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ABSTRACT Dynamical systems, as, specifically, vehicles’ models, often rely on unknown inputs and
on states that may not be directly measured. This represents a challenging research topic, for which
various methods and solutions have been proposed. The present study focuses on the recovery of road
roughness and the estimation of vertical dynamics states using a quarter-car model and two Kalman filtering-
based approaches, even comparing their performance in terms of accuracy, robustness, and computational
efficiency. The application of these algorithms may face issues due to certain measurements that are not
readily available, impacting system observability. This aspect is thoroughly investigated by collecting
different methods scattered in the scientific literature and introducing a new parameter derived from the
entries of the observability matrix. Through numerical simulations and a carefully designed experiment,
in this effort, we identify critical measurements and determine the most effective method for estimating
quantities that are not directly measurable.

INDEX TERMS Kalman filter, unknown inputs, road identification, vehicle dynamics, system observability.

I. INTRODUCTION
In almost all real-world engineering applications, several sys-
tem quantities do exist, that may be not directly measurable
for practical or economic reasons [1], [2]. Nonetheless, the
knowledge of their values over time is crucial for control
purposes and to guarantee the correct system operation and
safety [3]. Among these unknown variables, we may find
both states and inputs acting on the system [4], [5], [6].
A large number of methods have been, in fact, developed
over the years, to treat this topic, such as those reported
in Refs. [7], [8], [9], and [10] and many others. In vehicle
dynamics, these circumstances are encountered in the study
of suspension behaviour, when no information regarding the
road surface roughness is available. The problem of unknown
states’ estimation and road input recovery has been faced by
exploiting different techniques in the literature [4], [11], [12],
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[13], [14], [15], which are grounded on Kalman filtering-
based approaches.

Different types of Kalman Filter (KF)-based observers
have been developed for estimating states in the case of
systems with unknown inputs. To offer examples, in [16]
a Two-stage KF unaffected by the unknown inputs is
proposed, whilst in [17] a Three-stage KF is introduced to
estimate fault and state together with unknown inputs. The
majority of the existing methods have been conceived for
systems not affected by unknown exogenous inputs or vice
versa, assuming that the unknown inputs matrix has full
column rank. To overcome this limitation, in Ref. [18] a
recursive filter approach has been proposed, referred to as
General Kalman Filter with Unknown Inputs (GKF-UI). This
estimator has also been exploited in [4] and [12]. Although
several algorithms have been developed for the recovery
of the unknown inputs during state estimation, one direct
solution relies on augmenting the state vector to incorporate
the unknown inputs [19], [20], [21]. Whenever a model
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for the unknown inputs is available, an optimal estimator
can be employed. Otherwise, suitable models should be
assumed to perform the joint estimation, achieving a sub-
optimal solution. In this paper, we, in particular, show the
advantages of using an augmented state vector to perform
the estimation. These benefits include both the quality of the
achieved estimates and the improvement of the computational
efficiency.

Regardless of the algorithm selected to perform the
estimation of non-measurable quantities, the observability
of the considered dynamical system plays a key role.
Specifically, observability indicates to what extent system
states and unknown inputs may be inferred from the available
measurements [22]. By the present research, we discuss
both how many and which kind of measurements do affect
the observability of the dynamical system in analysis.
We specifically study the case of the celebrated Quarter-
Car (QC) model, subjected to the usually unknown road
input excitation. Through numerical simulations and an
experimental setup, the critical measurement is identified,
and the quality of the system observability is investigated,
by considering different sets of measurements. We show
that the dynamical system observability strongly depends
on a specific measurement not always directly available in
the engineering practice. Although the obtained results refer
to the dynamical system at hand, the study is relevant for
different practical scenarios, highlighting the importance of
a correct selection of measurements, regardless of how many
they are. In the paper, we moreover highlight that the joint
estimation via augmented states allows for a deeper study of
the quality of the system observability, against other kinds of
KF-based estimators, such as the GKF-UI.

The rest of the paper is organized as follows. Section II
introduces the systemmodel and the characteristics of typical
road profiles and briefly describes two Kalman filtering-
based approaches for the estimation of non-measurable states
with input reconstruction for Linear Time-Invariant (LTI)
dynamical systems. The problem of the observability for
LTI systems with unknown inputs is thoroughly investigated
in Section III. Section IV deals with the practical problem
discussed before, translated in the automotive field through
a LTI dynamical system with unknown input in a numerical
fashion, and in Section V we develop an experimental setup
for the same system and discuss the obtained results. Finally,
in Section VI conclusions are drawn.

