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ABSTRACT Federated learning is increasingly being considered for sensor-driven human activity recog-
nition, offering advantages in terms of privacy and scalability compared to centralized methods. However,
challenges such as feature selection and client imbalanced data persist. In this study, FLP-DS2MOTE-USA is
suggested, a system that integrates federated local preprocessing, adaptive thresholding based on uncertainty
symmetry, and a density- sensitive synthetic minority over-sampling approach. Each client preprocesses
data locally and employs DS2MOTE for class balancing. On the server side, adaptive thresholding based
on uncertainty symmetry is utilized to identify the optimal client for training the global mode. Evaluation
on two distinct datasets—Human Activity Recognition with Smartphones and Human Activity Recognition
(OpenPose) —reveals that our model outperforms FedAvg, FedSgd, FedSmote, and FedNova, achieving
accuracies of 90.57% and 96.58%, respectively. In addition, FLP-DS2MOTE-USA minimizes update size
and network overhead on the HumanActivity Recognition with Smartphones, while achieving improvements
on the OpenPose dataset. Overall, the proposed method not only addresses issues of imbalanced data but also
reduces computational complexity via streamlined local preprocessing, and server-side mechanisms ensure
client privacy. It outperforms traditional federated learning techniques in both accuracy and efficiency.

INDEX TERMS Federated learning, local preprocessing, imbalance data, uncertainty symmetry.

I. INTRODUCTION
As the Internet of Things (IoT) grows, the use of sensors
to gather data across various sectors, like healthcare and
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smart infrastructure, is on the rise. One important application
of this technology is sensor-driven human activity recogni-
tion (HAR), which uses sensors to collect data and analyze
human movements in real environments. This technology can
enhance patientmonitoring, soldier surveillance, and tracking
of the elderly, among other uses [1]. This data is then analyzed
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by big data analytics or artificial intelligence (AI) to offer
predictive insights or help in decision-making processes [2].

Historically, the vast amounts of data produced by these
numerous devices have been handled through a centralized
model, where all the information is sent to and processed on
a single server. This traditional approach, while straightfor-
ward, comes with its own set of challenges. It can lead to high
costs associated with transferring data and can cause con-
gestion in network traffic. Moreover, it demands the central
server to have substantial computational and storage capaci-
ties, which in turn, ramps up operational expenses.

Federated Learning (FL) is an innovative learning model
that addresses these issues by distributing the process across
various devices, offering a more efficient and cost-effective
solution [3]. FL fosters a cooperative environment where
multiple clients work together to build a global model, while
keeping their data confidential and stored on their own
devices. A primary strategy employed in FL is Federated
Averaging, or FedAvg for short. In this process, each partic-
ipant trains a local model using their specific data and then
sends just the model’s parameters, rather than the data itself,
to a central server. This server merges these parameters to
develop a unified model.

Distinguishing FL from conventional centralized meth-
ods is its utilization of the computing resources available
on each client’s device during the training period. How-
ever, the approach faces several challenges that can affect
its efficiency, including how data is prepared, the uneven
distribution of data across devices, differences in computing
capabilities, network reliability, and the varying sizes of the
datasets held by each client [1]. Addressing these challenges
is critical for the successful deployment of FL systems.

Our research aims to address several key open research
questions (ORQs) in the context of FL for HAR:

1. How can data imbalance be effectively managed in
FL systems?

• Data imbalancewithin and across clients poses sig-
nificant challenges to the efficiency and accuracy
of FL models. We introduce a modified SMOTE
algorithm to create synthetic data points for
underrepresented classes, addressing intra-class
imbalance.

2. What are the optimal feature selection and dimension-
ality reduction techniques for FL?

• Effective feature selection and dimensionality
reduction are crucial for improving model perfor-
mance. We employ Chi-square and Linear Dis-
criminant Analysis (LDA) to identify pertinent
features and simplify data structures.

3. How can the variability in client datasets be effectively
managed?

• Variability in the size and distribution of client
datasets affects the global model’s performance.
We propose using symmetric uncertainty with
adjustable thresholds for client selection tomanage
dataset variability.

FL relies heavily on the first data processing at each
client, which helps to standardize heterogeneous datasets and
improve the performance of the model. This step ensures
every participant adds valuable data to the overall model,
improving both its efficiency and accuracy.

When algorithms pull out too many features, it becomes
essential to pick the most relevant ones and reduce complex-
ity through feature selection and dimensionality reduction.
These techniques refine the data on a client-by-client basis,
focusing on key features to make FL models simpler yet
still precise, which helps streamline training both locally
and globally [4]. Another challenge in FL comes from the
differences in data distribution and size across clients. These
differences can appear in several forms: some clients may
have an imbalance within their data (e.g., 80% of one class
and 20% of another), between clients (one client’s data might
be mostly one class, while another’s could be predominantly
another class), and in the size of the datasets each client
contributes (imagine one client adds 2000 samples, while
others contribute only 500 or 50 samples). As a result,
the global model on the server will be different from the
ideal model, causing slow convergence, longer training times,
reducing the efficiency and scalability of FL frameworks.
Meanwhile, the discrepancies between clients and the varied
sizes of their datasets might lead to a federated model that’s
biased or struggles to perform consistently across different
scenarios [2], [4], [5].
A main goal of FL is to achieve the highest possible accu-

racy as quickly as can be done [7]. However, this goal can
be impeded by challenges like the preprocessing of data by
individual clients and the imbalance of data across different
clients, which can prolong the training phase and compromise
the accuracy of themodel [1], [2], [5]. To address these issues,
there’s a significant amount of research dedicated to finding
ways to lessen the negative effects of these challenges on
FL, focusing on improving local data preprocessing [8] and
tackling various kinds of data imbalances [8], [9].
In machine learning, local preprocessing methods like

dimensionality reduction, feature extraction, and feature
selection are essential. They not only help in reducing com-
putational burden by discarding unnecessary features but also
enhance the accuracy of predictions by focusing on crucial
variables and minimize the risk of overfitting by simplifying
the model’s complexity. Yet, existing research often isolates
these techniques, not always achieving optimal outcomes.
For instance, some studies might exclusively apply feature
extraction algorithms [11], while others prioritize feature
selection [1], [7], and often, these singular strategies fall short
of reaching the intended performance metrics.

