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ABSTRACT Task Scheduling is a crucial challenge in cloud computing as diversified tasks come rapidly onto
cloud console dynamically from heterogeneous resources which consists of different task lengths, processing
capacities. Generating schedules for these type of tasks is a challenge for Cloud Service Provider(CSP).
Therefore, to generate task schedules in cloud paradigm effectively by considering type of task arising
to cloud console and match it with respective Virtual Machine (VM), a task scheduler is formulated by
using Deep Deterministic Policy Gradient (DDPG) algorithm which is used as methodology to design
scheduler. This scheduler works in three stages. In the initial stage, tasks are classified based on length
and processing capacity to identify them whether they are High Performance Computing (HPC) tasks or
High Throughput Computing (HTC) tasks. After classification, in the second stage, resources are to be
tracked which matches the corresponding nature of tasks. Finally, in the third stage, according to the VM
priorities calculated based on electricity unit cost and tasks are mapped according to the priorities to the
corresponding VMs. Simulations are conducted using Cloudsim with fabricated workload distributions and
realtime worklogs. Finally, our proposed Hybrid workload Deep Deterministic Policy Gradient Task sched-
uler(HDDPGTS) evaluated overDQN,A2C algorithms. From results, it proved that our proposedHDDPGTS
significantly improved makespan, Energy consumption, scheduling overhead, scalability over baseline
approaches.

INDEX TERMS Task scheduling, cloud computing, makespan, energy consumption, DQN, DDPG, A2C.

I. INTRODUCTION
Cloud Computing paradigm renders various on demand ser-
vices (computing, network, storage) to its customers around
the world seamlessly by using a simple application without
having any on premises infrastructure at the customer end. All
these services can be rendered to various customers around
the world with help of virtualization technology which helps
to auto scale the resources in cloud environment based on
the demand of customers. Facilitating all these services on
demand byCloud Service Provider(CSP)with the help of task
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scheduling algorithm employed by CSP. Handling enormous
number of tasks and assign them to appropriate computation
resource in cloud paradigm is a challenging task [1]. Task
Scheduling Problem (TSP) is a critical issue to tackle in cloud
computing model as variety of tasks from heterogeneous
resources with diversified run time capacities are arriving at
cloud application console. Therefore, to tackle these vari-
ety of tasks and effectively to be mapped onto appropriate
VMs is challenge in this paradigm as it is NP-hard prob-
lem [2]. Ineffective task scheduling in other words improper
mapping of tasks to VMs by not considering type of task,
runtime leads to decrease in quality of service of CSP which
can effect makespan, energy consumption. Earlier authors
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proposed various schedulers using metaheuristic approaches
and solved TSP in their own perception [3] but still there is a
challenge in cloud paradigm as TSP is a NP-hard problem
which cannot render solutions with in definite amount of
time. Many earlier authors modeled task scheduling algo-
rithms using nature inspired/metaheuristic approaches to
optimize the scheduling process but still challenges persists
in cloud paradigm as metaheuristic approaches are not able
to render optimized solutions when heavy and diversified
workloads comes to cloud platform [1] because of explo-
ration of search space is not easy when huge workloads
comes to cloud platform. Therefore, our research is started
to formulate task scheduler using a deep reinforcement learn-
ing technique known as Deep Deterministic Policy Gradient
algorithm(DDPG) which is a reinforcement learning tech-
nique. It is more adaptable, accelerable when compared with
other approaches. Therefore, by using the above approach a
task scheduler is formulated which initially classifies type of
task in cloud paradigm. The main objective of our research
is to classify HPC, HTC (hybrid) types of workloads and
based on their type, task scheduler which is proposed by using
DDPG need to schedule to the corresponding VMs based
on priorities while minimizing parameters makespan, energy
consumption, scheduling overhead, scalability, utilization of
resources.

A. MOTIVATION AND CONTRIBUTIONS
In Cloud Computing, Task scheduling is a crucial challenge
which was addressed by many earlier authors but still this
research has certain potential problems to be solved while
scheduling tasks to virtual resources in cloud datacenters.
Main challenge in Task scheduling is assigning upcoming
heterogeneous tasks to the precise VMs in cloud datacenters
because it is highly dynamic in arrival patterns of tasks and
there are higher chances that at all times same requests may
not comes to cloud platform. Therefore, it is difficult for CSP
to identify and schedule these tasks precisely to VMs in cloud
datacenters. In the scheduling process, assigning a task to
suitable resource in cloud platform is highly desirable as inef-
fective assignment of tasks to VMs without consideration of
their type, length, run time capacities may lead to increase in
execution time, overhead of scheduling in terms of memory,
energy consumption. Therefore, these reasons motivated us
take up this research to formulate a task scheduling technique
which classifies hybrid workloads i.e. either HPC or HTC
and then assign those tasks to VMs resided in prioritized
datacenters with low electricity cost. Our proposed approach
is modeled using Deep Deterministic policy gradient tech-
nique which can accelerate fast and learn and extract feature
information from the posed data into the scheduler module
to evaluate makespan, scheduling overhead, resource utiliza-
tion, scalability, energy consumption.

Highlights of manuscript is presented below.

1. A hybrid workload aware Deep Deterministic policy
gradient based Task scheduler is formulated in this
manuscript.

2. Initially, in the first stage, a task classification mechanism
to detect whether it is HPC or HTC traffic based on task
length, processing capacity of tasks.