II. SYSTEM FOR ROAD PROFILES IDENTIFICATION
Roads are random surfaces [23]. In the frequency domain,
a typical road surface spectrum is characterized by higher
energy at long wavelengths and gradually less energy at
increasingly shorter wavelengths [24]. This behaviour also
holds for every profile associated with a generic road,
as depicted in Figure 1 (a).
Road profiles produce the so-called road input excitation

on vehicle systems, primarily described by the well-known
Quarter-Car (QC) model, shown in Figure 1 (b) and

extensively used in automotive engineering to investigate
vehicle vertical vibrations. It represents an example of
a Linear Time-Invariant (LTI) dynamical system, with
unknown inputs for the case of road identification, along
with the unknown states estimation, such as, e.g., the sprung
mass displacement. A generic LTI system with unknown
inputs unfolds the following set of process and measurement
equations {

ẋ = Ax + Bu + B∗u∗

y = Cx + Du + D∗u∗
(1)

where x ∈ Rn×1 is the vector of n state variables, u ∈ Rp1×1

and u∗
∈ Rp2×1 the vector of known and unknown inputs

respectively, y ∈ Rm×1 the vector of m measurements,
A ∈ Rn×n the state evolution matrix, B ∈ Rn×p1 and B∗

∈

Rn×p2 the known and unknown input matrix respectively,
C ∈ Rm×n, D ∈ Rm×p1 , D∗

∈ Rm×p2 the matrices associated
to the m measurements equations. As anticipated, in order
to estimate states and unknown inputs for such systems,
several algorithms have been implemented over the years.
In what follows, two Kalman Filter-based estimators are
investigated: the General Kalman Filter with Uknown Input
(GKF-UI) introduced in [18] and used for this purpose in [4]
and [12], and the Augmented Kalman Filter with Uknown
Input (AKF-UI), used in [13] and [14], where the vector of
state variables is augmented with unknown inputs. Before
dealing with those estimators, the process and measurement
uncertainties must be considered in the set of Equations (1).
In this research, they are modelled as additive, zero-mean,
white, and Gaussian noises. Moreover, both the process and
the measurement noises are hypothesized uncorrelated and
internally orthogonal. All these assumptions hold for the rest
of the paper.

By referring to Figure 1 (b), the following state vector and
unknown input is defined

x =
[
y1 y2 ẏ1 ẏ2

]T
, u∗

=
[
h
]

(2)

where the road profile excitation h(t) is the sole input acting
on the system, with t the time variable. This leads to the
following matrices

A =



0 0 1 0

0 0 0 1

−
k
ms

k
ms

−
c
ms

c
ms

k
mu

−
k + kt
mu

c
mu

−
c
mu


, B∗

=



0

0

0

kt
mu


(3)

where ms and mu represent the sprung and unsprung
mass respectively, k and c are the stiffness and damping
coefficients of the suspension system, and kt represents the
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FIGURE 1. A typical road profile representation with its spectrum at the bottom (a) and the quarter-car model (b).

tire stiffness. With regards to the vector y, of interest is the
set of selected measurements

y =
[
y1 − y2 ÿ1 y1 ÿ2

]T (4)

where y1 − y2 represents the suspension travel, ÿ1 is
the sprung mass acceleration, and ÿ2 the unsprung mass
acceleration. These three measurements can be directly
obtained by means of commonly adopted sensors, namely
two accelerometers and a wheel stroke sensor. Instead, the
third component of vector y is achieved by integrating
the sprung mass acceleration ÿ1. This measurement is
of utmost importance for achieving system observability.
Unfortunately, this solution might badly affect actual online
applications. Furthermore, if the non-directly measurable
states can be got via integration methods, the KF-based
estimation becomes actually useless. For this reason, the
role played by this particular measurement is thoroughly
investigated in Section IV. But already here, we may
comment that the drawn conclusions would be similar,
if another one of the state variables in x were included in
y, instead of y1, such as e.g. ẏ1, y2, or ẏ2. It is the effect of
adding a so-called canonical row in the measurement matrix
C, namely ensuring the presence of a state directly measured.
This last aspect is of general validity for any dynamical
system.