Moreover, the challenge of data imbalance is pivotal in
machine learning and becomes particularly complex in FL.
The currently available strategies for managing imbalanced
data usually lack in efficiency and flexibility in FL scenarios.
The literature [1], [9], [11], [12] often focuses on a specific
type of data imbalance, missing the opportunity to provide
comprehensive solutions for the diverse imbalance problems.
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Therefore, there’s a pressing need for more research focused
on developing approaches that can effectively address the
unique complications of data imbalances and local prepro-
cessing within FL environments

Despite numerous studies aimed at preventing a decline in
learning efficiency due to uneven class distribution among
clients, as far as we’re aware, there isn’t an integrated
approach that addresses three key elements. These are: 1)
leveling the class imbalance within individual clients, 2)
alleviating class imbalance and data size variations between
different clients, and 3) employing feature selection and
dimensionality reduction in FL to substantially boost model
performance by simplifying the data structure and focusing
on essential features.

This article introduces a groundbreaking methodology to
combat the prevalent problem of data imbalance in FL sys-
tems. The approach leverages a modified version of the
SMOTE algorithm to create synthetic data points for classes
that are underrepresented, thus solving intra-class imbalance.
To cater to the variability in client datasets, both in terms
of size and class distribution, the method employs an inno-
vative use of symmetric uncertainty combined with adaptive
thresholds for choosing relevant clients. In addition, the paper
enriches its strategy by adopting chi-square technique and
Linear Discriminant Analysis for optimized feature selection.
Collectively, these techniques establish a robust and equi-
table framework that elevates the performance of client-based
models in FL. This research is poised to become a cornerstone
in the fast-developing domain of FL.

The core achievements of our research can be summarized
as follows:

1. The innovative framework FLP-DS2MOTE-USA is
designed to address several challenges unique to the
FL environment. This framework is configured to
address issues such as local data preprocessing, unbal-
anced data, model convergence, and communication
overhead.

2. Introduced the Chi-LDA method for efficient extrac-
tion and identification of pertinent features within
datasets.

3. Presented a revised version of D2SMOTE to achieve
class equilibrium across various clients.

4. Implemented an approach using symmetry of uncer-
tainty with an adjustable threshold for choosing partic-
ipating clients to train and contribute optimal models to
develop a strong global model.

5. Verified the performance of the suggested framework
by conducting comprehensive trials using the UCI
HAR and OpenPose HAR datasets.

II. RELATED WORK
In this section, the related work is organized into two parts.
First, existing research utilizing federated local preprocessing
techniques is reviewed, emphasizing methods for federated
feature selection. Following this, the latest strategies for

managing imbalanced data are surveyed through a range of
re-balancing mechanisms.

A. FEDERATED LOCAL PREPROCESSING
1) FEDERATED FEATURE SELECTION
Feature selection is a crucial preprocessing procedurein data
mining that simplifies the dataset by removing redundant
attributes. These methods shorten the time required for train-
ing classification models while improving data presentation
and comprehensibility [14]. Cassará et al. [4] have introduced
a Federated Feature Selection (FFS) technique that allows
Autonomous Vehicles (AVs) to collaborate in filtering sensor
data, eliminating irrelevant attributes without having to share
raw data. This method is built on two main components:
1) A novel algorithm employed by AVs to identify important
features, leveraging a principle known asMutual Information,
and 2) A new aggregation function that is executed at the edge
computing layer. Xiao et al. [11] introduced a model named
a Perceptive Extraction Network (PEN), aimed at personal-
ized data analysis. PEN is essentially comprised of two key
components: a feature network and a relation network. The
feature network, built around a convolutional block, is tasked
with identifying specific local characteristics in data per-
taining to human activities. Meanwhile, the relation network
combines Long Short-Term Memory (LSTM) with atten-
tion mechanisms to capture hidden patterns within the data.
Rui Z. et al. [8] utilized a Gini-impurity-based feature selec-
tion system for eHealth applications in Vertical Federated
Learning. It’s versatile across multiple machine learning
models. The πSS−FS protocol employs a quick secret
sharing approach, making it nearly as fast as unencrypted
methods. Qin and Kondo [15] suggested a system for
intrusion detection, which utilizes FL and feature selection
techniques. First, a greedy algorithm identifies key features
that improve the system’s ability to detect different kinds of
attacks. Then, based on these chosen features, the FL server
generates several global models.

2) FEDERATED DIMENSIONALITY REDUCTION
Dimensionality reduction is the process of reducing the
number of features (or dimensions) in a dataset while pre-
serving as much information as possible. This can be done
for a variety of reasons, including to reduce model com-
plexity, improve the performance of learning algorithms, and
facilitate data visualization. Little attention has been paid
to how FL pipelines can incorporate dimensionality reduc-
tions performed by collaborators. Distributed ML tasks allow
dimensionality reduction to be performed centrally before
distributing the data to different computational cores, but
this is not possible in FL workflows because the data is
not shared. El Ouadrhiri et al. suggested using Hensel’s
Lemma to reduce the size of the dataset without losing
any information. The proposed method achieved an accu-
racy of 97% using only 25% of the original dataset [16].
Cheung et al. introduced a new technique known as
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federated principal component analysis, tailored for vertical
partitioning across clients. This method focused on reduc-
ing the dimensions of datasets distributed among various
clients, enabling the extraction of significant information for
subsequent data analysis [17]. Huang W. and Barnard A.
have innovatively designed and demonstrated a new dimen-
sionality reduction scheme, FedRed, within the FL pipeline,
specifically aimed at preparing heterogeneous datasets for
collaborative learning. This approach not only facilitates the
integration of diverse data sources but also enhances the
efficiency of the learning process by ensuring faster con-
vergence and greater model adaptability across varied data
characteristics [18].

B. INTRA-CLASS IMBALANCE
This kind of imbalance indicates that a client’s class
distribution—the amount of data distributed among classes—
differs from the uniform distribution. For example, Client 1’s
dataset contains 90 emails labeled as ‘‘Not Spam’’ and only
10 labeled as ‘‘Spam,’’ indicating a significant imbalance in
favor of the ‘‘Not Spam’’ class [3].