3. In second stage, resource manager tracks resources for the
match of corresponding workload.

4. In the third stage, VM priorities calculated based on
electricity cost. After calculating priorities, based on pro-
cessing capacities of VMs, type of tasks are matched to
those VMs using HDDPGTS.

5. Simulations conducted on Cloudsim with the input of fab-
ricated workload and realtime supercomputing worklogs.

6. Finally, HDDPGTS evaluated over DQN, A2C to evaluate
parameters makespan, energy consumption, scheduling
overhead, scalability, utilization of resources.

Structure of the remaining manuscript is presented here.
Section II presents related works, Section III presents Math-
ematical Modeling & System architecture of HDDPGTS,
Section IV presents Methodology of Proposed HDDPGTS,
Section V presents Simulation &Results, Section VI presents
Conclusion & Future Works.

II. RELATED WORKS
In [1] author formulated scheduling model uses integer pro-
gramming for minimization of task latency, acknowledging
NP-hard nature of the scheduling problem, which makes
exact optimization solution for larger instances. As a heuristic
approach a customized Genetic Algorithm (GA) is intro-
duced to achieve the objectives. The performance of this
GA-based approach is evaluated in Cloudsim environment
which accounts for dynamic nature of IoT environment.
It was compared over baseline algorithms. In [2] author
design the task scheduling approach edge computing which
brings the cloud computing facilities closer to mobiles users,
addressing needs of computation intensive, time sensitive
tasks. The nature of edge networks characterized using
user mobility, intermittent traffic, often leads to imbalanced
resource allocation and performance issues. To overcome this
challenge a novel deep q network algorithm is employed
to handle complexity, high dimensionality of the scheduling
problem. The simulation carried out the edge Cloudsim. The
proposed method minimized service time, failed task rate.
Task scheduling challenges [3] in fog environments due to
inherent heterogenity among fog devices. To address this
issue, they proposed multi criteria decision making methods
AHP, TOPSIS. The primary objective is model for mapping
tasks to resource nodes in fog computing environments with
focus on performance optimization. Authors in [3] studied
various performance characteristics including memory, stor-
age, latency, bandwidth, trust, cost factors are considered
for tasks resources mapping. Two distant approaches are
explored: one utilizing AHP for priority weight calculation,
fog device ranking and the other employing AHP for priority
weight determination followed by TOPSIS for fog devices
raking. The simulation carried out the IFogsim to achieve
the cost, latency. It was compared against baseline models
RT-SANE, PORA. In [4] author formulated DFTLA task
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scheduling approach. It leverages the variable structure learn-
ing automata to determine efficient assignment of tasks to
fog nodes. It provides computing, storage, communication
resources in proximity to network edge, enabling efficient
processing of compute intensive tasks. Managing task exe-
cution for fog platforms poses significant challenges due to
dynamic, loosely interconnected fog nodes, along with their
failures. It ensures reliable task execution while optimizing
response time, energy consumption. It’s simulated in MAT-
LABR 2017. The experimental results are compared against
the baseline algorithms. Transmission of vast data volumes
to cloud and subsequent responses can lead to significant
latency and impose high demands on network bandwidth. The
energy sources for fog computing servers presents a notable
challenge for service providers in IIOT application, with
task scheduling identified as a crucial challenge for energy
consumption on fog servers. In [5] author address these chal-
lenges and formulated the task scheduling approach called
HHOLS. It tackles discrete natured task scheduling. It addi-
tionally integrates swap mutation mechanism to improve
solution quality for workload balance across VMs. It was
simulated by Cloudsim. The proposed algorithm was com-
pared against the FALS, GWOLA, BALS, PSOLS, MVALS
and WALS achieved the makespan, cost, flow time, energy
consumption.

In [6] author formulated task scheduling by establishing a
quantitative energy aware model for load balancing, schedul-
ing optimization in smart factories. To tackle complex energy
consumption issues within manufacturing clusters author
presents ELBS method. It begins by constructing energy
model linked to workload on fog node. Experiments are
conducted using a candy packing line. Results demonstrated
that ELBS successfully achieves the optimal scheduling, load
balancing for mixing work robots, showcasing its ability to
address intricate energy consumption these results compared
against conventional central station control scheduling. In [7]
author introduces the utility computing where clients are
charged based on their service consumption, posing chal-
lenges i.e. VM placement in data centers. This mapping
the VMs to hosts to achieve objectives like load balancing,
energy efficiency, resource utilization, response time opti-
mization. To address these challenges author formulated ML
based strategy for VM placement aimed at load balancing
across host machines (HMs). In this approach, a learning
agent selects actions in each learning episode and receives
rewards based on the effectiveness of the chosen action.
Through this iterative learning episodes, the agent updates
its action value table, enhancing decision making for future
actions and ultimately improving performance. The proposed
algorithm was simulated by the cloudsim environmental and
compared against the MOVMrB strategy across various sce-
narios demonstrates of our approach showcasing superior
load balancing with reduced runtime and fewer active HMs.
In [8] authors proposed workflow scheduling in fog-cloud
environments with aim of achieving energy aware scheduling

within task completion times. Author proposed scheduling
algorithm which operates in two stages. It assigns computa-
tional intensive tasks to cloud on the other hand tasks with low
computation time are assigned to fog nodes. Author proposed
Deadline aware frequency scaling approach for reducing
energy consumption. It was simulated by the MATLAB and
proposed model compared against the baseline algorithms
EM-MOO, EM-MCC. In [9] author formulated a two-level
scheduling model using fog nodes within same fog cluster,
leveraging an improved variant NSGA-II that accounts for
diversity among different devices. Simulations conducted
using MATLAB validate the effectiveness of scheme in min-
imizing service latency, enhancing task execution stability.
cloud computing offers seemingly limitless computational
capabilities, it falls short in meeting the real-time demands of
these applications. cloud computing lies in the inherent delays
incurred during data transmission between edge IoT devices,
centralized cloud data centers.