A. THE GKF-UI
The GKF-UI introduced in [18] is a recursive algorithm that
minimizes an objective function of weighted least squares
estimation with respect to the states and unknown inputs.
Among the various different-stages KF-based estimators,
it comprises very few steps and, thus, it is relatively light
in terms of computational effort required. The routine of the
GKF-UI is here reported:
Prediction stage

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1 + B∗û∗

k−1

Pk|k−1 = APk−1|k−1AT
+ Q (5)

Kalman gain calculation stage

Kk = Pk|k−1CT
(
CPk|k−1CT

+ R
)−1

(6)

Unknown inputs estimation stage

Sk =

[
D∗TR−1 (I − CKk)D∗

]−1

û∗
k = SkD∗TR−1 (I − CKk)

(
yk − Cx̂k|k−1 − Duk

)
(7)

Correction stage

x̂k|k = x̂k|k−1 + Kk
(
yk − Cx̂k|k−1 − Duk − D∗û∗

k
)

Pk|k =

(
I + KkD∗SkD∗TR−1C

) (
I − KkPk|k−1

)
Pk|k−1

(8)

where x̂k|k−1 is the predicted state vector, Pk|k−1 is the
predicted error covariance matrix, û∗

k is the estimate of the
unknown inputs vector, Sk is the estimate of the unknown
inputs covariance, x̂k|k is the updated state vector, Pk|k is
the updated error covariance matrix, and Q and R are the
covariance diagonal matrices of process and measurement
noise, respectively.
It is worth pointing out that this algorithm has been

designed for unknown inputs being present both in the
process and the measurement equation. Therefore, the
matrices B∗ and D∗ must be different from the null matrix to
update the unknown input vector û∗

k in Equation (7) at each
time step. Furthermore, the number of the measurements m
should be greater than the number of the unknown inputs p2 to
keep the system observable [4], [18].

B. THE AKF-UI
It is possible to perform a reliable joint estimation by
augmenting the state vector with the unknown inputs.
However, this approach needs an assumption on the model
for the evolution of the unknown inputs over time. Whenever
no a priori information is available about the unknown
inputs, a typical model of u∗ is the zero-mean zero-order
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random walk driven by a white noise wu∗ ∼ N (0,Qu∗).
This procedure is similar to estimating the sensor bias
when assuming a constant model over time [25]. Hence, the
following state-space system is obtained

ẋ = Ax + Bu + B∗u∗
+ Gw

u̇∗
= wu∗

y = Cx + Du + D∗u∗
+ v

(9)

where G ∈ Rn×n is the matrix associated to the process
noise w ∈ Rn×1, and v ∈ Rm×1 is the measurement noise.
As said, process and measurement noises are considered
white, Gaussian, and orthogonal to each other:w ∼ N (0,Q)

and v ∼ N (0,R). Furthermore, if assumed internally
orthogonal, the Q and R covariance matrices are diagonal
matrices. By considering the following augmented state
vector of dimension n̄ = n+ p2

x̄ =

[
x
u∗

]
∈ Rn̄×1 (10)

the set of Equations (9) is rephrased as{
˙̄x = Āx̄ + B̄u + Ḡw̄
y = C̄x̄ + Du + v

(11)

with

Ā =

[
A B∗

0 0

]
∈ Rn̄×n̄, B̄ =

[
B
0

]
∈ Rn̄×p1 ,

Ḡ =

[
G 0
0 I

]
∈ Rn̄×n̄, w̄ =

[
w
wu∗

]
∈ Rn̄

C̄ =
[
C D∗

]
∈ Rm×n̄

The set of Equations (11) is again an LTI system. This
holds even for other models that we may use to describe
the unknown inputs, such as the almost constant rate model.
Thus, the classical linear KF can be implemented, with all
the advantages of that very efficient algorithm. Specifically,
the observability of the system is checked by considering the
following matrix

O =


C̄
C̄Ā
...

C̄Ān̄−1

 ∈ Rmn̄×n̄ (12)

If the rank of the matrix Eq. (12) is equal to the augmented
state vector dimension n̄, the system may be observable,
even though how much the system is effectively observable
deserves to be further investigated, as discussed in the next
section. For the sake of brevity, details on the well-known
classical linear KF routine are omitted in this manuscript.

III. THE OBSERVABILITY PROBLEM
As shown in the previous section, the joint estimation of states
and unknown inputs leads to the dynamical system Eq. (11)
that is again an LTI system with an augmented state vector of
dimension n̄. Thus, the observability of such an augmented

system can be investigated as that of a classical LTI system
but considering the new augmented matrices and vectors. For
this kind of system, the rank of the matrix Eq. (12) provides
a direct check of the observability. In fact, as said, the system
is observable only if the rank equals the dimension n̄ of the
augmented state vector, unobservable otherwise. However,
even if the rank satisfies the said observability criterion,
the so-called degree of observability also needs to be
investigated, as we show by discussing the numerical results
in Section IV. The degree of observability of dynamical
systems has been studied during the last decades and it
still represents an open research field. Among the existing
approaches for evaluating the degree of observability, we here
collect and rigorously discuss those afterwards implemented
and exploited for the aims of the paper. We comment that
most of the proposed methods for observability analysis
appear scattered in the scientific literature and the lack
of a manuscript collecting more approaches together is a
further contribution provided by the present research. In this
regard, we, here, present methods for checking the degree of
observability of LTI dynamical systems, dedicated to the case
of augmented state vectors with unknown inputs, that can be
traced back to the SVD (Singular Value Decomposition) of
matrix Eq. (12), referred to as the observability matrix, for
the valuable information directly provided about the degree
of observability of an LTI system. In fact, by considering,
without loss of generality, the set of Eqs. (11) in the absence
of known inputs {