Abdellatif et al. [19] have used a refined strategy for
allocating Edge Users (EUs) and resources in the context
of a hierarchical FL system. This method leverages several
edge servers to reduce the computational and communica-
tion overhead involved in transferring data between the EUs
and the central server. To function as a classification tool,
Tabassum et al. [12] utilized a Generative Adversarial Net-
work (GAN) across various IoT devices. The network is
trained using augmented local datasets. The system’s effec-
tiveness is evaluated by comparing its accuracy and learning
speed with those of existing collaborative models designed
for detecting security breaches. Khan et al. [13] proposed
a model that adjusts the influence of local models accord-
ing to their accuracy for each category, aiming to improve
predictions of thermal comfort and data sharing efficiency.
This brief summary effectively communicates the core idea
of their strategy. Yang et al. [10] suggested a framework
that chooses a group of clients with the least class imbal-
ance, inspired by the multi-arm bandit concept. The proposed
algorithm could significantly enhance the overall model’s
learning speed and decision-making quality. Li et al. [20]
have developed a secure data handling system for brain imag-
ing research across multiple sites. This system gives priority
to privacy while facilitating the sharing and analysis of model
parameters. It is specifically designed to classify individuals
as either having Autism Spectrum Disorder (ASD) or being
neurotypical, by analyzing patterns in brain communication.
Cui et al. [21] developed a new framework that enhances
the accuracy and speed of prediction models. The first stage
begins with analyzing the dataset of each client, followed by
clustering to group clients based on this analysis. Each client
then trains data locally with Bidirectional Long Short-Term
Memory (LSTM) algorithms. Wu et al. [22] proposed the
Dynamic Synthetic Images for Federated Learning (DSIFL)
method to integrate data from different local instances. The

primary process of the framework involves generating a vary-
ing number of synthetic images locally using the existing
model to address class imbalance. Abbas et al. [23] developed
a new model that utilizes FL with a Context Aggregator to
address loss factors and class imbalance within a single client.
The model features Context Aggregators based on valida-
tion loss to capture and mitigate loss, and another Context
Aggregator specifically designed to address class imbalance.
Wu et al. [24] suggested a new technique used in home
monitoring to track HAR. A Generative Convolutional
Autoencoder (GCAE) is utilized to solve imbalance among
classes.

C. INTER-CLASS IMBALANCE
Inter-client class imbalance happens when the variety of
classes is not the same across clients, resulting in each
client having a distinctive class distribution compared to
the rest. Feki et al. [25] suggested a FL system using
VGG16 and ResNet50 deep neural networks for identifying
COVID-19 through chest X-ray images. This decentralized
setup enables medical experts globally to access valu-
able shared medical data while preserving patient privacy.
Duan et al. [26] implemented the Astraea framework aims
to tackle data imbalances in FL by employing two key
approaches: 1) Using Z-score-based data augmentation to
dynamically adjust and downsample the data, which helps in
reducing global data imbalances, and 2) Introducing a Medi-
ator component that adjusts the training timelines for clients
according to the Kullback-Leibler divergence (KLD) of their
respective data sets, in order to balance local discrepancies.

D. SIZE OF DATASET
The quantity of samples from various clients in FL can
have a big impact on model performance. More data means
that clients’ models are more robust and dependable than
those of clients with smaller sample sizes. As a result,
models trained on larger datasets are regarded with more
confidence [27]. To tackle the issue of varying numbers
of samples among clients, Gong et al. [6] introduced a
client clustering technique based on weighted voting, which
automatically assigns each client to the appropriate cluster.
Xu et al. [28] used a feature-regularized training method
to curb local overfitting issues and harmonize parameter
variations across clients, which assists in compiling a uni-
fied global feature extractor. Chen et al. [29] introduced the
FedUC algorithm, which regulates the update uploads in
FL by employing a client scheduling strategy that considers
weight divergence, update size, and loss metrics. To coun-
teract the effects of non-independent identical distribution,
the approach employs image augmentation to equalize local
client data. Yang et al. presented a new approach called
the Modality-Collaborative Activity Recognition Network
(MCARN), designed to operate in a FL environment. This
method identifies modality-dependent features that are dis-
criminative for activity recognition and achieves successful
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TABLE 1. An overview of research studies on FL for federated local preprocessing and data imbalance.
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TABLE 1. (Continued.) An overview of research studies on FL for federated local preprocessing and data imbalance.
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FIGURE 1. General framework of FLP-DS2MOTE-USA.
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learning even when some clients are underrepresented com-
pared to others [30].

In summary, few researchers have focused on important
local preprocessing tasks such as feature selection and dimen-
sionality reduction within the context of FL. This gap is
especially important considering that FL clients often run
on different devices and have different resource limitations.
Moreover, there is a notable absence of comprehensive stud-
ies that address all categories of imbalanced data. According
to the existing literature, there are limited studies proposing
models that can also address these two types of challenges
[2], [3], as shown in Table 1. Therefore, dedicated efforts are
needed to develop frameworks that can effectively deal with
these complexities in FL environments.

III. METHDOLOGY
An innovative framework named FLP-DS2MOTE-USA has
been created to build upon current FL methodologies. This
framework integrates Federated Local preprocessing (FLP),
the Density-Sensitive Synthetic Minority Over-Sampling
Technique (DS2MOTE), and Uncertainty Symmetric Adap-
tive algorithms. This approach autonomously sifts through
raw data to extract and select features that are most bene-
ficial for the learning task at hand. Moreover, it tackles the
challenge of imbalanced data commonly found in real-world
FL settings. Consequently, FLP-DS2MOTE-USA excels in
both computational and communication efficiency, offering a
well-rounded solution for practical FL deployments. Figure 1
outlines the procedural steps of FLP-DS2MOTE-USA, which
shares similarities with the FedAvg framework [5]. Thework-
flow consists of three key stages: (1) The master server
distributes the overarching model to each of the client nodes;
(2) Individual clients proceed to adapt this global model using
their specific local data; and (3) The server then consolidates
these client-specific model updates into a unified model. In a
designated section, Federated Local Preprocessing (FLP) is
unveiled as a method for pinpointing key features at each
local data collection point, which in turn conserves both com-
putational and communication efforts. Next, the DS2MOTE
approach is suggested as a remedy for datasets where one
class is disproportionately represented. The objective of this
technique is to balance the class distribution as closely as
possible to uniform, all without the necessity of sharing
data. Finally, the server uses an adaptive uncertainty symme-
try threshold to select clients that exhibit data distributions
nearing uniformity. The flowchart of the methodology is
presented in Appendix B.