In [10] author address this challenge, fog computing
has emerged, extending computational resources closer to
edge devices to better fulfill requirements of time-sensitive
applications. It proposes scheduling solution that leverages
three-tier fog computing architecture to effectively manage
a maximal number of requests while meeting their specified
deadline constraints. It utilizes mixed integer programming
to minimize instances of missed deadlines, with validation
conducted through an exact solution method. Given NP-hard
nature of scheduling problem inherent in fog computing
environments, exact optimization techniques may prove inad-
equate for typical-sized problem instances. Hence, heuristic
approach by employing genetic algorithm (GA). Performance
of proposed GA is evaluated, compared against traditional
RR, priority scheduling methodologies. It indicates a signifi-
cant reduction in deadline misses, ranging from 20% to 55%,
when utilizing the proposed approach compared to alterna-
tive techniques. It was simulated by the Cloudsim. In [11]
author formulated a novel approach that combines GA with
GELS to tackle task scheduling problem in cloud computing.
To evaluate its effectiveness, it compared against traditional
algorithms GA, PSO. It was simulated by the Cloudsim envi-
ronmental and achieved minimizing makespan, maximizing
resource utilization. Cloud computing provides users with a
shared and customizable pool of computing resources acces-
sible online, catering to their specific needs. Efficient job
scheduling within the cloud is vital to uphold service quality
and enhance overall system efficiency.

In [12] authors designed scheduling technique based on
MPSO, aimed at addressing the challenges associated with
lengthy scheduling times, high computation costs prevalent
in cloud environment job scheduling. MPSO algorithm allo-
cates jobs to VMs with objective of tackle cost, makespan.
It integrates biological principles into the algorithm to
mitigate premature convergence, enhance local search capa-
bility. It compared against baseline algorithm standard PSO.
In [13] author formulated a workload-based approach for
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executing interdependent tasks using heterogeneous comput-
ing resources. Primary objective of approach is to allocate
tasks which minimizes total time required for completion.
It builds upon max-min algorithm applied to DAG which
represents tasks. It was simulated in Cloudsim and conducted
tests in standard scientific workflows and the results indi-
cates proposed approach significantly improved makespan,
improvement in task allocation. In [14] author designed a
task scheduling algorithm for increasing demand for higher
processing power coupledwith the exponential growth of data
presents a significant challenge for efficient task schedul-
ing within the cloud environment. It utilizes SSV, LSV,
CSV to optimize task dispatching. Through experimentation,
our results demonstrate that the BCSV algorithm achieves
superior load balance and makespan compared to existing
algorithms in heterogeneous network environments.

In [15] author formulated the task scheduling algorithm
for multiprocessor task scheduling involves executing mul-
tiple tasks simulated in system crucial operation in fog-cloud
multiprocessor. Author addresses these issues effectively and
minimize energy consumption. It integrates genetic algorithm
with an energy aware scheduling model. It was simulated
by the MATLAB. Results are compared against the baseline
algorithms GA, GSA, ACO, RR for scheduling efficiency.
In [16] author designed scheduling mechanism with the
use of cooperation search mechanism to solve dynamic
nature of user service demand task scheduling. It allocate
tasks efficiently to fastest executing processor. Effective task
assignments, schedules significant impact system operation,
especially in heterogeneous multiprocessor systems. It was
simulated by the Cloudsim and results are compared against
the baseline algorithms NGA, GA, WOA, GSA, HHG to
tackle makespan, speedup, throughput. It optimizes allo-
cation of tasks to VMs to minimize execution time and
maximize efficiency.

Authors in [17] propose an ideal optimal task scheduling
HWACO algorithm. It builds upon ACO Algorithm, offer-
ing enhancements in performance improvement. Through
experimentation, the HWACO algorithm demonstrates supe-
rior performance compared to traditional algorithms ACO,
QANA, MTF-BPSO, MIN-MIN, FCFS. Simulation anal-
ysis is done Cloudsim. In [18] author formulated a task
scheduling mechanism for maximizing resource utilization,
minimize execution time. Authors proposed a CNN-MBO
for scheduling to maximize throughput, minimize makespan.
Additionally, modified RSA employed to encrypt data for
secure transmission. It was evaluated using a cloudlet simu-
lator. Comparative analysis made with other task scheduling
approaches to tackle response time, energy consumption.
In [19] author introduces DAMPA for scheduling in cloud
computing. Two sets of experiments conducted to evaluate
DAMPA’s performance. In the first case, DAMPA demon-
strated significant reductions in both makespan, energy
consumption, achieving reductions of up to 21.06% and
23.47%, respectively, compared the IMMPA, HHO, WOA,

MRFOSSA algorithm. In the second case, average reductions
of 34.35% in makespan and 38.60% in energy consumption
were observed. Additionally, DAMPA consistently achieved
higher throughput in both case experiments.