˙̄x = Āx̄ + Ḡw̄
y = C̄x̄ + v

(13)

it is possible to write the following set of holding equations

y = C̄x̄ + v

ẏ = C̄ ˙̄x + v̇ = C̄Āx̄ + C̄Ḡw̄ + v̇

ÿ = C̄Ā2x̄ + C̄ĀḠw̄ + C̄Ḡ ˙̄w + v̈
...

y(n̄−1)
= C̄Ān̄−1x̄ +

n̄−2∑
q=0

C̄Ān̄−2−qḠw̄(q)
+ v(n̄−1)

(14)

We comment that higher-order derivatives do not add infor-
mation in compliance with the Cayley-Hamilton theorem.
By rephrasing system (14) in the following compact form

y(d) = Ox̄ + E (15)

and pre-multiplying by OT, we have

OTy(d) = OTOx̄ + OTE (16)

where the matrix OTO ∈ Rn̄×n̄ is invertible if it has a full
rank, equal to n̄, proving the observability criterion for the
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observability check exposed above. In this hypothesis

x̄ =

(
OTO

)−1
OTy(d) −

(
OTO

)−1
OTE = O†y(d) − O†E

(17)

where O†
∈ Rn̄×mn̄ is the Moore-Penrose pseudoinverse

matrix of O. Equation (17) splits the computed augmented
states into actual states and a noise related error term. The
actual states are a linear combination of the measurements.
The error term is a linear combination of process and
measurement noises instead. The check of the degree of
observability can be performed by using O or its pseudoin-
verse, and, thus, in terms of singular values and vectors of
O.

In a first possible approach, the usage of observability
matrix O is exploited, because it can be directly obtained
by combining Ā and C̄ matrices of the augmented state-
space system. Since the observability criterium is based on
the rank of O that has to equal n̄, one expects that O has
n̄ independent rows among the available mn̄. Therefore, the
degree of independency of these rows is also the degree of
observability of the system [26]. In particular, if n̄ orthogonal
rows of O can be found, the system observability is as high
as possible. On the other hand, if an orthogonal (or nearly
orthogonal) vector with respect to all themn̄ rows ofO exists,
the system is ill-conditioned because the determinant of a
matrix obtained with any combination of the n̄ rows is rather
small, i.e, all the rows of O are nearly proportional. The
direction of this vector provides information about the least
observable states. Since the direction of the row vectors of
O is of interest, the observability matrix is first normalized
with respect to its rows, leading to the normalize observability
matrixON . Therefore, a quadratic function L is introduced in
order to find a vector χ of unit length (χTχ = 1) being the
‘‘most orthogonal’’ with respect to the rows of matrix ON

L = χT
(
ON

TON

)
χ (18)

This represents the classical maxima-minima identification
of a constrained problem that can be solved via the
Lagrangian multipliers formulation, leading to the following
well-known eigenvalues problem(

ON
TON − λI

)
χ = 0; (19)

From Equation (19), the ‘‘most orthogonal’’ vector is the
eigenvector associated with the smallest eigenvalue, which
leads to the minimum of the quadratic function L and
provides the direction of the maximum error. The component
of this eigenvector that contributes more to the direction of
the maximum error is the largest one, associated with the least
observable state variable. Vice versa, the smallest component
of the eigenvector is associated with the most observable
state.

A second possible approach relies on the usage of
the pseudoinverse of normalized observability matrix ON

†

to investigate the degree of observability of each state.

