS) select the satisfactory subset of
modified test cases from already executed test suites. The testing primary concerns in TCS for regression
testing are efficiency (i.e., coverage, fault detection ability, redundancy) and time. The first challenge in
TCS concerns the efficiency of multi-objective test case selection. The second challenge is to improve
the execution time to detect the changes in a test suite, which makes it impractical to use these efficiency
measures as a single goal for TCS. To overcome these challenges, there is a need to introduce an efficient
detection-based multi-objective framework to improve the Time and efficiency of TCS. A multi-objective
advanced and efficient regression test case selection (ARTeCS) framework is devised to improve the time
performance and efficiency of a given TCS objective relative to the other TCS approaches. An algorithm
to detect the changes in test cases using multiple TCS objectives. This comparison found that the enhanced
ARTeCS algorithm improves redundancy efficiency by 44.02%. The selection technique showed ARTeCS
improved the modified change detection by 43.00%, whereas the Hybrid Whale Optimization Algorithm
(HWOA) stated 23% and ACO showed 33% only for selected test cases. Regarding average for fault
detection, ACO scores 21%, HWOA scores 11%, and ARTeCS scores 31.08% with total execution times
of 12, 21 and 09 seconds, respectively. In conclusion, the multiple-objective ARTeCS framework with four
test suite selection parameters is more efficient than the existing multi-objective selection framework.

INDEX TERMS Software testing, regression testing, test case selection, TCS algorithm, TCS framework,
multi-objective approach in TCS.

I. INTRODUCTION

Regression testing confirms that previously functioning
software continues to function after changing, modify-
ing, or adding functionality [1], [2], [3]. The changes are
unavoidable when a software system is evolved, modified
or under maintenance [4]. The retesting of such software is
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time-consuming, complex and difficult to manage. Regres-
sion testing ensures the user that newly introduced changes
do not produce unintentional behaviour. Regression testing
is a very complex and repetitive part of software testing.
Minhas et al. Stated that three thousand test cases were
subjected to 100 machine hours of regression testing [5].
Regression testing guarantees that no new flaws will be added
to the database of expanded code or specification changes [6],
[7]. Therefore, regression testing is an important and costly

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

114974

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024


https://orcid.org/0009-0000-1553-2868
https://orcid.org/0000-0003-4459-4050
https://orcid.org/0000-0003-3264-185X

I. Ghani et al.: Detection-Based Multi-Objective TCS Algorithm

IEEE Access

activity every time a program is modified [8]. It ensures
that modifications do not introduce new bugs into previously
validated code. In regression testing, models, frameworks
and automated tools are designed and proposed to establish
multi-objective test case selection, prioritization and reduc-
tion techniques [5]. Models, algorithms, and frameworks are
predicated on the relationship between time and efficiency
(fault detection [9], redundancy [10], coverage [2]) mea-
sures for Test Case Selection (TCS). Therefore, test case
selection techniques have the ability for coverage-based,
fault detection and redundancy as compared to TCM and
TCP [11]. Musa, Sultan introduced a dynamic framework
to detect modified changes in the System Under Test (SUT)
for TCS [12]. However, regression testing has been widely
used to ensure that software evolution does not break exist-
ing modules in the system [13]. Efficient test case selection
and change detection is a challenge in practice, especially
in a world of ever-increasing complexity, distribution, and
size of test suite solutions. Thus, the efficient test suite
selection targets acquiring an insignificant subset of a test
suite that preserves an unambiguous competence standard
(e.g., coverage, fault detection, redundancy). For example,
some modification steps and change detection have been
selected after changes in requirements in the application
based on the input value. Change detection is helpful when
selecting modified test cases [13], [14]. Regression testing is a
rapidly growing concept for software testers, especially in test
case selection and change detection [15]. These challenges
have led to much work on regression testing techniques.
At whatever point an application program is modified for
completing any maintenance process, the test suite is planned
and selected to verify that the modified parts or detection
of modified value of the code work appropriately according
to the respective test cases [16], [17]. However, running the
full set of regression test suites is essential and expensive
because of the large number of test cases and modifications
in the existing program [18], [19]. In this paper, we propose
a multi-objective test case selection and change detection
algorithm (ARTeCS), which detects only modified change
based on the input value of a heterogeneous application to
improve change detection efficiency and reduce selection
time. This study recommended a test case selection method,
excluding fault and redundant test cases within a given time-
frame. This research also contributes a test case selection
and change detection method, which detected only modified
change based on input value. (2) We experimented with
two open-source ASP.NET applications for this article. Good
experimental findings are obtained by evaluating Test Case
Selection (TCS) and Change detection (CHD) using acknowl-
edged assessment metrics (failure detection and redundancy)
in comparison to two other approaches Hybrid Whale Opti-
mization Algorithm ( HWOA) [3], [20] and Ant Colony
Optimization (ACO) algorithm [3]. This is how the rest of
the paper is organized. The TCS-related work is covered in
the second section. The approach suggested in this paper
is presented in the third section. Section IV is where the
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experimental evaluation is carried out. The summary is given
in Section V.

Il. RELATED WORK PERSPECTIVE

Regression testing is an important but expensive activity
every time a program is modified [21]. It ensures that modi-
fications do not introduce new bugs into previously validated
code [15]. Complete software testing is not possible, espe-
cially in regression testing. The possible way out is adequate
testing with certain objectives to be fulfilled. Test case selec-
tion and change detection in regression testing are adopted
to reduce time and improve efficiency. Associating tradi-
tional and composite applications in extensive organizations
and associated with critical business-to-business collabora-
tions, where the usually diverse situation demands a severe
explanation of the quality product and service interfaces and
collaboration patterns. Recent years have seen the introduc-
tion of research projects aimed at speeding up the selection of
test cases and decreasing testing time [22]. Therefore, certain
testing procedures are limited to black-box or white-box
techniques and need experiments on medium and large-scale
TCS systems.

Additionally, manual testing in small-scale situations is
restricted by current TCS techniques. The absence of TCS
experiments in newly presented techniques results from inef-
fective test case selection and change detection of updated
test cases in regression testing on a medium (10-20 test
cases) or large (30+ test cases) only scale in the literature.
An efficient se-lection and change detection in regression
testing is emerged to evaluate QoS parameters such as time
and efficiency to make a test suite according to the allo-
cated time. The classic TCS techniques [23], [24] for test
case selection as a one-time process instead of continuous
activity. TCS is repetitive because regression testing is a
repetitive activity [1], [25]. The single objective TCS does
not fulfil the purpose of test case selection and detection
of modified test cases due to the dependency on these effi-
cient measures (Time & efficiency). The test case selection
parameters (coverage, redundancy fault detection ability) are
used without assessing their impact on the selection process;
multi-objective. The redundancy [1], [2], [3], coverage [10],
fault detection ability [9] and coverage information are used
individually as TCS parameters but not considered simultane-
ously, as the testing team experience is ignored for test case
selection process improvement in existing approaches [26].
The relationship between redundancy, coverage and fault
detection ability with time assessment is also ignored in eval-
uating the test case selection parameters of modified test suite
size by current studies [27], [28]. To effectively improve the
test suite selection of such heterogeneous and homogeneous
scenarios, we need an efficient test case selection and change
detection technique using an enhanced change detection
approach in the regression. Furthermore, these challenges
prohibit testing the functionality and other components of
the software [29]. Therefore, testing issues in traditional
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FIGURE 1. Proposed ARTeCS workflow.

and service-oriented applications, like test case selection for
interface-to-interface and end-to-end testing, still need to be
addressed [30], [31], [32], [33].