In [20] author formulated task scheduling hybrid approach
that combines PSO with GA. Initially, particle swarm is
divided into sub-populations in each generation. These
sub-populations undergo adjustments using a phagocytosis
mechanism and crossover mutation from genetic algorithms,
thereby broadening search space of solution and explo-
ration. It was simulated by the Cloudsim and experimental
results are compared against the baseline algorithm are
PSO scheduling, GA scheduling, EIGA scheduling and pro-
posed scheduling achieved minimizing the task completion
time. In [21], author formulated Q – learning based task
scheduling in cloud computing with centralized task dis-
patcher implements it which prioritizes to minimize response
time, CPU utilization, energy consumption. Simulation car-
ried with Cloudsim and results are compared against the
two approaches MMS-O0Q and MMS-O1Q. In [22] author
address the demand for efficient information processing and
networking services continues to rise, the complexity of
managing tasks dynamically. The complexity of this tasks
classified as NP-hard challenges in achieving optimal balance
across various factors of cloud computing. Author proposed
a novel algorithm named DQTS. It integrates strengths of
Q-learning, deep neural network to tackle task schedul-
ing problem, particularly concerning DAG tasks in cloud
computing environments. Experimental results are carried
out the workflowsim compared against the baseline algo-
rithms FCFS, MAXMIN, MINMIN and RR. The proposed
model achieved to minimized the makespan and load balance.
In [23] cloud computing, distributed and parallel computing
challenge in task scheduling due to inherent complexity of
cloud systems. To tackle this issue author formulated the two
approaches first approach, Efficient K-means (Ekmeans), and
the second, K-means HEFT (KmeanH), incorporating HEFT
to minimize processing time, enhance efficiency for given set
of tasks. Simulation carried out the MATLAB 2018b results
are compared with variations of HEFT.

In [24] author formulated a task scheduling clipped dou-
ble deep q learning algorithm to solve cloud datacenters
is no longer feasible due to concerns such as bandwidth
constraints, latency issues, cost implications and energy
consumption. The proposed approach target network and
experience relay to optimize task scheduling efficiency to
minimizing cost, energy consumption. Simulation carried
out with simpy. In [25] author formulated energy efficient
scheduler in cloud data centers is crucial not only for cost
reduction but also for aligning with green computing prin-
ciples. Recent research efforts have been directed towards
addressing challenges such as execution overhead and scal-
ability in energy-efficient task scheduling. Author proposed
a machine learning based ANN scheduler to minimizing
the makespan, energy consumption, execution overhead.
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Simulation was carried out the Cloudsim and MATLAB
2018b results are compared against the baseline algorithms
GA, linear regression based efficient task schedulers. In [26]
author formulated the task scheduler for task need to be
scheduled effectively to ensure optimal resource utilization
and meet performance requirements. Author proposed a
framework integrates the six different scheduling approaches
including MET, Suffrage, Min-mean, Min-var. Each of these
algorithms is considered for its suitability in different sce-
narios and workload characteristics. To enable accurate
prediction, employed four separate neural networks, each
dedicated to predicting the best algorithm for a specific
scheduling parameter. Additionally, PCA used to extract rel-
evant features from dataset, enhancing prediction accuracy.
It was minimizing the cost, throughput, makespan and degree
of imbalance and its was simulated by the Cloudsim. Recog-
nizing the criticality of reliability enhancement in dynamic
environments like the cloud.

In [27] Author developed multi-agent scheduler powered
by RL, NFQ algorithms to focus on efficiently managing
user requests by taking queue buffer size each resource.
Proposed framework aims to optimize resource allocation
and scheduling decision thereby enhancing system relia-
bility and service quality, makespan. It was simulated by
the python. The results are compared against the baseline
algorithms FIFS, greedy, random scheduling. In [28] author
introduced QMTSF designed to dynamically allocate tasks
to precise servers for cloud environment. Initially, tasks are
allocated to precise servers, later an enhanced Q-learning
employed on each server to assign tasks to VMs. In proposed
framework, agent makes decision based on past experi-
ence, interactions with environment, learning from rewards
to formulate an optimal task allocation while meeting task
deadlines. Performance of proposed mechanism compared
with PSO, random assignment, RR. In [29] author formulated
the MOABCQ method is to tackle task scheduling, resource
utilization while maximizing Virtual Machine (VM) through-
put. It was achieved by considering parameters makespan,
cost, resource utilization. Through performance evaluations
conducted using Cloudsim. It was compared against FCFS,Q-
learning, MOPSO, MOCS, across various datasets such as
Random, Google Cloud Jobs, Synthetic workload. In [30]
author formulated job scheduling problem specific to cloud-
deployed Spark cluster, proposed an innovative RL model
capable of accommodating SLA effectively. To implement
this model, developed an RL-based cluster environment,
deployed two DRL based schedulers using the TF-Agents.
These DRL scheduling agents operate at fine-grained level,
strategically allocating job executors while taking into con-
sidering pricing model of VM instances. It was simulated
by the MATLAB 2018b reduce the cost efficiency perfor-
mance improvement. Vehicular networks can also be used
as an application of cloud paradigm and the importance
of reputation, trustworthiness in vehicular networks when
cloud paradigm is used for all transactions is mentioned
in [51]. Authors in [51] formulated a privacy preserving

trustworthiness updation mechanism developed based on
updates given by CSP to trusted authorities about the move-
ment of vehicles and their interactions discussed. It was
compared over existing approaches and results proved signif-
icant improvement by improving robustness and decreasing
communication overhead.