A. CLIENT SIDE: ADDRESSING INTRA-CLIENT
IMBALANCED DATA THROUGH FEDERATED LOCAL
PREPROCESSING AND LOCAL REBALANCING
Two primary approaches are used by the FLP-DS2MOTE-
USA framework to deal with imbalances in client data. First,
by refining data features, Federated Local Preprocessing
(FLP) is used to indirectly eliminate imbalanced data. Next,

it directly addresses this issue by balancing class representa-
tion using the DS2MOTE algorithm.

1) FEDERATED LOCAL PREPROCESSING
In Federated Local Preprocessing (FLP), clients preprocess
their data locally to emphasize the most influential features
for classification tasks. This process consists of three main
steps: feature selection using chi-square statistics, dimension-
ality reduction using Linear Discriminant Analysis (LDA),
and validation of feature effectiveness using a Random Forest
(RF) classifier.
Step 1: Future selection using Chi-square
In the first step, clients start by using chi-square statis-

tics [26], [27] to determine which features in their data have
the greatest influence and retain those, removing the less
beneficial ones. This stage makes sure that the elements that
are most important for data classification are the ones that
are highlighted. The chi-square statistics for each feature in
dataset Di of the i − th client is given by Equation (1)

X2
ij =

∑ki

j=1

(Oij − Eij)2

Eij
(1)

X2
ij : is the chi-square statistic for feature j in the dataset of

client i.
Oij is the observed frequency of category j for a particular

feature.
Eij is the observed frequency of category j if there were

n association (independent) between feature and class
ki is number of categories for feature in dataset Di.
Each client sorts the features based on their chi-square in

descending order. High values indicate a strong association
with class

The feature selection process

Fi = sort
(
X2
i , order = desending

)
Fi represent the indices of the top 50 features selected by
client based on the chi-square statistic.

Each client has a feature matrix Xi represent the data asso-
ciated with top 50 features selected from chi-square statistics.
Let’s denote this matrix as

Xi ∈ Rmi×50

mi is the number of samples in dataset of client i.
Xi contains data for 50 features selected based on their chi-

square statistic.
Step 2:Dimensionality Reduction using Liner Discrimina-

tor analysis (LDA)
After the initial phase of data processing, Linear Discrim-

inant Analysis (LDA) [33] is implemented to further refine
the dataset by reducing the feature space to the five most
discriminative features. The strength of LDA lies in its abil-
ity to enhance the distinctions among different data groups,
focusing on the most critical and unique attributes, thereby
indirectly addressing disparities among classes. Despite this
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refinement, there remains the potential for some classes to be
underrepresented.

LDA focuses on finding a projection that maximizes the
ratio of the between-class scatter to the within-class scatter.
For each client, define Equations (2) and (3):

Within -class scatter matrix ( Sw,i):

Sw,i =

∑C

c=1
Nc,i(µc,i − µi)(µc,i − µi)T (2)

Between -class scatter matrix (SB,i)

SB,i =

∑C

c=1
Nc,i(µc,i − µi)(µc,i − µi)T (3)

where
µc,i is the mean vector of class c in client i’s dataset Dc,i.
Nc,i is the number of samples of class c at client i.
µi is the overall mean of the dataset at client i.
The goal of LDA is to find the project matrix with the

maximize the ratio of the determine of the between-class
scatter matrix to the within class scatter matrix. The formula
is expressed as follow (Equation (4))

Wi = argmaxw

∣∣W T SB,iW
∣∣∣∣W T Sw,iW
∣∣ (4)

The column of Wi are the eigen vectors corresponding to
the largest eigenvalues of S−1

w,iSB,i. Typically, you choose as
many eigen vectors as there are classes minus one.

Using the project matrix Wi, the data Xi is projected in to
lower-dimensional space Yi as define with equation (5):

Yi = XiWi (5)

where Yi ∈ Rmi×(c−1) is the projected data matrix with
dimension reduce to number of classes minus one.
Step 3: Validation using random forest
TO ensure the effectiveness of the selected features, each

client applies a Random Forest (RF) classifier to the reduced
dataset Yi. The performance is monitored through the clas-
sifier’s accuracy, confirming the relevance and robustness of
the selected features.

2) FEDERATED LOCAL REBALANCING USING THE
DENSITY-SENSITIVE SYNTHETIC MINORITY
OVER-SAMPLING TECHNIQUE
Following the initial phase of data processing, the procedure
to rectify class imbalances begins with the application of a
technique called DS2MOTE. This approach includes creating
synthetic data points to reinforce categories that are not ade-
quately represented. It assesses both the amount of data that
is lacking and how this data is spread throughout the dataset,
aiming to efficiently re-establish balance.

DS2MOTE extends the principles of the Synthetic Minor-
ity Over-sampling Technique (SMOTE), aimed at remedying
class imbalances through the generation of new data points.
It specifically targets minority classes, enriching them by
interpolating synthetic points between existing samples. This
approach proves invaluable in scenarios where some classes
are notably sparse in instances. By plotting new instances

along the vectors joining neighboring data points, DS2MOTE
introduces additional samples to these underrepresented
classes. SMOTE distinguishes itself from traditional augmen-
tation methods by operating in the feature space rather than
the data space, employing the k-nearest neighbors (KNN)
algorithm to do so. It calculates the nearest neighbors for
each point in theminority class, then synthesizes new samples
within the feature space. This strategy enhances the dataset’s
diversity and addresses the challenge of class imbalance.
(Equation 6):

∀Yi ∈ Dmin; return{KNN } (6)

The implementation of this technique facilitates a more bal-
anced class distribution within the dataset, thereby reducing
the risk of biases that can occur from an overrepresentation of
the majority class. The Density-Sensitive Synthetic Minority
Over-Sampling Technique (DS2MOTE) is an adaptation of
the original SMOTE algorithm, incorporating an analysis of
the areas where classes overlap. It not only considers the
density of the minority class but also the spatial relationship
between instances of the minority and majority classes when
creating synthetic samples. This approach ensures that syn-
thetic instances are added in zones where there is a higher
likelihood of misclassification, significantly improving the
model’s ability to accurately differentiate between classes
that have regions of overlap. The procedure for DS2MOTE
is shown below:

1. First, the underrepresented class was identified and
given the symbol Yminority.

2. The density of each sample in the Yminority by dataset
is then calculated using the average distance to the k-nearest
neighbors (Knn). After that, these densities are stored in an
array known as Ddensity.