In Equation (17), O†y(d) can be considered the actual state
vector as if it was measured. Therefore, by rearranging this
equation, the following error associated with the estimation
process is obtained

O†E = O†y(d) − x̄ = e (20)

By considering the k-th state variable, Equation (20) becomes

O†(k, :)E = ek (21)

where O†(k, :) indicates the k-th row of O†. A reliable
parameter associated with the degree of observability is the
upper-bound error leading to the upper-bound observability,
defined as

DOk,UP =
1

mn̄∑
i=1

∣∣mk,i∣∣ (22)

where mk,i is the i-th entry in the k-th row of the matrix
ON

†. The lower the value of DOk,UP, the lower the degree
of observability of the k-th state. A formal derivation of
Equation (22) is provided in Appendix A. Other parameters
rely on the variance and the standard deviation of the error
instead

DOk,var =
1

mn̄∑
i=1

m2
k,i

(23)

DOk,std =

√√√√√ 1
mn̄∑
i=1

m2
k,i

(24)

The variance observability DOk,var parameter is newly
introduced in this paper (see Appendix B). Instead, the
standard-deviation observability DOk,std parameter, equal to
the square root of the previous one, can also be found in [26],
together with DOk,UP. The parameter DOk,var is also useful
for investigating the matrix ON

† in terms of its SVD

ON
†

= VS†UT
=

n̄∑
i=1

σi
−1νiυ i

T (25)

where U and V are the orthogonal matrices of left and right
eigenvectors,S is the rectangularmatrix containing the singu-
lar values σ and υ and ν represent, respectively, the columns
of the previous orthogonal matrices. Being the singular
values numerically comparable, we observe that all of them
contribute significantly to the matrix decomposition, and,
thus, to the correct detection of the degree of observability
of each state. In conclusion, the variance observability may
be written as follows

DOk,var =

[
n̄∑
i=1

tr
(
σi

−2νk,i
2υ (:, i) [υ (:, i)]T

)]−1

(26)

where νk,i
2 is the k-th element of the i-th column νi of matrix

V and tr indicates the trace operator.
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The methods for checking the degree of observability
presented above, do not suit estimators like GKF-UI, where
the estimation of unknown states and inputs is performedwith
dedicated algorithms. The observability of these LTI systems
has been widely investigated over the years, such as in [27],
[28], [29], [30], [31], [32], [33], and [34]. Themain concept is
grounded on the following reasonable assumption: whenever
the outputs, i.e. the measurements, of a generic LTI system
are known but not the inputs, the invertibility of the system
implies observability. As stated above, when the number
of the measurements m is greater than the number of the
unknown inputs p2, the system can be considered observable.
Nevertheless, this condition behaves like the rank of the
observability matrix Eq.(12) for the previous type of systems,
and it might not be sufficient, as shown in Section IV. Further
information about the observability can be provided by the
Rosenbrock matrix [35] of system Eq. (1)

ℜ(s) =

[
sI − A B∗

C D∗

]
If the following condition holds

∀s ∈ C
∣∣ rank [ℜ(s)] = n+ p2 (27)

the system is invertible and then observable. It may happen
that the number ofmeasurementsm is greater than the number
of unknown inputs p2, but the condition (27) is not satisfied.
This means that the role played by some measurements may
be more important than that played by others, as shown in the
next sections.

IV. NUMERICAL RESULTS
In this section, we compare the estimation of road input
and non-measurable states obtained by using the GKF-UI
with that achieved by the joint estimation performed via
AKF-UI, in terms of estimation accuracy and computational
efficiency. At the same time, the role played by the considered
measurements is investigated. First, albeit vector y does not
consider y1, the number of measurements is still greater than
the unknown inputs becausem = 3 and p2 = 1, and therefore
the system observability should be preserved. But the rank of
the Rosenbrock matrix is less than n+ p2 without y1. In this
research, the Rosenbrock matrix calculation is carried out
with s = 0. Interestingly, we notice that by keeping y1 and
removing other measurements, such as y1 − y2, ÿ1, or both,
the rank of the Rosenbrock matrix is preserved, and the
observer works well. Of course, the number of measurements
must be at least two to have m > p2. However, although
the observability is preserved, removing measurements from
vector y Eq. (4) leads to a biased estimate of the unknown
input, that is the road profile, as displayed in Figure 2 and
Figure 3. The GKF-UI-based observer stops working without
y1 regardless of the number of measurements considered.
Figure 3 displays the error for different y vectors in terms
of bias and accuracy, respectively quantified by computing
average value and standard deviation, with quantitative values
reported in the captions.

By this example, we enlighten the fact that the input
reconstruction is, de facto, unreachable when the mea-
surement y1 is not available, regardless of the number of
direct measurements made on the system. This specific
measurement can not be obtained directly in practice without
the use of expensive devices.