Ill. PROPOSED ARTECS METHODOLOGY

This study minimizes testing time to optimize an efficient
regression test case selection and change detection approach
for modified test cases. The proposed research also recom-
mends a test case selection technique on the accumulative
score of time, coverage, redundancy, fault detection abil-
ity and code change information for affected test cases.
We present the experimental process setup in Figure 1 for the
test case selection framework. Figure 1 depicts a structured
process for refining a test suite, starting from an original set
of tests and applying a series of modifications and evaluations
to arrive at a final, optimized test suite ready for execution.
The process begins with the Original Test Suite, from which
a Change History Collection (CHC) is performed to under-
stand what has changed. Then, Applying Modification Rules
(AMR) leads to the “Total number of Modified TEST Cases.

A. TEST CASE SELECTION

This section explains the workflow of the proposed Test Case
Selection (TCS) algorithm, where the modified cases are
compiled into a modified Test Suite (MTS). Once the modi-
fied test suite is established, it undergoes further refinement
through two different algorithms: the Redundancy Reduction
Algorithm (RRA) [34] and the Fault Test Cases Exclusion
Algorithm [35]. The redundancy reduction algorithm aims to
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remove unnecessary test cases that do not add value to the
test suite. In contrast, the fault coverage exclusion algorithm
eliminates test cases that do not contribute to uncovering
faults [36]. Figure 1 represents a flowchart for a test suite
optimization process in a software development context to a
software testing process. Another component of this work-
flow is about Change History Collection (CHC) process starts
with gathering the change history of test cases, which means
collecting data on what has been altered in the software
since the last testing cycle where this process includes the
code changes, feature additions, or bug fixes. By applying
Modification Rules (MR) to detect a modified change in
the test cases, modification rules are applied in order to
detect modified test cases. These Modification Rules (MR)
are predefined criteria where algorithms determine how the
existing test cases should be altered to accommodate the
recent changes. Original Test Suite before any modifications
are made. Another component, ‘“Total number of Modified
Cases”, represents a count or list of the test cases modified
after the rules and algorithm were applied. Modified Test
Suite (MTS), applying modification rules to the original
test suite, resulting in an updated set of tests that reflect
the recent changes to the software. From the modified test
suite, two paths diverge. Firstly, the Redundancy Reduction
Algorithm (RRA) explains the one path leads to a process that
eliminates redundant test cases, which helps reduce the time
and resources required for testing without compromising the
test coverage. Secondly, Fault Coverage Exclusion Algorithm
(FCEA) is another path involving an algorithm that excludes
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FIGURE 2. Proposed ARTeCS framework.

test cases that do not contribute to fault coverage, which
means identifying and removing ineffective tests in discov-
ering new defects.

Both of these paths converge into Performance Metrics
that involve evaluating the performance of the test suite post-
optimization, ensuring that it is efficient and effective. Final
Test Suite to Execute, based on performance metrics, a final
set of test cases is selected for execution. The modified
test suite is optimized for both efficiency and time. TCS
(Test Case Selection) Based on Validation Metrics Evaluation
means the final suite is further refined based on additional val-
idation metrics. Within this feedback loop, three algorithms
are at play: Fault Coverage Based Selection Algorithm that
covers more faults. Redundancy Based Selection Algorithm,
focuses on removing duplicate test cases. Search Based
Selection Algorithm, uses a heuristic or metaheuristic search
technique to select the most modified suitable test cases.
The loop completes with Measurement and Validation of
TCS Time Performance & Efficiency. Overall, this flowchart
outlines a systematic approach to refining a test suite, aiming
to make it more focused, less redundant, and more efficient,
thereby reducing the cost and time of the testing phase in
software development.

The proposed experimental process is described briefly
in Figure 1. Based on the proposed process, design and
implementation flow are shown for the proposed approach.
Generally, this approach can be described as a proposed
solution to represent the selection of modified test cases

VOLUME 12, 2024

and requirements of products in TCS. The increasing fault
detection and redundancy can contribute to complexity in
core asset development. In TCS, it can be interpreted as
the correct & modified test cases are selected based on the
modification.

Figure 1 also depicts a structured process for refining a
test suite, starting from an original set of tests and apply-
ing a series of modifications and evaluations to arrive at a
final, optimized test suite ready for execution. The process
begins with the Original Test Suite, from which a Change
History Collection (CHC) is performed to understand what
has changed. Then, Applying Modification Rules (AMR)
leads to the ““Total number of Modified Cases. The modified
cases are compiled into a Modified Test Suite (MTS). Once
the modified test suite is established, it undergoes further
refinement through the Redundancy Reduction Algorithm
(ACO) and Fault Coverage Exclusion Algorithm (HWOA)
[3]. The redundancy reduction algorithm aims to remove
unnecessary test cases that do not add value to the test suite,
while the fault coverage exclusion algorithm eliminates test
cases that do not contribute to uncovering faults.

Figure 2 explains the proposed research framework, which
includes code changes, feature additions, and bug fixes. These
are probably predefined criteria and algorithms determining
how the existing test cases should be altered to accommodate
the recent changes. Original Test Suite before any modifica-
tions are made. Total number of Modified Cases, represents a
count or list of the test cases that have been modified after the
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rules were applied. Modified Test Suite, applying modifica-
tion rules to the original test suite, resulting in an updated
set of tests that reflect the recent changes to the software.
From the modified test suite, two paths diverge. Redundancy
Reduction Algorithm, one path leads to a process that elimi-
nates redundant test cases, which helps in reducing the time
and resources required for testing without compromising the
test coverage. The fault Coverage Exclusion Algorithm is
another path involving an algorithm that excludes test cases
that do not contribute to fault coverage, which means identify-
ing and removing tests that are ineffective in discovering new
defects. Both of these paths converge into Performance Met-
rics that involve evaluating the performance of the test suite
post-optimization, ensuring that it is efficient and effective.
Final Test Suite to Execute, based on performance metrics,
afinal set of test cases is selected for execution. The modified
test suite is optimized for both efficiency and time.

TCS (Test Case Selection) Based on Validation Metrics
Evaluation means the final suite is further refined based
on additional validation metrics. Within this feedback loop,
three algorithms are at play: Fault Coverage Based Selection
Algorithm that covers more faults. Redundancy Based Selec-
tion Algorithm, focuses on removing duplicate test cases.
Search Based Selection Algorithm, perhaps uses a heuristic
or metaheuristic search technique to select the most modified
suitable test cases. The loop completes with Measurement
and Validation of TCS Time Performance & Efficiency. Over-
all, this flowchart outlines a systematic approach to refining a
test suite, aiming to make it more focused, less redundant, and
more efficient, thereby reducing the cost and time of the test-
ing phase in software development. The proposed framework
to algorithm mapping approach aims to validate features with
coverage to ensure that TCS and change detection (CHD)
test cases achieved higher coverage in selecting modified test
cases according to the Advanced Regression Efficient Test
Case Selection ARTeCS framework. To accommodate this
challenge, there is a need to establish the co-relation between
coverage, time, redundancy and fault detection ability with
a framework for original and modified test suites, which
provides the basic mechanism and an algorithm to find the
accumulative impact of highlighted measures. In this part,
selection is performed based on change detection to obtain
only modified test cases.