3. The goal is to identify and record the member(s) from
the Ymaijority for each sample. In essence we are looking to
locate and document the member(s) from the Ymaijority to
every member in the Yminority[i] marking this information
as [i].

4. Depending on the density of the sample, the appropriate
quantity of Ysynth is created.
5. To create synthetic follow these steps; for each instance,

in the group randomly pick a closest match and label it
as Ynearest . Compute the difference in vectors between the
minority sample and its nearest neighbor then adjust it by a
value ‘‘r’’, between 0 and 1. To generate a sample combine
this adjusted vector with the original instance to yield a new
synthetic data point Ysynth [j]

6. The formula for generating the synthetic sample
Xsynth [j] is expressed as follows using Equation (7):

Ysynth [j] = Yminority [i] + r(Ynearest − Yminority[i]) (7)

7. Continue steps 4 and 5 until the quantity difference
between the classes is eliminated.
r is a random value between 0 and 1, chosen for each

compositional to ensure diversity when generating synthetic
data.
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Algorithm 1 Federate Local Preprocessing and Local
Rebalancing
Require: The Global model from central server
Ensure: The Client model trained on its local dataset
K : total number of clients
F : total number of featuers
For i to K

Load local dataset Di
X=[]
F=[]
# Perform chi-square statistic for feature selection
For j=1 to F

X2
ij =

∑ki
j=1

(Oij−Eij)2

Eij

X.appendX2
ij

End For
Fi = sort(X2

ij, order = densending)
Fi,Top50 = Fi[1 : 50]
Xi = Di[:,Fi,Top50]

Wi = argmaxw

∣∣WTSB,iW
∣∣

|WTSw,iW|
Yi = XiWi
//Rebalance
If Yi is not balance then

Identify minority class in Yi as Yminority
Calculate Ddensity for Yminority using the K-n nearest

neighbors
Determine the number of synthetic samples w Nsynth

needed
Ysenth = []

For yi in Yminority
Find Ynearest, the k-nearest neighbors for yi i in

Yminority
For j = 1 to Nsynth

r = rand(0, 1)
Ysynth

[
j
]

= Yminority [i] + r∗
(Ynearest − Yminority[i])
Ysynth.append(Ysynth[j])
End for

End for
Ytrain.append(Ysynth)

End If
Local Model Z Train (Model, Ytrain)
Return Local Model
End For

i : index used to point to a specific sample within the subset
Yminority. This subset contains the samples from underrepre-
sented class in the dataset post-LDA features. Each i is unique
to a particular sample in Yminority.
j : is used to reference synthetic samples generated for each

element Yminority[i]. This index is specifically utilizedwithin a
loop that creates these samples based on density calculations
and the extent of class imbalance.

All the processes happening on the client side are explained
in Algorithm 1.

B. SERVER SIDE: ADDRESSING INTER-CLIENT
IMBALANCE
To tackle the challenge of client-specific imbalances, the
framework introduces an innovative adaptive client selection
strategy based on the concept of uncertainty symmetry (SU)
as shown in algorithm 2.

1) ADDRESSING INTER-CLIENT IMBALANCE THROUGH
SYMMETRIC UNCERTANTY WITH ADAPTIVE THERSHOULD
Server-side processing has a vital role in FL, particularly
when the user’s data does not follow an independent and
identically distributed (iid) pattern. This process is critical in
selecting the suitable users to participate. Hence, an essen-
tial tool in this selection process is known as Symmetry
Uncertainty (SU), a metric that measures the similarities or
differences in data distributions among clients. The formula
for calculating SU is as follows in Equation (8):

SU (X ,Y ) = 2
IG(X/Y )
H (X)H (Y )

(8)

Hence, in this specific context, IG(X/Y ) denotes the amount
of information gain related to feature X , which is treated as
an attribute that is unrelated to the class attribute Y . H (Y )

signifies the entropy of feature X, while H (Y ) represents the
entropy of feature [34].

Symmetry Uncertainty at the server is used to choose
clients whose data distribution is close or similar to a normal
distribution. The goal of this process is to reduce the imbal-
ance in class distribution and manage different data sizes.
This step is completed by asking each client to send a brief
overview of their class data to the server, presented as nk .
This process ensures the privacy of client’s data by exclud-

ing data points even if the nk summary may not exactly match
the clients actual class distribution.

The server utilizes an adaptive threshold to select the
proper clients for participating in the last version of the
global model. This process, in addition to the utilization of
Symmetry Uncertainty (SU), is discussed in Section C.

2) SAFEGUARDING DATA PRIVACY AND AVOIDING DATA
LEAKS
It is well known that protecting data privacy is at the top
priority in the FLP-DS2MOTE-USA framework. There is
a thorough set of measures to protect the data from being
leak among the clients themselves or between clients and
the server. The initial Federated Local Preprocessing (FLP)
phase is essential to keep sensitive details or raw data of
the client in personal device. Instead, data sent to the server
are simply updates on the model, in particular adjustments
to the weights after local training. This configuration could
prevent any efforts to recreate or infer the original data from
these changes. Moreover, while selecting the clients, the
server does not receive individual data points rather it receives
broad summaries about class distributions. These overviews
are developed carefully to contribute to model improvement
with protecting against any unauthorized attempts to access
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Algorithm 2 Server-Side Client Selection Using Symmetry
Uncertainty With Adaptive Threshold
Require: Data summaries from all clients
Ensure: Selection of suitable clients for FL process
Input:

K : total number of clients
N: set containing class distribution summaries from

each client {n1, n2, . . . , nK }

T: predefined quantile threshold for selection
Output:

S: subset of selected clients
SU = []
S = []
For k = 1toK

SU [k] = 2 IG(X/Y )
H(X)H (Y )

SU.appendSU[j]
End For
τSU = Q(T , SU )
For k = 1 to K
if SU [k] < τSU
S.appendS[j]
Return S

sensitive data. Adopting these strategies helps the FLP-
DS2MOTE-USA framework to ensure the privacy data of all
parties in the FL cycle, creating a strong barrier against any
potential leaks of clients’ data.