Further analyses are carried out by exploiting the AKF-
UI algorithm using the same measurement vectors above.
As stated in Section II-B, this approach needs to define a
model for the unknown input u∗

= [h], for which a widely
used model is, as said, a zero-mean zero-order random walk.
The augmented state vector is

x̄ =
[
y1 y2 ẏ1 ẏ2 h

]T (28)

and the AKF-UI-based estimations are performed under the
following assumptions

G = In̄×n̄

Q = diag
[
s12 s22 s32 s42 s52

]
R = diag

[
r12 r22 r32 r42

]
x̄0|0 = N

(
0, 10−4

· In̄×n̄
)

P0|0 = diag
[
102 102 102 102 103

]
with n̄ = 5, sk is the standard deviation of the k-th
state variable, and ri is the standard deviation of the i-th
measurement. For the system under consideration, we assume
uncolored process noise and no correlation among states,
resulting in G being an identity matrix. The initial state is set
to the zero vector since we are processing vibrations, while
the initial state-error covariance matrix P0|0 is considered
high due to the low confidence assigned to the first step of
the estimation routine, particularly for the last state, which
is the most challenging. Finally, the Q and R matrices,
representing the process and measurement noise covariances
respectively, are tuned via a trial-and-error procedure based
on the physical understanding of the problem. Their values
are collected in Table 5 in Appendix C, along with the QC
system parameters. It is worth pointing out that the initial
variance of the 5th state variable is greater than that of the
other states due to the absence of an a priori known model
of h. At the same time, the variance of the sprung mass
displacement measurement y1 is low since it would represent
the most reliable measurement. The variance associated
with the accelerations is selected higher than the variance
of the sensors’ noise to consider the effect of the unmodelled
phenomena.

For the case of hmodelled as a random walk, the following
augmented state evolution (process) matrix is considered

Ā =

[
A B∗

0 0

]
(29)
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FIGURE 2. Road profile estimation for different measurement vectors and GKF-UI algorithm.

FIGURE 3. Error in road profile estimate for different measurement vectors and GKF-UI algorithm.

The results reflect those achieved with the previous approach,
even though this method appears slightly more robust. In fact,
by reducing the number of measurements in vector y, the
accuracy of the estimation does not deteriorate and remains
unbiased, as displayed in Figure 4. Moreover, the error
in road input estimation is more similar to white noise if
compared with the previous case, and this represents a further
checking of the goodness of the estimator. Nonetheless,

without the (not directly available in practice) measurement
of the sprung mass displacement y1, the estimation fails
again. It is worth highlighting that when the system loses
observability, the minimum eigenvalue λmin is basically
vanishing, as reported in the caption of Figure 4. Therefore,
the higher the value of λmin, the more observable the
system is. As expected, the more measurements, the more
observable the system is, since the higher λmin. The value
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FIGURE 4. Error in road profile estimate for different measurement vectors, AKF-UI algorithm, and unknown input h modelled as a
random walk.

TABLE 1. Degree of observability of the states for different measurement vectors.

of λmin also represents a first check of the degree of
observability.

The degree of observability is now investigated by exploit-
ing the methods explained in Section III. In this research, the
knowledge of the contribution of the y1 measurement is of
interest, as said. In Table 1, we list the degree of observability
in three different cases related to the three different vectors
y considered and for three different approaches: the most
orthogonal unit vector χ with respect to the rows of the
matrix ON , the upper-bound observability and the variance
observability. As expected, all methods lead to the same
conclusion: the most observable state is y1, because it is
‘‘measured directly’’. In fact, the upper-bound error of the
first state estimation is the same as the measurement upper-
bound error, and the variance is half instead. The first
element of the unit vector χ , associated with the first state,
is the one that contributes less to system ill-conditioning.
This is particularly true when the number of measurements

decreases. Interestingly, a similar role is also played by the
second state variable, i.e., the sprung mass velocity ẏ1.

By considering reasonable assumptions about the road
profile geometry, similar to those adopted in Refs. [23]
and [24], we account for the following first-order random
walk model type

ḣ (t) = −αh (t) + βw (t) (30)

where α and β are constant coefficients and w (t) is a zero-
mean Gaussian white noise process. Equation (30) represents
an a priori known model. Since we are interested in
observability recovery, without loss of generality, we assume
for simplicity α = 1, achieving the following augmented
state-space (process) matrix

Ā =

[
A B∗

0 I

]
(31)
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TABLE 2. Comparison between the two AKF-UI-based observers.

TABLE 3. Degree of observability without y1 in the measurement vector
for the AKF-UI- based estimator with h modelled with the identity.

with I = [1], obtaining results similar to those of the previous
case, as listed in Table 2. Parameter β is included within
matrix G and acts as a tuning parameter for the KF. Again,
without measuring the sprung mass displacement, or any
other direct state, the system is not observable. In this latter
case, we interestingly note that the rank of the observability
matrix is full-column, as highlighted in Table 2. Nevertheless,
the observer fails the estimation because the degree of
observability is not sufficient. The degree of observability
has been investigated as in the previous case and results are
collected in Table 3. The minimum eigenvalue is rather small,
and all the components of the unit vector χ provide the same
contribution to the ill-conditioned problem. Furthermore, all
the values of the upper-bound observability and the variance
observability are too small, indicating that the error state
estimation is much greater than the measurement error.