From the Table 1, it was observed that many authors in
developed different scheduling algorithms using metaheuris-
tic, machine learning techniques while evaluating various
parameters but still as TSP is a dynamic problem and a
scheduler is needed which initially classifies the hybrid work-
load comes from heterogeneous devices onto cloud console
and later calculating priorities of VMs based on electric-
ity cost while giving these classified tasks and priorities to
DDPG based scheduler to generate schedules while evaluat-
ing parameters named as energy consumption, utilization of
resources, scheduling overhead, scalability, makespan.

FIGURE 1. Proposed system architecture of HDDPGTS.

III. SYSTEM ARCHITECTURE AND MATHEMATICAL
MODELLING OF HDDPGTS
This section discusses System Architecture of proposed
Hybrid DDPG based Task Scheduler (HDDPGTS). There-
fore, proposed HDDPGTS is formulated by considering set
of tasks indicated as tn1 = {t1, t2, . . . .tn1} to be scheduled
on to considered set of VMs vmk1 = {vm1, vm2, . . . vmk1}
which are placed in physical machine nodes Indicated
as hni1 = {hn1, hn2, . . . hni1} and all these physical
machine nodes are placed in datacenters indicated as
dtcj1 = {dtc1, dtc2, dtc3 . . . dtcj1}. Problem formulation for
task scheduler is done in such a way that considered number
of tn1 tasks are to be precisely schedule HPC, HTC tasks
to considered number of vmk1 VMs while evaluating above
mentioned parameters.

In this architecture in fig.1, all incoming tasks submitted
onto user cloud application and there is a broker which is a
software agent on behalf of cloud service provider captures
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TABLE 1. Earlier task, workflow scheduling algorithms proposed by
various authors using ML techniques.

TABLE 1. (Continued.) Earlier task, workflow scheduling algorithms
proposed by various authors using ML techniques.

these tasks, submit to task manager. Inside the task manager,
a classification mechanism is induced to identify HPC, HTC
tasks to precisely schedule onto appropriate VMs by calcu-
lating the priorities of VMs by considering electricity unit
cost per unit. After classifying tasks whether they belong
to HPC or HTC then according to their computing capacity
scheduler need to send those tasks onto appropriate VMs by
checking their priorities based on electricity unit cost of VMs
at that datacenter. In other words, after classifying tasks in
task manager, HPC tasks need to be scheduled onto VMs
with high priority that means VMs with low electricity price
at datacenters as these tasks need more computing capacity
and our target is to consume less energy for these type of
tasks and remaining tasks which are classified as HTC are
scheduled onto VMs with priorities next to the HPC tasks
based on their availability. This task scheduler modeled using
Deep Deterministic Policy based Gradient(DDPG) which is a
policy based Deep reinforcement learning technique induced
into scheduler to generate optimized scheduling decisions
by minimizing makespan, energy consumption while track-
ing the available resources from Resource manager which
continuously in touch with Scheduler and VMs running in
datacenters.

Deep Deterministic Policy Gradient (DDPG) used for
modeling the task scheduler ensure that resource tracking is
for efficient scheduling. The policy-based deep reinforcement
learning DDPG reduces the makespan and power utilization
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through training and improving its observation of the environ-
ment. These include the Resource Manager which controls
the real time interactions with the Scheduler and the Virtual
Machines (VMs) takes place in data centers. By constantly
monitoring the resources’ usage and availability, it gives
the Scheduler all the relevant information that is needed for
decision-making.

Due to dynamic tasks in cloud environment over resource
demands and variability in resource availability, the Sched-
uler use adaptive scheduling mechanisms issued by the
Resource Manager. Using real time data the Scheduler is also
able to identify when a particular task requires more cloud
resources as it reallocated task across the available VMs in
order to ensure that the resources available are fully utilized
without having to overload a particular VM. This continuous
feedback loop and learning capability of the DDPG make it
possible for the Scheduler to well control resource contention
by timely providing the best VM allocation for tasks based on
the current and future availability.

TABLE 2. Notations in modelling HDDPGTS.

A. TASK CLASSIFICATION
Initially, as mentioned previously in the above architecture
in Figure 1, after submitting tasks to broker task manager
in which there are two components named as task capturing
system in which all the submitted tasks captured by it and
later there is a task classification module in which based on
its length and runtime capacity of task it will be identified as

either HPC or HTC task based on the time interval duration.
Initial task classification calculated using (1).

t idenn1 = t lenn1 ∗ tmipsn1 (1)

From eqn.1. t idenn1 represents either it is a HPC or HTC type
of task. t lenn1 is Classification of disbursed n1 tasks, tmipsn1 is
n1 tasks runtime capacity. It is calculated and identified with
the help of runtime capacity of task, duration of task, length
of task. If the runtime capacity of task tmipsn1 is high and even
if the length of task t lenn1 is less it will be treated as HPC task
by task classifier.

if (t idenn1 > H ) classify task as HPC

If length of task t lenn1 is high but runtime capacity tmipsn1 of
task is less then task execution time will be less and it will be
treated as HTC task.

if (t idenn1 < L) classify task as HTC

We need dynamic threshold values to classify the HPC
and HTC tasks over a period of time. For that, we use the
statistical metrics to update the thresholds dynamically:

H = mean
(
t idenn1

)
+ k ∗ std_dev(t idenn1 ) (2)

L = mean
(
t idenn1

)
− k ∗ std_dev(t idenn1 ) (3)

Here, k is a scaling factor that is tuned based on the specific
requirements of the system.