The dependencies and mapping are used to process rel-
evant information (history, rules, mapping) from the input
and to structure them into frames using the framework. The
system has been implemented using the Eclipse Integrated
Development Environment (IDE). XML, RTF and HL7 files
have been used to extract the modified test cases and evaluate
the performance between existing & proposed approaches.
Detection of modified changes based on the redundancy or
similarity in the modified test suite and similarity function in
ARTeCS excludes the redundant test cases from the modified
test suite.

Figure 2 illustrates a comprehensive process for evaluating
and optimizing test cases within a system under Test. The
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process begins with selecting the system under Test, followed
by creating an original test suite. This suite undergoes a test
case selection process facilitated by the ARTeCS algorithm,
which results in a performance assessment and the generation
of a modified test suite. The next phase involves a change
detection function, utilizing hybrid functions such as HWOA
and ACO to identify changes in the system. This is followed
by a time evaluation function to assess performance. The
change detection process outputs files in various formats
(XML, RTF, HL7), which are then used to check for redun-
dancy, size, total execution time, detected changes, selected
modified test cases, and test suite coverage. The result is a
further refined modified test suite. In the final phase, the pro-
posed approach results are compared with existing approach
results through a time and efficiency evaluation process. This
involves evaluating selected test cases, total execution time,
excluding redundant and faulty test cases, test suite coverage,
and other metrics. The comparative process culminates in
a complete test suite with time and efficiency evaluations,
ensuring a thorough and optimized testing process.

B. DEFINITIONS OF TCS FRAMEWORK AND ALGORITHM
This research also defines a formal framework to ensure
that the developed and implemented ARTeCS algorithm is
better understood for TCS. After the framework has been
developed, the formal definitions are used to represent the
abstraction of the ARTeCS algorithm. This part comprised
the definitions of the redundancy and fault test case detection
requirements and the developed algorithm. The ARTeCS has
been developed based on the proposed product configurations
extracted from the proposed framework. The formal method
of the proposed framework is described as follows: Defini-
tion: Assume that a test suite T has n test cases, each of which
is referred to as a change that reveals test cases for P and P'.
Using a test case selection procedure M, m test cases are
chosen from n test cases total. Total Inclusivity = (M/n) * 100
(3.1) Case 1: If n*0, the percentage shows the inclusiveness of
the test suite. Case 2: if n = 0, the inclusiveness is considered
100 %, all modifications revealing. For instance, suppose
that an examination set of thirty test cases makes up T for
program P. Eight modification-revealing test cases for P and
P’ are contained in the T, which is a test case selection method.
Out of the eight test cases that show modifications, M chooses
two. In this instance, M’s inclusivity will be 25% for both P
and T. M is considered safe if M chooses all modifications
exposing test cases for PtoPin T.

The selected subset of modification-revealing test cases is
displayed when determining the inclusiveness of a selection
strategy, indicating whether it is safe or unsafe. To overcome
this problem, Table 1 shows the relationship between TCS
and CHD mapping and co-relations of evaluation metrics.
Thus, it requires the derivation of modified test cases based on
features that link with the modified test suite used to represent
the modification of the TCS. This is because the representa-
tion of the mapping framework cannot reflect the semantics
of fault detection and redundancy. A mapping of the TCS
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TABLE 1. Co-relationship of evaluation metrics.

Change detection s
. . Description
relationship
Dependency of feature It indicates that the s1 is SUT since £l is

It represents that the test suite3 s3 depends
on the test suite2 s2. Since s3 is detected, s2
will be selected.

It signifies that the naming of test cases f1
and suite sl is similar

It means that all modifications from f1 and
sl differ or are similar to each other.
However, the tester still requires this
mapping for the selection.

It signifies that only modified changes have
been included in selected s3 is detected, s3

Fault detection

Similar of states

Coverage feature

Detection type

framework component with the requirements algorithm is
essential to produce the efficient and modified test suite.

TABLE 1 describes the various types of change detec-
tion relationships and their corresponding descriptions. Each
relationship highlights a specific aspect of how changes in
features or test suites are detected and managed.

Dependency of feature: This indicates that the system
under Test (SUT) is represented by sl, as feature fl is
involved.

Fault detection: This represents that test suite s3 depends
on test suite s2. If s3 is detected, then s2 will also be selected.

Similarity of states: This signifies that the naming of test
cases f1 and suite s1 is similar, indicating a close relationship
or potential redundancy.

Coverage feature: This means that all modifications from
feature f1 and suite s1 may differ or be similar to each other.
However, this mapping is still necessary for the tester to make
an informed selection.

Detection type: This indicates that only the modified
changes included in the selected test suite s3 are detected,
ensuring that s3 is up-to-date with the latest changes.

The selected subset of modification-revealing test cases is
displayed when determining the inclusiveness of a selection
strategy, indicating whether it is safe or unsafe. To link orig-
inal and modified test suites, a redundancy process is needed
since the research aims to validate modified test cases with the
requirements using 100-index scaling values that have been
used to understand this highlighted objective. Values less than
25 have been considered a very low score. The values ranging
from O to 25 are considered low scores within factors in
comparison. The values ranging from 25 to 50 are described
as a medium score with comparing factors. The value ranges
from 50 to 75 is considered a high score within comparing
factors. The values range from 75 to 100 and are considered
very high within comparing factors, as shown in Table 2.

Table 3 provides information about three different datasets,
each identified by a unique name. It includes details on the
version number, lines of code (LOC), and the number of test
cases associated with each dataset.
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TABLE 2. 100 index-values.

100-Index-Scale

0to 25 Very Low
25-t0 50 Low
50to 75 Medium
75 to 100 Very High

TABLE 3. Dataset for experiment.

NO DATASET Version LOC Test cases
1 Joda Time 3 280464 279
Tree Data
Structure 3 1173 189
3 Triangles 3 678 93

Joda Time: This dataset is at version 3, containing 280,464
lines of code and 279 test cases. Tree Data Structure: Also
at version 3, this dataset is considerably smaller, with 1,173
lines of code and 189 test cases. Triangles: This dataset, like
the others, is at version 3 and consists of 678 lines of code
and 93 test cases.

IV. FRAMEWORK TO ALGORITHM IMPLEMENTATION

This section provides the formal word count written in text
for modified test cases process of mapping in terms of for-
mal method, the process of implementation of the algorithm
into.xml [37] and HL7 [38] (Health Level 7) format files
and the algorithm repository. HL7 files are usually used
for EDI (Electronic Data Interchange) in healthcare IT sys-
tems to trace modified changes in the existing file based
on the original file. To conduct the mapping between the
original and modified test suite, a framework-to-algorithm
implementation is conducted and includes the transforma-
tion to produce the output in.xml and HL7 file formats,
which are text-based objects. Any changes in the algorithm
must be reflected in.xml and HL7 files. The tester needs to
regenerate.xml or HL7 files for every change to ensure the
mapping result is updated based on the latest framework.
In this process, the mapping selection acts as a selector to
run the mapping process based on the original file. Therefore,
statement coverage is selected from HL& and.xml files for
the TCS technique. The fault detection is used as an adequacy
measure instead of a selection parameter in classic TCS tech-
niques using HL7 and.xml files. The proposed framework
and TCS technique use mutation score as fault detection
ability. The modifications in test cases are the primary feature
of all available TCS techniques. The proposed framework
used statement changes as modification parameters because
statement coverage was used as a coverage measure in HL7
&.xml files. The next scenario is a balanced scoring method
to combine time, coverage, fault detection ability and redun-
dancy with equal weights using HL7 and.xml. Therefore, the
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bottleneck is that the problem needs to be solved multiple
times for multiple solutions, which can be addressed using
equations 1.