At last, we comment that the AKF-UI algorithm is much
lighter than the GKF-UI one in terms of computational
effort, as expected. In fact, the AKF-UI algorithm is
actually a classical linear KF, which is a very efficient
routine. Nonetheless, we, here, provide a novel side-by-side

comparison. Figure 5 displays the time (in [ms]) required
for each step of the estimation routine performed with the
GKF-UI algorithm (solid grey line) and with the AKF-UI
one (solid black line). The average time required for one
step was 4.79 ms for the GKF-UI and 0.03 ms for the AKF-
UI, about 160 times lower. The estimation algorithms have
been performed with an Intel(R) Core(TM) i7-8550U CPU
@ 1.80GHz, running the softwareMatlab R2022a.

V. EXPERIMENTAL RESULTS
To provide a complete picture of the problem, the exper-
imental setup depicted in Figure 6 (a) is appropriately
designed for this research. The system consists of two
plates joined together by four springs. The unsprung mass
is connected via four springs to another plate bolted to the
electrodynamic shaker Dongling ES-2-150. The idea is to
simulate a two Degrees Of Freedom (DOFs) system like the
QC model, with two masses, a suspension system and the
tire. The input to the system is provided by the shaker driven
through an acceleration signal-controlled closed loop via an
electric input signal generated with an LMS SCADAS 310
mobile PC-based multichannel analyzer platform, running
the Siemens LMS Test.Lab 14A software suite, using the
measure obtained by a triaxial accelerometer B&K 4535-B-
001 rigidly connected to the vibrating plate bolted to the
shaker. The input is forced to follow the design acceleration
spectrum shown in Figure 6 (b), which is thought to provide
a displacement spectrum similar to that of a generic road
profile. The outputs are the two accelerations measured at the
Center of Gravity (CoG) of the two masses and the velocity
and the displacement of the sprung mass measured by using
the Polytec OFV-5000 modular LD vibrometer with a laser
beam pointed towards the centre of the plate.
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FIGURE 5. Time required for each step of GKF-UI routine (grey line) and AKF-UI one (black line).

FIGURE 6. (a) The experimental setup exploited in this research. On the right, the entire system, consisting of the shaker, the laser-Doppler
vibrometer mounted on a tripod and the mechanical system. The mechanical system is highlighted on the left, along with the accelerometers.
(b) PSD Average Control.

TABLE 4. Results of the observability analysis conducted on the experimental setup.

Before dealing with the observability analysis, the system
is identified. Figure 7 (a) displays the Frequency Response
Functions (FRFs) of the experimental system at hand in

the frequency band of interest, with highlighted the natural
frequencies. The blue line is the FRF between sprung mass
acceleration and input acceleration, and the red line is the
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FIGURE 7. (a) FRFs provided by Siemens Test.Lab software (solid lines) and synthesized FRFs from modal parameters (dashed lines).
(b) FRFs of the experimental setup.

FIGURE 8. Input reconstruction by using the GKF-UI (red line) and the AKF-UI (blue line) in both the observable (top) and the unobservable
case (bottom).

FRF related to the unsprung mass. Solid lines are the FRFs
directly provided by the software for modal analysis Siemens
Test.Lab, and the dashed lines are the synthesized FRFs
obtained from modal parameters

H(iω) = ψ (iωI −3)−1 L (32)

where ψ is the matrix of modal vectors, 3 is the diagonal
matrix of the system eigenvalues and L is the modal
participation factor matrix. Since the following equations
hold

A = ψ3ψ−1

B = ψL

C =

[
1 0 0 0
0 1 0 0

]
(33)

H(iω) = C (iωI − A)−1 B (34)

one obtains the system in its continuous-time state-space
representation. Results are displayed in Figure 7 (b). Refer to
Appendix D for numerically evaluated state-space matrices.
The ratio between accelerations leads to the system’s trans-
missibility. Therefore, states are displacements and velocities
of the twomasses. It is also worth highlighting that the system
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has 2 DOFs in the considered frequency range. In Table 4,
we list results from the observability analysis performed
on this system using the same vectors of measurements
considered in the previous example. The velocity and the
displacement of the input and the unsprung mass are obtained
via numerical integration of the acceleration signals, with
null initial conditions. The results agree with those obtained
from the numerical example. As expected, the degree of
observability is slightly reduced due to the unmodeled
phenomena, which are non-existent for the simulated case.
This aspect, in turn, affects the estimation accuracy. Finally,
for the sake of completeness, the input reconstruction is
displayed in Figure 8.