3) ADPTIVE CLIENT SELECTION
The server uses a flexible threshold for the Symmetry Uncer-
tainty (SU) metric to dynamically pick a group of clients
that help achieve a more even global model. This method is
aimed at reducing the imbalance between clients by choosing
those with data distributions that are either already balanced
or that enhance the diversity of the overall dataset necessary
for the global model. The use of an adaptive threshold means
the selection criteria can be adjusted based on the changing
levels of imbalance and diversity among the clients as the
learning progresses, ensuring the process remains responsive
and effective throughout.

The adaptive there should is calculated using Equation (9):

τSU = Q(T ; SU1, SU2, . . . , SUK ) (9)

where:
Q is the quantile function.
SUK is the symmetric uncertainty for the K client,

indicates whether their data distribution is balanced or
unbalanced.
T is a constant and a predefined selection used to choose

the clients.
due to this formulation, the quantile evaluation of the sym-

metric uncertainty of all participating clients can be used to
dynamically modify the threshold τSU in each selection cycle.
Through doing this, it guarantees that the selection criteria
will continue to be responsive and sensitive to any changes in

the data’s features over time, improving the learning process’
effectiveness and relevance in a variety of data areas and
scenarios.

IV. IMPLEMENTATION AND EVALUATION
The proposed methodology was evaluated using two distinct
datasets: the Human Activity Recognition with Smartphones
(UCI HAR) dataset and the HAR OpenPose. These exper-
iments were performed on a computer equipped with an
Intel(R) Core (TM) i7-10750H CPU and 24GB of RAM. For
each dataset, the data was randomly split, allocating 70% for
training and the remaining 30% for testing.

A. HUMAN ACTIVITY RECOGNITION WITH SMART
PHONES DATASET ( UCI HAR)
The HAR database was constructed from 30 volunteers
within an age bracket of 19-48 years. Each person per-
formed six activities (WALKING, WALKING_UPSTAIRS,
WALKING_DOWNSTAIRS, SITTING, STANDING, LAY-
ING) wearing a smartphone (Samsung Galaxy S II) on the
waist. This device captured data on both 3-axial linear accel-
eration and 3-axial angular velocity at a consistent rate of
50Hz. To ensure accurate labeling, the activities were cap-
tured on video. Subsequently, the gathered data was randomly
split, allocating 70% for training purposes and the remaining
30% for testing. Six different activities are covered by the
561 unique features in the UCI HAR dataset.

B. HUMAN ACTIVITY RECOGNITION DATASET
(OPENPOSE)
The dataset is produced by applying OpenPose to videos
featuring people performing a range of activities, such as
standing, walking, squatting, and jumping. OpenPose outputs
the x and y coordinates of key points on the human body, like
the nose and the right elbow, which are then used as input
variables for a model designed to recognize activities. The
dataset is organized into 37 columns, with 36 of them being
input variables representing the x and y coordinates of these
body keypoints, and the remaining column (‘‘class’’) being
the target label for prediction. The objective is to construct
a dependable model capable of accurately identifying the
activity being performed.

C. MODEL NETWORK
The neural network is designed with one input layer, three
hidden layers, and a single output layer. The size of the
input layer corresponds to the number of components derived
from LDA. The three hidden layers have neuron counts of
256, 128, and 64, in that order. Batch normalization and
dropout are applied following each layer, with dropout rates
of 0.2 for the first two hidden layers and 0.1 for the third.
ReLU is the activation function chosen for all hidden layers.
The output layer uses a linear activation function for label
classification. A learning rate of 0.001 is set, and the model
is optimized using Stochastic Gradient Descent (SGD). Ran-
dom search was utilized in the experiments to determine the
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hyperparameters of the model, such as batch size, number of
epochs, and dropout rate, etc.

D. PERFORMANCE EVALUATION
Although accuracy is commonly the go-to metric for clas-
sification problems, indicating the proportion of correctly
predicted instances out of the total, it can be misleading
when dealing with imbalanced datasets. In such scenar-
ios, the model may yield a high accuracy rate while being
biased towards the more prevalent class and ignoring the
less common one. To address this, a range of alternative
evaluation metrics like accuracy, precision, recall, F1-score,
mean square error, Matthews Correlation Coefficient (MCC)
[35], confusion matrix are used. These additional metrics
offer amore nuanced assessment of themodel’s effectiveness.

Accuracy (Equation 10): Accuracy is calculated as the
number of correct predictions divided by the total number of
predictions.

Accuracy =
Number of Correct predictions

Total of predictions
(10)

Precision (Equation 11): Precision is the ratio of true positive
predictions to the sum of true positive and false positive
predictions.

Precision =
TP

TP+ FP
(11)

Recall (Equation 12): Recall is the ratio of true positive
predictions to the sum of true positive and false negative
predictions.

Recall =
TP

TP+ FN
(12)

F1-score (Equation 13): F1-score is the harmonic mean of
precision and recall.

F1 − score = 2
Precision ∗ Recall
Precision+ Recall

(13)

Matthews Correlation Coefficient (MCC) (Equation 14):
MCC is a measure of the quality of binary classifications,
taking into account true and false positives and negatives.

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(14)

False Positive Rate (FPR) (Equation 15): FPR is the ratio of
false positive predictions to the sum of false positive and false
negative predictions.

FPR =
FP

FP+ FN
(15)

TP is True Positive, TN is True Negative, FP is False Positive,
and FN is False Negative.

V. RESULT AND DISCUSSION
The FLP-DS2MOTE-USA algorithm significantly outper-
forms FedAvg, FedSgd, FedSmote, and FedNova in terms
of efficiency when evaluated on the first dataset as shown in
figure 2 (a). Its efficiency is demonstrated by reduced sizes of
individual updates and lower total network overhead. Specif-
ically, FLP-DS2MOTE-USA has an individual update size of
175896, which is considerably less than the 745240 reported
for both FedSgd and FedAvg, and the 14904800 recorded
for FedSmote and FedNova. Furthermore, the network over-
head for FLP-DS2MOTE-USA is only 43974000, much
lower than the overheads reported for FedSgd, FedAvg,
FedSmote, and FedNova as depicted in the graph for the
UCI HAR dataset. The notable differences in update size
and network overhead clearly demonstrate the enhanced
efficiency and optimization of the FLP-DS2MOTE-USA
algorithm.