This is an iterative process to identify the misclassified
tasks and adjusting k value accordingly, and update the
threshold value.

B. CALCULATION OF VM PRIORITIES
After classifying the task as either HPC or HTC, tasks
are submitted to Task scheduler in which VM priorities
calculated based on electricity cost at corresponding datacen-
ters. VM priorities (vmpriok1 ) in each datacenter is calculated
using (4).

vmpriok1 =
elehigh costk1 dcj1 ∗ ldCPUn1

elecostk1 dcj1
(4)

elehigh costk1 dcj1 is highest electricity cost at j1 datacenters,
elecostk1 dcj1 is electricity cost of j1 datacenters. After calcu-
lating VM priorities, classified tasks which are of HPC and
HTC are scheduled onto VMs in such a way that HPC tasks
to be scheduled onto high prioritized VMs i.e. in other words,
VMswith low electricity cost is considered as high prioritized
VM and HPC tasks are scheduled onto those VMs. On the
other side, HTC tasks as mentioned above which runs with
less runtime capacity when it is compared with HPC tasks
which have more run time capacities. Therefore, these tasks
are to be scheduled onto VMs with low priority which are of
with high electricity cost.

HPC tasks, characterized by high runtime capacity even
if their length is short, are prioritized for VMs with lower
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electricity costs. Thus, HTC tasks, which have a higher length
but lower runtime capacity, are scheduled onto VMs with
higher electricity costs. The VM priorities in each data center
are calculated using the formula in the above mentioned (4).
This approach ensures that HPC tasks are assigned to VMs
with lower electricity costs, maximizing cost efficiency and
minimizing energy consumption.

The algorithm’s sensitivity to changes in electricity costs
directly influences scheduling performance. As electricity
costs change, the VM priorities are recalculated to reflect
these changes, ensuring that the most cost-effective resources
are always utilized. This dynamic adjustment allows the
scheduler to adapt to real-time variations in electricity
pricing, maintaining optimal resource allocation. However,
significant volatility in electricity prices may require fre-
quent recalculations, which could introduce overhead and
impact the overall performance. Despite this, the ability to
prioritize tasks based on current electricity costs ensures
that the scheduling algorithm remains both cost-effective
and energy-efficient, enhancing the overall performance and
sustainability of the data center operations

C. CALCULATION OF WORKLOAD ON VMs AND
PHYSICAL NODES
Scheduling these tasks onto appropriate prioritized VMs for
a scheduler is a challenge as it need to know whether that
VM is fully loaded and need to also now about its capacity.
Therefore, before scheduling a task onto VM, current work-
load running on VMs calculated by (5).

work loadvmk1 =

∑
work loadvmk1 (5)

work loadvmk1 is current workload on considered k1 VMs. All
these VMs considered in our research are resided in the
physical machine nodes, therefore we calculated workload on
physical machine nodes are calculated using (6).

work loadhni1 =
work loadvmk1

hni1
(6)

work loadhni1
is Current workload on considered hni1 Physical

host nodes.

D. CALCULATION OF PROCESSING CAPACITY OF VMs
After evaluating workloads on VMs, Physical Machine nodes
our interested is to calculate processing capacities of all VMs
as it is important to know processing capacity of a VM based
on type of task to be scheduled and it is calculated using (7).

procvmk1 = procno ∗ procmips (7)

procvmk1 is processing capacity of considered k1 VMs.VM
priorities and type of tasks are fed to HDDPG scheduler in
which based on type of task, run time processing capacity
it will be assigned to VM with appropriate priority based
on electricity cost and suitable processing capacity of a VM
while minimizing energy consumption, makespan.

E. MAKESPAN MODEL
In this proposed scheduling algorithm, makespan, Energy
Consumption considered as evaluation parameters. The main
reason to choose makespan as parameter is any task schedul-
ing algorithm in cloud computing is it directly effects
performance of task scheduler as if execution time of a task
is delayed or increased then it directly increases the value
of makespan and quality of service of cloud provider can
also be degraded. Therefore, initially execution time of tasks
calculated using (8).

exetn1 =
exet
procvmk1

(8)

exetn1 is execution time of considered n1 tasks. All tasks
are pertained to have a finish time and as well as deadline.
Note that, finish time of considered tasks should be less than
deadline of tasks. All the considered n1 tasks should be less
than or equal to deadlines of tasks. It is evaluated using (9)
and (10).

fitimetn1 =

∑
vmk1 + exetn1 (9)

fitimetn1 ≤ ddltn1 (10)

fitimetn1 is Finish time of considered n1 tasks, ddltn1 Deadline of
considered n1 tasks. After evaluation of execution time, finish
time in eqns. 6 to 8, makespan is evaluated using (11), (12).

mkpn1 = min(fitimetn1vmk1 ) (11)

min
(
fitimetn1vmk1

)
=

∑n1,k1

i=1,j=1
∂i,j(fitimetn1vmk1 ) (12)

mkpn1 is Makespan of considered n1 tasks. The aim of
makespan evaluation is to minimize execution time to
improve makespan of considered n1 tasks. In this research,
a deadline constraint is induced to make sure that all consid-
ered tasks to finish their execution before its posed deadline
constraint. From eqn.11, ∂i,j parameter is induced when
task tn1 is assigned to VM vmn1 it is to be represented as
1 or otherwise it is set to 0. After careful evaluation of
makespan, another important parameter identified is energy
consumption.