WI1*C + W2*E + W3*U 1)

where: C represents code coverage (the percentage of code
exercised by the test case). E represents the execution time
of the test case. U represents the number of times the code
under Test has been changed since the last execution of the
test case. W1, W2, and W3 are weights assigned to each
factor, indicating their relative importance. This equation
combines code coverage, execution time, and code change
(how frequently the code changes) to select test cases that
provide good coverage while minimizing execution time and
focusing on recently changed code. A Set is used to indicate
a feature set covered by a test suite Tc, and Cov(t) to signify
the set of features covered by the test case t € Tc, then:

A test case is considered redundant in Tc if Cov(Tc/{t})=
Set,

A test case ti is considered redundant with respect to ts if
Cov(ts) € Cov(ts).

For the purpose of selection, single-feature coverage has
been used as a target test coverage. A test Ts € Tc can be
considered:

Definition 1: Ts is totally redundant of Tc, if 3Tj € Tc,
i=s, Cov(Tc)C Cov(Tj).

Definition 2: Ts is partially redundant of Tc, if 3Ts € Ts,
s = j, Cov(Ts) = Cov(Tj) and Cov(Ts) NCov(Tj) = 4.

Definition 3: Ts is unique, if =3Tj € Ts, s=j, Cov(Ts) =
Cov(T)).

The advantage of this multi-objective weighted sum is its
linear and simple implementation. The main benefit is its
usage as a single objective assignment into the objective
function, and that objective needs no or minimum modifica-
tion and constraint set. The constraints are also defined as
part of the objective function with weighted average scoring.
There are also minimum computations required to calculate
the solution as compared to other GA-based optimization
techniques [39]. The proposed framework and TCS tech-
nique used a slicing technique for modification identification,
test suite data and multi-objective weighted average sum to
design the solution. This technique avoids the drawbacks and
includes the benefits of these contributing methods. This is
worth mentioning that in this solution, GA is not used to
find the optimal solution; only the weighted average scoring
method was borrowed. The reason behind this selection is that
GA finds all possible solutions from search mapping before
and after modification in given test suites, while the proposed
technique works only for a single solution each time it is
invoked.

A. PROPOSED TCS METHOD

In this segment, the proposed TCS algorithm comes from
a textual format representing the results returned by a TCS
query. This view of the algorithm covers two types of infor-
mation: the list of original and modified test suites that link
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Algorithm 1: Advanced Regression Test Case Selection
Algorithm (ARTeCS)

: Inputs:

: Test[] The set of all test cases from an object of analysis.

: Query[] The set of program changes between two versions.

: Output:

. SelectionSet[] The set of selected test cases for execution.

: Declare:

7: S The minimum similarity score of test cases to be selected for
query matching.

8: N The percentage of the tests to be selected for each query.
9: cap The number of tests to be selected.

10: src The source test is to be selected first.

11: nn The nearest Test in the RecomSet with min dist of src.
12: RecomSet[] The set of tests that are similar to a specific query.
13: procedure TEST SELECTION(T est [], Query [])

14: for each query q € Query[] do

15: for each test tc € Test [] do

16: CalculateCosineSimilarity(t, q);

17: if CosineSimilarity(tc, q) >= S & tc /€ RecomSet[] then
18: RecomSet.Add(tc);

19: Else if RemoveFaultCases(t, q) >=S & t /€ RecomSet[] then
20: RecomSet.Add(tc);

21: end else if

22: end if

23: end for

24: end for

25: cap «— N * (RecomSet[].Size());

26: for each tc € RecomSet[] do

27: if t.hasFailed() & SelectionSet.Size() < cap then

28: SelectionSet.Add(tc);

29: RecomSet.Remove(tc);

30: end if

31: end for

32: src « SelectionSet[0];

33: while SelectionSet.Size() < cap do

34: nn = Min Diff(src, RecomSet[]) ;

35: SelectionSet.Add(nn);

36: src =nn;

37: RecomSet.Remove(nn);

38: end while

39:  return SelectionSet[];

40: end procedure []

AN B W =

FIGURE 3. Proposed ARTeCS algorithm.

each other. This view helps the tester to further refine the
modified test cases based on their redundant and fault-based
test cases with new query execution needed. This process
will loop until the tester reaches the desired level of TCS.
To implement TCS, queries, view and mapping rules, we have
implemented TCS algorithm 1 and Figure 3 to exclude fault
and redundant test cases.

Algorithm 1 in Figure 3 explains the overall objective is
to reduce redundancy using the similarity function; the first
goal of this study is to identify and extract the appropri-
ate regression testing features for modality representation
to enhance the regression testing approach to reduce redun-
dancy. A similarity-based method is proposed to select the
modified test cases and efficiently detect the newly added
change to minimize redundancy. This function explains the
detection of duplicate test cases based on string matches using
the weightage average score technique.
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Algorithm 2: Redundancy Removal

Algorithm 3: Remove Fault Test Cases

1. Input: test suite T Requirement coverage information to
detect similarity for each test case in T, for testing
criteria C1,C,...,Ck (k >=2)

2. Output: RS: a reduced set of test cases from T that

satisfies all testing requirements for the k criteria

algorithm ReduceWithSelectiveRedundancy

RS:= {};

for each criterion Ci,1<=i<=k label all associated testing

requirements as unmarked;
while T is not empty do

Rs:=Rs U {next(T)};
T:=T - {next(T)};
for each criterion C;,1<=i<=k label as marked
w.r.t.Ci for inclusion in Rs;

9. redundant= the set of test cases from T that have just
become redundant w.r.t.C;

10. T:=T - redundant;

11. SelectRedundantTests(Rs,redundant,C;);

12.  endwhile

13. return RS;

14. end ReduceWithSelectiveRedundancy

15. function SelectRedundantTests(Rs,redundant,C;)

16. while redundant is not empty do

17. toAdd:= the test case in redundant contributing
maximum additional Ci coverage to Rs;

18. Rs:=Rs U {toAdd};

19. redundant=redundant - {toAdd};

Ealbed

® N ow

20. for each criterion Cj,1<=j<=k
21.  if k then reLabel as marked the testing requirements
satisfied by to Add;

22. redundantAgain:= the set of test cases from redundant
that have just become redundant w.r.t.Ci;

23. redundant=redundant - redundantAgain,Ci+1);

24. endif

25. endwhile

FIGURE 4. Redundancy exclusion function.

Algorithm 2 in Figure 4 explains the overall objective is to
detect and exclude fault test cases using the remove redundant
function. The first goal of this study is to identify and extract
the appropriate regression testing features for modality repre-
sentation to enhance the regression testing approach to reduce
redundancy. A fault removal-based function is proposed to
select the modified test cases and efficiently detect the newly
added fault to the modified test suite.