When assessing performance with OpenPose HAR in
figure 2 (b), FLP-DS2MOTE-USA markedly surpasses
FedAvg, FedSgd, FedSmote, and FedNova in terms of effi-
ciency. It features considerably lower update sizes and
reduced network overhead, as illustrated in the data visual-
ization. These results underscore the efficiency and efficacy
of FLP-DS2MOTE-USA in HAR scenarios

In summary, the FLP-DS2MOTE-USA algorithm signif-
icantly reduces computation time, network overhead, and
system complexity. The implementation of Chi-square and
Linear Discriminant Analysis for data preprocessing sig-
nificantly enhances the computational efficiency. This is
particularly advantageous for IoT devices operating in FL
scenarios that handle datasets with a vast array of features.
By condensing the feature set, we reduce data process-
ing requirements, which translates to lower computational
load and energy usage. Additionally, our approach of tar-
geted synthetic data generation and selective model updates
minimizes unnecessary computation, optimizing energy effi-
ciency. These strategies ensure that resource-constrained
devices, such as those used in IoT applications, can operate
effectively with our framework. However, it’s important to
acknowledge that while our framework demonstrates sub-
stantial advantages for complex datasets, its benefits are
comparatively reduced for smaller datasets with fewer fea-
tures, where simpler methods may suffice.

In Figure 3 (a), the efficacy of five distinct algorithms—
FLP-DS2MOTE-USA, FedAvg, FedSgd, FedSmote, and
FedNova—is assessed on the UCI HAR dataset using met-
rics like Accuracy, Recall, Precision, F1 Score, and MCC.
The results highlight FLP-DS2MOTE-USA’s dominance,
particularly in Precision and MCC, showcasing its superior
capability in diminishing classification mistakes and accu-
rately detecting class instances within HAR.

For OpenPose HAR, FLP-DS2MOTE-USA continues its
exemplary performance, closely mirroring the score achieved
in UCI HAR, as shown in Figure 3(b).

The FLP-DS2MOTE-USA technique is highly effec-
tive for HAR tasks, particularly with imbalanced datasets.
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FIGURE 2. Comparison of the update size and network overhead
between the suggested framework and the state-of-the-art FL algorithm
(a) UCI HAR and (b) OpenPose HAR.

Its accuracy and unbiased classification make it suitable for
real-world applications.

The lower scores of FedAvg, FedSGD, FedSMOTE, and
FedNova can be attributed to their inability to adequately
address the issue of data imbalance within the dataset.
FedAvg and FedSGD are basic federated learning algo-
rithms that do not incorporate any mechanisms to handle
class imbalance. FedSMOTE and FedNova cannot address
all types of imbalanced data as mentioned previously. As a
result, their models tend to be biased towards the majority
class, leading to lower performance metrics such as Precision
and MCC, especially in datasets where certain activities are
underrepresented.

The framework FLP-DS2MOTE-USA shows its effective-
ness in dealing with class imbalance, as evidenced by the
balanced results shown in the confusion matrix in Figure 4.
On the other hand, the confusion matrices for the four
algorithms (listed in the Appendix) reveal various misclassi-
fications, suggesting skewed data distributions and potential
challenges in handling complex feature spaces.

In FL, increasing the number of clients significantly
impacts communication costs, computational demands, and
learning phases. Figure 5 illustrate that as the number of

FIGURE 3. Performance metrics (Accuracy, Recall, Precision, F1, MCC)
comparison of FLP-DS2MOTE-USA, FedAvg, FedSgd, FedSmote, and
FedNova on UCI and OpenPose HAR Dataset.

clients grows, the average time per round and the total time for
50 rounds rise, reflecting heightened communication over-
head and greater computational load. The UCI HAR dataset
shows steeper increases compared to OpenPose, indicating
higher complexity. These factors collectively result in longer
training periods and delayed model convergence, highlight-
ing the need to balance the number of clients with system
efficiency to optimize performance and resource utilization.
This indirectly affects the accuracy and loss of the model
because the increase in the number of clients causes increased
noise in the global model update, as shown in Figure 6.
Examining the five algorithms via the provided bar chart,

it’s clear that the proposed method surpasses both FedAvg
and FedSgd. These two methods struggle because they fail
to properly manage imbalances within or between classes.
Conversely, while FedSmote and FedNova attempt to rectify
imbalances by generating synthetic samples, their approach is
insufficient. They neglect crucial factors like the distribution
density of the minority classes and the closeness of minority
to majority classes. Such oversights can lead to additional
complications, ultimately diminishing their performance rel-
ative to the Proposed method. Figure 7 distinctly demonstrate
the Proposed method’s exceptional ability to achieve low
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FIGURE 4. Comparison confusion matrix for FLP-DS2MOTE-USA: (a) UCI
HAR and (b) OpenPose HAR.

False Positive Rates across various classes, highlighting its
robustness in handling imbalances.

For the UCI HAR dataset, the FLP-DS2MOTE-USA
framework’s proposed method stands out with an accuracy
of 90.03%, surpassing other techniques such as SVD-LDA
(88.187%), SVD (59.773%), Chi-PCA (62.10%), Chi-ICA
(58.03%), and Chi-sparse PCA (55.24%) (Table 2). This
underscores the proposed method’s efficiency in exploit-
ing the dataset’s features to achieve superior performance.
The SVD-LDA combination, improving upon the perfor-
mance of SVD alone, highlights the limited efficacy of
SVD when used in isolation. Incorporating LDA with SVD,
however, significantly enhances the algorithm’s capacity for
dimensionality reduction while preserving key discrimina-
tive attributes, emphasizing the value of integrating various
feature selection and reduction strategies for maximum effec-
tiveness. Conversely, the HAR (OpenPose) dataset presents
an alternative scenario, with the proposed method attaining
a 96.58% accuracy, closely tailed by SVD-LDA at 96.22%,
and followed by Chi-sparse PCA at 93.99%, Chi-PCA at
90.57%, SVD at 86.55%, and Chi-ICA at 95.17% (Table 2).
The distinct nature and characteristics of this dataset may
make it better suited to these particular feature selection and
reduction approaches. Despite SVD’s reduced efficiency on
its own, its combination with LDA significantly bolsters the
algorithm’s performance, indicating that the rightmix of SVD
and LDA can greatly improve the model’s accuracy and clas-
sification capabilities. This showcases the proposed method’s

FIGURE 5. The relationship between the average time per round and the
total time with the number of customers (a) UCI HAR and
(b) OpenPose HAR.