VI. CONCLUSION
In this paper, we have focused on estimating unknown inputs
and states of dynamical systems, in the context of road
profiles’ reconstruction and vehicle dynamics identification.
Two distinct Kalman filter (KF)-based observers have been
applied to a 2-degree-of-freedom system, and a compre-
hensive a novel side-by-side comparison has highlighted
their performance in terms of accuracy, robustness, and
computational efficiency.

The study has revealed that the joint estimation approach,
which involves augmenting the state vector with the unknown
road profile input, outperforms a dedicated KF-based algo-
rithm for linear time-invariant systems with unknown inputs.
This better result is related to the improved quality of the
estimation and to a reduced computational burden. Addi-
tionally, the joint estimation method has more effectively
highlighted the importance of measurements in ensuring
system observability. This approach has facilitated a deeper
investigation through various parameters related to the degree
of observability. Specifically, this research has gathered
different methods scattered in the scientific literature and has
introduced the concept of variance observability, exploring
its relationship with the normalized observability matrix
through its Singular Value Decomposition.

By using detailed mathematical explanations, we have
shown that in the absence of a specific measurement, not
readily available in practical scenarios, the system lacks
sufficient observability, hindering the estimation process.
Intriguingly, this missing measurement ends to be, actually,
a state that cannot be directly measured without the use of
expensive sensors.We have observed that a directly measured
state may improve the observability of any dynamical system
owing to the particular structure of the measurement matrix,
which includes a canonical row. Accounting for all these
factors, we conclude that the problem of road input estimation
using KF-based observers may still be in need of a practical
solution at least with a model-based observer grounded on
the quarter-car. Future directions, thus, aim to investigate this
topic by exploiting more sophisticated vehicle models with a
higher number of degrees of freedom, to capture phenomena
related to multi-input excitation.
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APPENDIX A
DERIVATION OF THE UPPER-BOUND OBSERVABILITY
In this appendix, the derivation of Equation (22) is provided.
First, the ratio between the expected value of the difference
between measured k-th state and the k-th state ek and the
expected value of the error in the estimation process of the
k-th state O†(k, :)E is considered

DOk =
E [ek ]

E
[
mk,1E1 + · · · + mk,mn̄Emn̄

]
An unbiased estimator has an expected value of the errors
equal to zero, therefore E [ek ] = E [E1] = · · · = E [Ek ] =

· · · = E [Emn̄] = 0. Thus, the previous equation becomes

DOk = lim
E[ek ]→0

[
E [ek ](

mk,1 + · · · + mk,mn̄
)
E [ek ]

]
=

1
mn̄∑
i=1

mk,i

(35)

and since themaximum error is considered (the upper bound),
the absolute value of every mk,i is taken in Equation (35).

APPENDIX B
DERIVATION OF THE VARIANCE OBSERVABILITY
By considering the k-th state with orthogonal uncertainties
and for an unbiased estimator

E
[(

O†(k, :)E
) (

O†(k, :)E
)T]

= E
[
ekekT

]
⇐⇒

⇐⇒ O†(k, :)Var [E]
(
O†(k, :)

)T
= Var [ek ]

with Var[E] diagonal matrix due to the orthogonality. Since
the error in the System (14) does not stack between two
consecutive derivatives, one can puts Var[E1] = · · · =

Var[Emn̄] = Var[ξ ] and thus

DOk =
1

mn̄∑
i=1

m2
k,i

Var [ek ]
Var [ξ ]

(36)

For a well-designed estimator, the error on the measured state
is similar to the error on the estimated state, thus

Var [ek ] ≈ Var [ξ ]

therefore, the variance observability of Equation (23) is
obtained. The standard-deviation observability is just the
square root of DOk,var.

APPENDIX C
TABLE OF QUANTITIES OF INTEREST
The table below is provided for any interested reader who
wants to replicate the results.

VOLUME 12, 2024 105789



A. Leanza et al.: Road Roughness Identification in Vehicle Dynamics

TABLE 5. QC system and KF tuning parameters.

APPENDIX D
STATE-SPACE MATRICES OF THE EXPERIMENTAL
SYSTEM

A=



0 0 1 0

0 0 0 1

−2.9339 · 104 3.8377 · 104 −8.0993 0.5268

8.5897 · 104 −1.0701 · 104 −26.7334 −18.2833


(37)

B =



−11.9720

21.5983

−1.4975 · 104

1.1123 · 106


(38)
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