F. ENERGY CONSUMPTION MODEL
The reason to choose energy consumption as an evalua-
tion parameter is most of the cloud service providers incurs
high energy consumption with ineffective scheduling process
adopted in cloud environment. In other words, task schedul-
ing is effective only when tasks are classified based on their
processing capacity assigned to the matched VMs which can
be suitable for corresponding tasks. It is calculated using (13).

vmk1 =

{
active ∝k1
idle σk1

(13)

eneconsvmk1 = fitimetn1 ∗ ∝k1 +

(
mkpn1 − fitimetn1

)
∗ σk1 (14)

eneactcons = (enemax − enemin) ∗ reutil + enemin (15)

Totenecons =

∑
eneconsvmk1+ene

act
cons (16)

Toteneconsk1 is Energy consumption of considered k1 VMs.
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G. RESOURCE UTILIZATION MODEL
It discusses mathematical formulation of resource utiliza-
tion as an effective scheduling mechanism directly impacts
utilization of resources. Therefore, utilization of resources
is considered as another evaluating parameter. Generally,
in cloud paradigm, a resource can be a CPU, I/O, bandwidth.
In this research, our considered resource is CPU. Therefore,
running load on CPUs of all considered n1 physical host
nodes are calculated by (17).

ldCPUn1 =

∑s1

i1=1

usg (i1)
CPUn1

(17)

where s1 indicates active tasks on physical host node, usg (i1)
indicates usage of i1 CPU among n1 physical host nodes.

H. SCHEDULING OVERHEAD MODEL
After evaluation of utilization of resources, scheduling over-
head is discussed as for effective utilization of resources,
there is a certain importance of addressing overhead while
scheduling process in this paradigm. It is mathematically
formulated by (18).

schod =

∑n1

i=1
tn1 ∗ mem[tn1vmk1] (18)

I. SCALABILITY EFFICIENCY MODEL
The importance of scalability in cloud paradigm is how task
scheduler efficiently handles sudden increase of workloads.
It is formulated using (19), (20).

efscale =
timeideal (n1)

timeactual(n1, k1)
∗ 100 (19)

where timeideal (n1) is ideal time to execute task on a single
VM to the number of VMs while assuming tasks are divided
fairly.

timeideal (n1) =
timesingle (n1)

k1
(20)

IV. METHODOLOGY OF PROPOSED HDDPGTS
This section discusses methodology used for proposed
Hybrid workload Deep Deterministic policy gradient based
task scheduler(HDDPGTS). DDPG [50] is a policy gradient
based algorithm which adaptively learns policies by using
actor network and evaluates it through critic networks i.e.
on target evaluation networks. This gradient policy based
algorithm is essentially combined with Deep Q- Network
which increases adaptability with dynamic workload in the
cloud environment. It is basically based on actor critic frame-
work which performs actions based on states through which
it gets input using gradient policy. On the other side Critic
network evaluates reward generated by action space for every
iteration and it continuously tracks the reward generated and
reward expected in every iteration. It consists of four net-
works in this approach 1. Policy network which guides action
space to take considerable action based on input state spaces
2. Evaluation network which observes generated action and
gives a reward. 3. Target policy network which sets target

reward to be generated by action space and 4. Target evalua-
tion network is which need to evaluate the generated reward
whether it is inclined to the reward set by the target policy
network.

A. STATE SPACE
This subsection discusses about state space which is an input
sequence of tasks given at a specific time interval T and they
are represented as stT = {st1, st2, . . . .stT } and assumed that
stT = {feainf ohni1T , feainf otn1T }. Where feainf ohni1T indicates
feature information about physical host nodes considered in
our research, feainf otn1T indicates feature information about
tasks considered in research.

B. ACTION SPACE
This subsection discusses about action space which is an
action to be performed with the input sequence generated
by state space. In this research, it is to be considered as
mapping action of tasks to VMs with in a time interval of T .
It is represented as act = {act0, act1, act2, . . . ..actT } where
actT = {decn1k1}. It means that mapping procedure will be
depends on decision variable for a time interval T mentioned
as above.

C. POLICY
This subsection discusses policy to be used in DDPG which
guides action space to map set of tasks in state space to
appropriate VMs. This is to be indicated as λ (actT |stT ).

D. REWARD FUNCTION
After mapping tasks to VMs by action space with the help
of policy, an outcome will be generated called as reward
which is either a positive or negative reward. In this DDPG
approach, it is to be evaluated by target evaluation network,
target policy network but not to be submitted to the global
network as in the conventional actor critic algorithms. The
policy gradient applied at the time of mapping procedure to
check whether the mapping is inclined to target policy and
target evaluation networks. Reward function in this research
indicated by using (21).

rewT = min(Totenecons ,mkpn1) (21)

Unlike in conventional actor critic algorithms, in DDPG eval-
uated reward to be validated using target evaluation, policy
networks.

E. TARGET POLICY NETWORKS
In policy network, action performed using policy with gradi-
ent parameters θλ . For one iteration, it is indicated as actT =

λ (stT |θλ ). For the next iteration is updated as act∼T which is
generated by the next state st∼T . Target policy network looks
for next act∼T and it updates θλ to θλ∼

. It is expressed in (22).