Algorithm 3 in Figure 5 The algorithm titled ‘“Remove
Fault Test Cases” aims to refine a given test suite SSS by
identifying and eliminating faulty test cases, producing a
subset S(F)’ S(F)’S(F)'. Initially, the subset S(F)" S(F)’S(F)
is empty, and the algorithm iterates through each test case
diq from a fault test suite S(F)S(F)S(F), which is built from
the original or enhanced test suite SSS. During each iteration,
the algorithm determines whether d; is valid based on specific
conditions, such as whether the input is valid and the output is
as expected. Depending on the outcome, the algorithm either
retains the test case in the fault test suite, discards it, or adds
it to the subset S(F)" S(F)’S(F)’. The algorithm continues this
process until all test cases have been evaluated, ensuring that
only non-faulty test cases are included in the final subset
S(F) S(F)’S(F)’. The final output is a refined test suite that
excludes invalid or faulty test cases, thereby enhancing the
overall quality and reliability of the test suite.
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1. SelectTestCase (S, S(F), ValidInput. ValidOutput) :
S(Fy

2. Input:S. S' the original/enhanced test suite,

3. S(F) A fault test suite created to test S

4. Output: S(F)’ - Subset of S(S’) selected for executing
S(F)

5. begin

6. S(F)=0

7. i=1

8. B =Build SF from S

9. d = Detect fault test cases from S(F)

10. while NOT end of log file(S(F))

11.  begin

12. select d;

13. Case S1 (Validlnput = FALSE) and (ValidOutput =
TRUE):

14.  begin

15. Bsi=build SF from S

16. If InvokeProcedureCall(S, Ssi)a

17. break;

18. else if NonFaultTestCase (di, S(F)' b)

19. break:

20. else S(F)’=S(F) +di

21. end

22. Case Sz (ValidInput = FALSE) and (ValidOutput =
TRUE):

23. begin

24. if NonFault TestCase (di,S(F), S(F)'b)

25. break;

26. else S(FY = S(F) +d;,

27. end

28. Case S3 (ValidInput = FALSE) and (ValidOutput =
TRUE):

29.  begin

30. d(S)=d(S)’ +di

31. End

32. =i+l

33. end

34. Return S(S)’

35. end

FIGURE 5. Proposed ARTeCS algorithm.

B. PROPOSED CHD METHOD

This section begins with trade-off issues related to test case
selection (total execution time) with coverage of Change
Detection (CHD). This is because the existing studies
ignore the measurements for multi-objective test case selec-
tion, which caused unbalanced results based on time and
efficiency. It covers the hybridization of two algorithms,
The Hybrid Whale Optimization Algorithm (HWOA) and
A Hybrid Algorithm for Multi-objective change detection
has been enhanced to detect modified change efficiently by
excluding fault and redundant test cases from the modi-
fied test suite. A multi-objective algorithm is enhanced to
detect modified change with high coverage with a minimal
time of execution. To evaluate the enhanced algorithm, two
benchmark scenarios, which are the Search Based Function
(SBF) and the slicing approach, were adopted to select test
cases from the multi-objective ARTeCS algorithm. Here, the
essential elements of the Advanced Regression Efficient Test
Case Selection (ARTeCS) algorithm for CHD will be further
discussed along with the slicing approach adopted for change
detection to exclude fault and redundant test cases to improve
Time for TCS.
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Algorithm 4: Change Detection Algorithm (CHD)

1. Algorithm: SelectTestCase (S, S (F), Validlnput. ValidOutput) :
S(F)'

2. Input: S. S' the original/enhanced test suite,

3. Input: S. T' the original/enhanced test suite selection time,

4 S(F) A false test suite created to test S

5. Output: S(F)* - Subset of S(S”) selected for executing S(F)
6. begin
7
8
9

S(F)’=0
i=1
. B = Build SF from S

10. d = Select false test cases from S(F)
11. while NOT end of log file(S(F))
12. begin
13. select di
14. case S1 (ValidInput = FALSE) and (ValidOutput = TRUE):
15. begin
16. Bsi = build SF from S
17. If InvokeProcedureCall(S, Ssi)a
18. break;
19. else if NonRedundantTestCase (di, S(F)' b)
20. break:
21. else S(F)” = S(F)’ +di
22.end
23. case S2 (ValidInput = FALSE) and (ValidOutput = TRUE):
24. begin
25. if NonRedundantTestCase (di,S(F), S(F)'b)
26. Searchbasedfuntion(S, SF);
27.  if Searchbasedfuntion (SF, q) >= S & t /€ RecomSet[] then
28. RecomSet.Add(t);
29.break;
30. else S(FY = S(F) + di,
31.end
32. case S3 (Validlnput = FALSE) and (ValidOutput = TRUE):
33. DetectRendundntFaultTimebasedfuntion(S, SF);

34.if DetectRendundntFaultTime (SF, q) >= S & t /€ RecomSet[]
then

35. RecomSet.Add(t);
36.

37. begin

38. d(S)=d(S)’ +di
39. End

40. =i+l

41. end

42. Return S(S)’
43. Return S(T),
44 .end

FIGURE 6. CHD algorithm.

Algorithm 4 in Figure 6 aims the “Change Detection
Algorithm (CHD)” is designed to refine a test suite SSS
by identifying and removing false test cases, generating a
refined subset S(F)’ S(F)’S(F)’ for executing the false test
suite S(F)S(F)S(F). The algorithm begins by initializing S(F)’
S(F)’S(F)" as empty and iterates through each test case did_idi
from S(F)S(F)S(F). For each test case, the algorithm checks
conditions related to valid input and output. In the first case
(S1), if the input is invalid and the output is valid, it builds
a new fault test suite S(F)S(F)S(F) from SSS and invokes
a procedure call. If the call fails and the test case is non-
redundant, the test case is added to S(F)’ S(F)’S(F)'. In the
second case (S2), if the test case is non-redundant, a search-
based function is invoked to check if the test case should be
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added to a recommendation set. If not, the test case is added
to S(F)S(F)S(F). A time-based function detects redundant
faults in the third case (S3). If a test case is found to be
redundant and should be recommended, it is added to the
recommendation set. Throughout the process, the algorithm
continues to detect and handle redundant and non-redundant
test cases, refining S(F) S(F)’S(F)’ by removing false test
cases and enhancing the test suite’s accuracy and efficiency.
The final output includes both the refined test suite S(F)
S(F)’S(F)' and the recommendation set S(T)S(T)S(T).

Figure 7 presents a flowchart detailing a systematic
approach to evaluating and optimizing test cases for a system
under Test. The process begins with selecting the system
under Test, followed by creating an original test suite. This
suite is then subjected to a test case selection process,
which is enhanced by the ARTeCS Al algorithm, leading
to a performance assessment and the generation of a modi-
fied test suite. Subsequently, a change detection function is
employed, utilizing hybrid functions such as HWOA (Hybrid
Whale Optimization Algorithm) and MOA (Multi-Objective
Algorithm), in identifying any changes in the system. A time
evaluation function complements this to assess the perfor-
mance impact. The change detection process produces output
files in various formats (XML, RTF, HL7), which are then
analyzed for redundancy, size, total execution time, detected
changes, selected modified test cases, and test suite cover-
age. This analysis results in a further refined modified test
suite. In the final stage, the results of the proposed approach
are compared with those of existing approaches through a
comprehensive time and efficiency evaluation process. This
involves assessing selected test cases, total execution time,
excluding redundant and faulty test cases, and evaluating test
suite coverage and other relevant metrics. The comparative
analysis culminates in a complete test suite that has been
thoroughly evaluated for time and efficiency, ensuring an
optimized and effective testing process.

Figure 7 explains the proposed flowchart and depicts the
process of optimizing a test suite using the CHD (Change,
Detection, and Exclusion) algorithm. It begins with defining
the scope of test suite coverage, followed by the creation
of a test suite execution plan. Changes in the detection pro-
cess are implemented using the CHD algorithm. Execution
of the CHD algorithm leads to a decision point: if faults
and redundant test cases are found, the process branches
into two parallel paths where a fault detection algorithm
is applied to exclude faulty test cases and a redundancy
detection algorithm is used to exclude redundant test cases.
If no faults or redundancies are found, the execution time is
calculated. Finally, the refined test suite, with excluded faulty
and redundant test cases, is ready for execution.