FIGURE 6. Variation in accuracy and loss with increasing number of
clients: A comparative study for (a) UCI HAR and (b) OpenPose.

versatility and effectiveness across various datasets, further
solidifying its status as a robust and adaptable solution.
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FIGURE 7. Heatmap comparison of proposed approaches with state-of-the-art fl algorithms for (a) UCI HAR and (b) OpenPose HAR .

VI. REAL-WORLD APPLICATION
The FLP-DS2MOTE-USA algorithm marks a consider-
able breakthrough in Human Activity Recognition (HAR),
establishing unprecedented performance standards vital for
real-world applications. Based on our research, this algorithm
achieves reductions in individual update sizes and network
overhead by over 88% and 78%, respectively, surpassing
existing federated learning methods such as FedAvg, FedSgd,
FedSmote, and FedNova. These significant improvements
make the FLP-DS2MOTE-USA particularly advantageous
for IoT environments, where it is essential to limit both
computational burden and network traffic. Industries like

healthcare and smart home technology are poised to gain
enormously from adopting this more accurate, energy-
efficient, and effective activity recognition technology.More-
over, the algorithm contributes to enhanced operational
efficiency and promotes environmental sustainability within
tech-driven sectors by significantly cutting down on energy
usage and operational expenses.

VII. ENHANCED PERFORMANCE ANALYSIS OF
FLP-DS2MOTE-USA
The inherent variability of non-iid. data across clients
presents significant challenges to model efficacy in FL. Our
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TABLE 2. The FLP-DS2MOTE-USA framework reveals significant
differences in accuracy when various feature selection and
reduction methods are applied to two HAR datasets.

innovative FLP-DS2MOTE-USA framework effectively nav-
igates these issues, setting it apart from traditional methods
such as FedAvg, FedSgd, FedSMOTE, and FedNova. These
conventional approaches often fail to fully account for the
profound effects of non-iid. data, consequently affecting their
overall effectiveness. Conversely, our framework’s federated
local preprocessing (FLP) actively addresses these variances
at their origin. This preprocessing not only enhances the
quality of feature extraction but also indirectly ameliorates
class imbalances, creating a more equitable and represen-
tative dataset for subsequent model training. This proactive
stance against non-iid data variances is a fundamental reason
for our model’s enhanced performance.

Within our framework, we introduce an optimized ver-
sion of the SMOTE algorithm, termed DS2MOTE, which
is specifically adapted for federated contexts. DS2MOTE
diverges from traditional models by accurately assessing
the density between majority and minority classes to avert
overfitting—a common shortfall in approaches like FedAvg
and FedSgd. This deliberate recalibration ensures our model
improvements are substantial, concentrating on essential fea-
tures and reducing unnecessary complexity. This method
effectively tackles the overfitting problems that FL models
often suffer from.

VIII. CONCLUSION
This paper proposed FLP-DS2MOTE-USA framework as an
approach to overcome the challenges of dataset imbalance
and localized data preprocessing. Two different datasets:
UCI_HAR and OpenPose HAR have been used to test
this model. The model has been compared with other
algorithms such as FedAvg, FedSgd, FedSmote, and Fed-
Nova, the model achieved impressive accuracies of 90.57%
and 96.58%, respectively. Particularly, managing model
combination in scenarios plagued by data imbalance and
maintaining robust generalization had been performed by
demonstrated exceptional courage of framework. Moreover,
the experiments shed light on selecting optimal learning
architectures for accurate HAR.

This research addressed several key open questions in
the context of FL for HAR. The issue of data imbal-
ance was managed by introducing the DS2MOTE to create
synthetic data points for underrepresented classes. This

approach balanced the data within client datasets, lead-
ing to significant improvements in model performance and
accuracy. For optimal feature selection and dimensional-
ity reduction, Chi-square and Linear Discriminant Analysis
(LDA) were employed, helping identify pertinent features
and simplify data structures, thus enhancing the efficiency
and accuracy of the FL models. Additionally, symmetric
uncertainty with adjustable thresholds was used for client
selection, managing variability in the size and distribution of
client datasets, ensuring balanced contributions from clients
and improving the robustness and performance of the feder-
ated model.

The commitment to privacy protection is a key aspect of
the FLP-DS2MOTE-USA model, that ensuring the sensi-
tive client data remains securely on the local device. This
approach preserves dataset balance in a FL context, also
protects data privacy and promoting effective learning.

In light of the challenges of dataset imbalance and
local data preprocessing within FL environments, the
development of FLP-DS2MOTE-USA represents a crucial
step forward. The framework not only increased accuracy
but also maintained strict privacy standards, making it par-
ticularly useful in sensitive applications. However, exploring
FL is an ongoing journey with many open research ques-
tions that need to be addressed to improve and enhance the
applicability of such frameworks. Future research will focus
on expanding the model’s adaptability to handle different
forms of non-independent matching distributions, such as
feature skewness and label skewness, which are common
in real-world scenarios. Additionally, investigating scalabil-
ity and computational efficiency will be crucial to ensure
that FL can be practically implemented across more diverse
datasets.

By addressing these critical questions, future developments
can provide more robust, efficient, and practically applicable
solutions, further advancing the field of federated learning for
human activity recognition.

APPENDIX A
The confusion matrix of FedAvg, FedSgd FedSmote and
FedNova when applied to the UCI_HAR and OpenPose HAR
data sets respectively.

186292 VOLUME 12, 2024



Z. K. Taha et al.: Advances in Federated Learning

APPENDIX B
The flowchart details the preprocessing steps for bal-
ancing and normalizing data before updating the global
model.
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