In order to perform change detection, ARTeCS divides T
into several groups using a clustering technique. The basic
tenet of ARTeCS is that test cases with comparable behaviour
characteristics can be clustered together. Figure 7 illustrates
the proposed change detection algorithm by detecting fault
and redundant test cases.
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FIGURE 7. CHD algorithm workflow.

Figure 8 Shows the ARTeCS Algorithm for the Change
Detection function using Variations steps consisting of select-
ing, detecting, and backtracking the algorithm between two
(original and modified) test suites. It starts from the orig-
inal test suite and extends until the modified version of
the testing algorithm with time calculation. To conduct this
phase, twelve test suite versions of test cases are selected
randomly to handle permutations. The reduction process con-
siders the coverage criteria defined as all-states, all-transition
and transition-pair coverage by excluding fault test cases
with modified change only. The proposed CHD algorithms’
results in fault detection and time measurement. In the exist-
ing algorithm, there is also a lack of fault and redundancy
detection in terms of time. It can cause the size of test suites
to increase due to algorithms selecting similar test cases to be
detected. A validation mechanism is also created to check the
feasible path selection from implemented mapping to ensure
that valid test cases are derived.

Figure 8 also explains the original and modified test case
where the phone number and address have been updated
for the HL7 file format; for every change, the tester needs
to select.xml or HL7 files to ensure the mapping result is
updated based on the modified changes in test cases. Fig 8
describes the difference between the two test case change
modifications using the HL7 file format. Whereas, using the
HL7 file format total of 100 test cases have been executed
for 12 test suites, each test suite contains 100 test cases.
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ARTeCS approach shows the correct and unique test case
selection time without any similarity. Here is the major con-
tribution of TCS. It presents the main influence for file types
HL7 and.xml.

Figure 8 also clarifies the difference between the two
test case change modifications using the HL7 file format.
Similarly, the original test case has been modified with gen-
der and location information, so in this case, our enhanced
algorithm (ARTeCS) detects these changes to select modified
test cases only from the suite. Therefore, removing redundant
and fault test cases to be selected in the modified test suite
is useful. Figure 9 explains the change detection function
using HL7 and.xml files where modified test cases based on
these changes have been detected. Figure 9 also discusses the
detection algorithm designed to optimize the selection and
management of test cases in software testing by eliminating
redundancy and faults. It introduces a technique based on four
key selection scenarios: Time, coverage, redundancy, and
fault detection ability. This technique allows testing teams to
select modified test cases effectively. The aim is to enhance
the efficiency and time of change detection processes. This
is crucial for selecting the correct modified test cases for
execution. Concludes by emphasizing the effectiveness of
the enhanced CHD algorithm in improving the selection of
modified test cases, providing better coverage and requiring
less testing time than the original algorithm. However, it also
notes that while the algorithm enhances certain aspects, it also
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FIGURE 8. Change detection.

solves the optimization problem entirely. The implementation
of optimization algorithms to improve the performance of
the current technique, with the goal of achieving maximum
coverage with optimal time and efficiency in the software
testing industry.

V. RESULTS AND DISCUSSION

This section presents the comparative evaluation of proposed
and existing approaches. This section is the further step of
TCS in terms of change detection performance using the
ARTeCS and CHD algorithms proposed based on three types
of Search-Based Algorithms, Hybrid Whale Optimization
(HWOA) and ACO Algorithm. A selection and detection
mechanism, improvement detection of modified change with
modified choice function, is used to guide the selection pro-
cess to choose the best results based on three algorithms
applied using JavaScript in ASP.NET.

A. COMPARATIVE ANALYSIS

The high coverage, redundancy, time performance and fault
detection in the proposed algorithm compared with existing
studies is due to the implementation of an efficient ARTeCS
algorithm in the CHD. The ARTeCS concept will evaluate
each iteration using the first iteration of the search and TCS
algorithm to trace modified test cases from the proposed
framework. The algorithm is then designed to detect the
modified test cases process and select the overall and final
modified version of a test suite to execute. Thus, this result
encourages the implementation of the optimization algorithm
to improve the currently proposed technique with the aim of
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improving the algorithm’s performance measured by using
time and efficiency measures with maximal coverage as a
mapping result, as shown in Table 4, where Table 5 explains
the total execution time for each test cases.

This table provides a comparison of different approaches
to test case selection in regression testing, along with their
evaluation metrics, Test Case Selection (TCS) ratio, and
redundancy ratio. Three approaches are listed: ACO, HWOA,
and ARTeCS. Each approach is evaluated based on several
metrics. Average all-Suites coverage % indicates the percent-
age of coverage achieved by executing all test suites under
the respective approach. It measures the comprehensiveness
of test coverage across the software. Average all-Test cases
% represents the overall percentage of coverage achieved by
executing all individual test cases selected by the approach.
It provides insight into the effectiveness of individual test
cases in detecting faults. Average partial redundant test cases
measure the percentage of redundant test cases identified by
the approach. Partial redundancy refers to cases where some
but not all aspects of a test case overlap with others. The
average unique redundant Test cases metric quantifies the
percentage of redundant test cases that are entirely redundant
and do not offer unique coverage compared to others. The
average time of execution (seconds) metric indicates the aver-
age time taken to execute the selected test cases under each
approach. It assesses the efficiency of the approach in terms
of execution time. Additionally, the table includes two ratios.
TCS ratio compares the coverage achieved by executing all
test cases (including redundant ones) to the coverage achieved
by executing only selected test suites. A higher TCS ratio
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TABLE 4. Mapping results to detect redundancy.

Approaches Evaluation metrics TCS ratio Redundancy ratio
Average all-Suites coverage % 28.08% 13.08%
Average all-Test cases (%) 32.02% 19.08%
% Average partial redundant test cases% 20.10% 11.00%
°© Average unique redundant test cases% 11.90% 08.00%
Average time of execution (seconds) 0.050 01.50
Average all-Suites coverage % 33.00% 21.08%
- Average all-Test cases % 35.00% 29.08%
g Average partial redundant test cases% 26.80% 21.00%
> Average unique redundant test cases% 8.20% 08.00%
Average time of execution (seconds) 0.075 02.50
Average all-Suites coverage % 4.80% 44.02%
5 Average all-Test cases % 46.00% 29.08%
% Average partial redundant test cases% 26.00% 15.02%
E' Average unique redundant test cases% 20.00% 14.06%
Average time of execution (seconds) 0.040 01.50
TABLE 5. Total execution time.
Tgst - - - - - - - Redund E?(ecution )
suites (3 5 5 5 5 g 5 50 § g <':3 E g % g ant TC Eir:ztes/se é;n
S1 v v x V 3 v V Xl v 3 x x v v Xl 3 1.00
S2 x \ \ y V N N y 3 V V x V v N 2 1.50
3 x v x x V V V v Xl Xl 3 N V v x 4 2.00
S4 v x x 3 Xl V 3 v V v 3 N 3 v V 2 1.50
S5 \ \ \ y y x x \/ 3 N V N N v V 2 1.50
S6 x \ \ y V N N 3 R N V N x v N 2 1.50
87 v v v N v V V x V v V V 3 v V 1 1.00
S8 x v v V 3 3 3 N V x v 3 V v R 2 1.50
9 v v v x x V V 3 R 0 V V V v N 2 1.50
s10 v x N N N v x N N N v N N v v 1 1.00
St \ V V x 3 N 3 3 R x x V V v N 3 1.50
S12 v v v x 3 V V 3 Xl 3 x x V v x 4 2.00

indicates a higher proportion of test cases contributing to
the overall coverage. The redundancy ratio compares the
percentage of redundant test cases to the total percentage
of test cases. It quantifies the extent of redundancy within
the selected test cases. Overall, the table comprehensively
compares different regression testing approaches based on
their coverage, redundancy, and execution efficiency metrics,
offering insights into their strengths and weaknesses in ensur-
ing effective test coverage while minimizing redundancy and
execution time.

Table 5 presents a comprehensive overview of various
test suites along with their respective test cases, indicat-
ing whether each test case is included (marked with a
checkmark”,/”’) or excluded (marked with an “x”’). Addi-
tionally, it includes information on the number of redundant
test cases within each test suite and the execution time
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required for running the test suite. Test Suites: The table
lists several test suites (S1 to S12), each designed to test
different aspects of the software. Test Cases: This allows for
a clear understanding of which scenarios are covered by each
suite.

This table also indicates the number of redundant test cases
within each test suite. Redundant test cases are those that
overlap in functionality with other test cases, potentially pro-
viding duplicated coverage. Execution Time: The last column
displays the execution time required for running each test
suite. This metric is crucial for assessing the efficiency of
test execution, as it helps in understanding the time invest-
ment needed for testing each aspect of the software. Overall,
this table serves as a valuable resource for test planning
and execution, providing insights into the coverage offered
by each test suite, identifying potential redundancies, and
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TABLE 6. Change and fault coverage ration.

. . Change Fault detection
Approaches Evaluation metrics ange .

detection ratio ratio

Average all-Suites coverage (%) 33.00% 21.08%

A Average all-Test cases coverage (%) 35.00% 29.08%

8 Average Size of the Test suite 26.80% 21.00%
Average time of execution (seconds) 0.075 02.50

Average all-Suites coverage (%) 23.00% 11.08%

g Average all-Test cases coverage (%) 25.00% 19.08%

E Average Size of the Test suite 16.80% 11.00%
Average time of execution (seconds) 0.075 02.10

N Average all-Suites coverage (%) 43.00% 31.08%

: Average all-Test cases coverage (%) 35.00% 39.08%

Average Size of the Test suite .80% .00%

% Size of th i 26.80% 31.00%
A Average time of execution (seconds) 0.075 01.50

understanding the time investment required for running the
test cases.

Table 6 compares three different approaches, ACO,
HWOA, and ARTeCS used in some form of testing, likely
related to change detection and fault detection. Each approach
is evaluated across various metrics. The ACO approach
achieves a relatively medium average all-suites coverage
and all-test cases coverage, indicating comprehensive testing.
However, the test suites’ size is larger than other approaches,
which may lead to longer execution times. HWOA achieves
lower coverage percentages compared to ACO and ARTeCS.
The size of the test suites is smaller, indicating a more focused
selection of test cases. Despite similar execution times to
ACO, the coverage achieved by HWOA is comparatively
lower. ARTeCS demonstrates the highest average all-Suites
coverage and all-Test cases coverage among the three. The
size of the test suites is larger, suggesting a comprehensive
selection of test cases. Despite this, ARTeCS achieves effi-
cient execution times, indicating a balance between coverage
and efficiency.

In summary, while ACO and ARTeCS achieve high cov-
erage percentages, they may suffer from larger test suite
sizes and potentially longer execution times. HWOA, on the
other hand, maintains smaller test suite sizes but sacrifices
coverage to some extent. ARTeCS emerges as a promis-
ing approach, striking a balance between comprehensive
coverage, efficient execution, and manageable test suite
sizes. Results show how the proposed ARTeCS approach
is more efficient than ACO and HWOA. Overall compari-
son (Average ratio of TCS for fault selection, redundancy,
Coverage and Time for TCS when test cases = (20, 40,
60, 80, 100) have been executed for each iteration where
it shows ARTeCS approach comprehensively improved the
execution time, redundancy, fault detection with maximum
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coverage of modified test cases in terms of test case
selection (TCS).

Figure 9 compares three different algorithms (ACO,
HWOA, and ARTCS) across varying numbers of test cases
(20, 40, 60, 80, and 100). Each graph has three lines repre-
senting Execution Time in Seconds (blue), Fault Detection
Rate (red), and Test Execution Time (black). The y-axes of
the graphs are labelled with numerical values representing
performance metrics, while the x-axes are labelled with the
three algorithms. In the graphs, the trends and performance
of each algorithm can be observed: For 20 test cases, the
HWOA algorithm shows the lowest values for all three met-
rics, while ACO and ARTCS have higher and varying values.
In the 40 test cases graph, HWOA still shows lower execution
times, but ACO has higher fault detection rates, and ARTCS
presents a middle ground.

With 60 test cases, ACO again leads in fault detection,
while ARTCS shows the highest test execution times, and
HWOA maintains a low execution time. The graph for 80 test
cases shows a significant rise in fault detection for ARTCS,
with ACO and HWOA show lower fault detection but higher
execution times. Finally, for 100 test cases, ARTCS has the
highest fault detection rate, while ACO and HWOA have
higher execution times and varying performance. The graphs
collectively depict how each algorithm scales with an increas-
ing number of test cases, highlighting their strengths and
weaknesses in execution time and fault detection rate.

Figure 10 illustrates the overall comparison (Average ratio
of for fault detection, redundancy, coverage and time when
test cases = (20, 40, 60, 80, 100) have been executed for
each iteration, where it shows the ARTeCS approach com-
prehensively improved the execution time, redundancy, fault
detection with maximum coverage of modified test cases in
terms of test case selection (CHD).
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The image contains five line graphs illustrating the per- The performance metrics evaluated are Execution Time in
formance of three algorithms (ACO, HWOA, and ARTCS) Seconds (blue line), Fault Detection Rate (red line), and
over varying numbers of test cases: 20, 40, 50, 60, and 100. Test Execution Time (black line). The y-axis of each graph
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represents the numerical values of these metrics, while the
x-axis lists the algorithms.

In the 20 test cases graph, ARTCS has the highest fault
detection rate, while HWOA has the lowest across all metrics.
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ACO and ARTCS have higher execution and test execution
times. The 40 test cases graph shows HWOA maintaining the
lowest execution time, ARTCS leading in fault detection, and
ACO with intermediate values.
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For 60 test cases, ARTCS again has the highest fault detec-
tion, with ACO and HWOA showing lower values. HWOA
maintains a lower execution time compared to the others.

In the 80 test cases graph, ARTCS shows the highest fault
detection and execution time, while ACO and HWOA have
lower and more variable values.

The 100 test cases graph depicts ARTCS with the highest
fault detection, ACO and HWOA with moderate fault detec-
tion rates, and HWOA maintaining the lowest execution time.

Overall, the graphs reveal that ARTCS tends to have the
highest fault detection rates across different test cases and
higher execution times. HWOA generally maintains lower
execution times, while ACO exhibits varying performance.
The trends highlight the trade-offs between fault detection
capabilities and execution times for each algorithm as the
number of test cases increases.

B. COMPARATIVE ANALYSIS OF THE FRAMEWORK

The framework enhancement process consists of scoping,
planning, operation, analysis and evaluation of existing and
enhanced algorithms for TCS and CHD. Each step has many
sub-details to complete the process. The experiment scope set
the goals for the experiment. The planning consists of the
context of the experiment, hypothesis formulation, variable
selection, subject programs or objects, experiment design
type, instrumentation and validity evaluation for the exper-
iment. Then, experiment operation and analysis are carried
out as per the parameters chosen in the planning phase. The
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presentation of the experimental results is visualizations,
graphs, descriptions, and discussion based on the data and
the explanations. The scope of this experimental study is
to analyses the test case selection criteria (Time, coverage,
fault detection, redundancy), try to identify the relationship
between time and efficiency measures (redundancy, cover-
age, fault detection ability) and propose a framework and test
case selection technique based on these relative efficiency
measures. The selection criterion is based on the accumu-
lative effect of these efficiency measures on the selection
procedure and tries to reduce the time and increase the
overall efficiency of test case selection by using a change
detection algorithm in TCS for regression testing. Whereas,
enhanced Advanced Regression Efficient Test Case selection
(ARTeCS) algorithm relies on the original and modified test
suites to select the modified test cases to execute the System
Under Test (SUT).

Very few studies focus on coverage and fault-based TCS
techniques; however, redundancy in TCS techniques has
been studied extensively on the software testing techniques
within a given time frame with enough efficiency. The related
research studies indicate the importance of TCS in past
projects especially. This motivates the research community
to further work on improving the TCS techniques for better
testing the software testing effort by the ARTeCS framework.

Furthermore, it affects un-modified test cases to be
selected. Thus, no valid selection of test cases is derived.
Then, the tester needs to re-execute. Here, time, size, fault
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test case, and redundancy will still be increased even though
the execution is faster. In terms of total execution time,
the enhanced algorithm does not greatly improve the per-
formance compared with the existing study. It supports
effectiveness cannot represent good testing time if no good
algorithm is enhanced efficiently. Thus, this caused the
need to enhance the framework to ensure that the enhanced
algorithm can significantly improve the efficiency of TCS.
The enhanced technique uses a Change Detection Algorithm
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(CHD) to assess the modified change. The evaluation metrics
(time, fault detection, redundancy, and coverage) are the same
for Musa and ARTeCS framework and algorithm. The over
results are mentioned in Figure 11 for existing and enhanced
frameworks.

VI. ANALYSIS AND RESEARCH CONTRIBUTION
This study contributes to achieving the first objective of
TCS techniques and enhanced efficient regression test case
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selection algorithm to improve test suite efficiency in terms
of fault detection ability, redundancy reduction and coverage
by using the enhanced ARTeCS algorithm. This research
advances the development of Test Case Selection (TCS)
techniques by introducing an optimized regression test case
selection algorithm that enhances the efficiency of test suites.
The improved ARTeCS algorithm aims to elevate fault
detection capabilities, diminish redundancy, and increase
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coverage. This study provides a framework that assists
researchers in designing and conducting empirical studies
on regression testing, utilizing enhanced rules and queries
to refine the TCS process. The techniques implemented for
TCS in regression testing (RT) are applicable to various
types of coverage, fault metrics, and redundancy challenges
in empirical research. The enhanced TCS algorithm promises
to elevate both the time efficiency and overall effectiveness
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of regression testing. This research is a valuable resource
for test engineers, scholars, and industry professionals seek-
ing to enhance change detection algorithms’ efficiency,
particularly in regression test case selection, by employ-
ing a multi-objective algorithm. Furthermore, the study
introduces a sophisticated multi-objective change detection
algorithm, contributing a nuanced understanding of the inter-
play between time, coverage, and fault detection in test case
selection. Understanding a multi-objective change detection
algorithm is vital in increasing the change detection process’s
efficiency.
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The ARTeCS algorithm, which utilizes a detection-based,
multi-objective approach for test case selection, has been
refined in line with the research framework. It employs
four key selection parameters—Time, coverage, fault detec-
tion, and redundancy integrating them into a weighted sum
that aids in selecting appropriate test suites. This enables
testing teams to apply a multi-criteria approach to evalu-
ate the efficacy of multi-objective test case selection and
change detection algorithms, particularly regarding time per-
formance and test suite efficiency. The ARTeCS algorithm,
bolstered by a multi-objective framework, has shown marked
improvements in efficiency and time metrics over existing
methods. It is particularly noteworthy when compared to
existing HWOA and ACO algorithms, demonstrating statis-
tically significant advancements in average selection time,
coverage percentage, and test suite size. While some metrics
showed less significant improvements, the overall findings
indicate that the enhanced ARTeCS and multi-objective TCS
approaches can reduce total execution time, thereby optimiz-
ing efficiency.

While comparing the existing ACO approach and the pro-
posed multi-objective approach with the enhanced change
detection, results show that average coverage test selec-
tion time(s) and average coverage reflect a significant
improvement. Compared with the average selection time
and size of test suites, results showed insignificantly
improved results. Thus, it can be concluded that the
enhanced ARTeCS and multi-objective TCS can improve
efficiency to reduce the time (total execution time in
seconds).
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VII. THREATS TO VALIDITY

The results of this research are consistent; however, when the
primary study is being selected, the analysis is being done,
or the study is nearing its finish, there could be dangers to
validity and bias in terms of different sizes of test suites and
datasets. By eliminating bias, the primary study collecting
step or exploration technique identifies the greatest number
of studies that are available in the literature. Certain stud-
ies may be omitted due to murky research issues raised by
the literature, such as the role played by solution strategies
and the connections between primary research, categorization
methods, and prediction levels. The study is connected to sev-
eral software testing communities. The study is established on
applying a method to promote the review for additional vali-
dation. The study’s transparency will let the researchers make
an informed assessment of the consistency of the results.
As indicated in Figures 10 and 11, the results of this study
reveal that validation of the study is necessary for all forms
of support. Researchers are encouraged by the realistic case
studies and expert reports that were needed for assessing
TCS in execution time and overlooking critical efficiency
measures such as coverage, fault detection, and redundancy.
ARTeCS, however, is designed as a multi-objective tech-
nique to enhance time performance and efficiency relative to
other TCS approaches. Through a comparison with existing
methods, the study demonstrates significant improvements
achieved by ARTeCS.

VIIl. CONCLUSION

The study introduces a novel approach, the Advanced and
Efficient Regression Test Case Selection (ARTeCS) frame-
work, aimed at addressing the shortcomings of existing
Test Case Selection (TCS) frameworks. The first objective,
focused on designing and developing an algorithm that would
address the issue regarding the importance of the test case
selection objectives. The second objective, develop a CHD
(change detection) algorithm that would use multiple objec-
tives and combine it with the first object algorithm to improve
the execution time in a test suite, which makes it more effi-
cient as compared to existing algorithms. This technique was
dubbed by adopting ACO and MOA algorithms, which is the
acronym for Multi-Objective TCS Techniques. This objective
was achieved by combining the knowledge achieved from the
first objective, and detecting the modified change algorithm
towards test case selection. This was done by developing a
change detection algorithm and feeding it the appropriate
data to become TCS through the change detection process.
The third and final objective focused evaluation of the pro-
posed framework through a comparative analysis of the said
algorithms with another multi-objective framework. After
rigorous TCS and CHD process, the results indicated that
the proposed multi-objective technique is better in terms of
fault detection redundancy, time and coverage. These two
metrics were also compared in a time and coverage-cognizant
manner to ensure the completeness of the results. However,
the enhanced framework was able to overcome this particular
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challenge due to the fact that it is able to select and detect the
TCS objectives based on modified test cases rather than the
original test cases.
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