M
(
θλ

)
= Eθλ [rew1 + τ rew2 + τ 2rew3 + ..] (22)
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F. TARGET EVALUATION NETWORKS
In the evaluation network, expected target of mapping process
is validated by updating q-function in iterative approach.
It updates q function parameter θq. q-function is indicated for
next iterations are expressed using (23).

qλ (stT , actT )=E[rew (stT , actT ) + τqλ
(
stT+1, λ (stT+1)

)
]

(23)

where τ is a discount factor in above eqn.17. The quality of
policy and its evaluation is expressed using (24).

Mω

(
λ

)
=

∫
pωqλ

(
stT , λ (stT )

)
ds

= Es∼pω [qλ
(
stT , λ (stT )

)
] (24)

λ = argmaxλM (λ ) (25)

where qλ
(
stT , λ (stT )

)
is expected reward generated when

policy λ is consideredwith states indicated as stT for schedul-
ing process. Mω

(
λ

)
is expectation of qλ

(
stT , λ (stT )

)
when

state spaces stT is disbursed on pω.

G. UPDATION OF POLICY AND EVALUATION NETWORKS
After evaluating the dispersed rewards generated from policy
guided actions and expected actions from target networks
with different states, updation of policy, evaluation networks
are expressed using below (26), (27),(28).

policy network =

 λ

(
stT |θλ

)
, gradient update

λ
∼

(
st∼T |θλ

∼)
, Soft update

(26)

q network =

{
q

(
stT , actT |θq

)
, gradient update

q∼
(
st∼T , actT |θλ

∼)
, Soft update

(27)

Finally in the above equations soft update of both policy
and evaluation networks are calculated by eqn.22.

soft update =

{
θλ

∼
← ϑθλ

+(1 − ϑ)θλ∼

θq∼← ϑθq+(1 − ϑ)θq
∼ (28)

H. PROPOSED HYBRID WORKLOAD DEEP
DETERMINISTIC POLICY GRADIENT BASED TASK
SCHEDULER(HDDPGTS)
Figure 2 discusses flow of Hybrid Workload Deep Deter-
ministic policy gradient based algorithm. It is initialized
with actor, critic networks with gradient parameters. Later
in the next step target policy, evaluation networks are to
be initialized with expected policies. After initialization of
these networks, randomly tasks are initialized and later task
classification, VM priorities are calculated using eqns.1, 2.
Apply mapping procedure of tasks using action space with
sample selection of state spaces and later calculate the reward
with eqn.19. After evaluating reward check obtained values
for makespan, energy consumption. Check the parameters are

FIGURE 2. Flow of HDDPGTS algorithm.

Input: tn1, vmk1,hni1,dtcj1, θλ , θλ
∼

,θq,θq∼, ϑ, ω, τ

Output: Optimal Mapping of set of tasks to VMs i.e. actT
start
Initialize both actor, critic networks λ(stT |θλ ),
q(stT , actT |θq)
Initialize both target networks q∼, λ

∼ by using weights
θλ

∼

← θλ and θq∼← θq.
Initialize tasks randomly
Calculate task classification using eqn.1.
Calculate priorities of VMs using eqn.4.
Select initial state st1 and check the reward for st1
Implement mapping i.e. action actT= λ

(
stT | θλ

)
with ran-

dom exploration of tasks.
Check reward rewT , and identify next state stT+1

Store values of (stT , actT , rewT , stT+1) in q-table.
Identify random values of (st i, act i, rewi, st i+1) of a mini-
batch of tasks from N transitions.
Evaluate q-value, as zi = rewi+
τq∼(st i+1,λ∼(st i+1|θλ∼)|θq∼)
Update policy network using eqn. 26.
Update critic network using eqn.27.
Update target networks using eqn.28.
Check the reward rewT using eqn.21.
Check if parameters are optimized
Else
actT ← λ (stT |θλ )
Continue this process till all iterations are completed.
stop

improved or not and if they improved update as best parame-
ters, end the scheduling procedure. If selected parameters are
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not best identified values apply the gradient policy to improve
these parameters till all iterations are completed.

I. ALGORITHM TIME COMPLEXITY
The time complexity of our proposed algorithm as follows:
In DDPG, the initialization steps for the actor, critic, target
actor and target critic networks, initializing tasks randomly,
task classification and VM priorities are defined respec-
tively by O(1), O(n), and O(m) complexities where n is
the number of tasks and m is the number of VMs. In the
iterative loop of each iteration, the process includes selecting
initial states and checking rewards takes, storing values in
the q-table, sampling minibatches, evaluating q-values and
updating networks, all these take O(b) per iteration, where
b is the minibatch size. The loop parameter T emphasizes
that the computational complexity inside the loop is T · b.
Hence, when taking into account all the preprocessing steps
and the iterative loop, the overall time complexity of the
algorithm will be C≜CK(CP,CE)=O(T·b+n+m), where T,
b are much bigger than n,m, thus the time complexity of
proposed algorithm is O(T.b)

V. SIMULATION AND RESULTS
Simulation and results of Hybrid workload Deep Determinis-
tic Policy gradient task scheduler (HDDPGTS) in section V.
It consists of various subsections in which Configuration
settings of simulation discussed in subsection A, makespan
evaluation by HDDPGTS discussed in Subsection, evalua-
tion of Energy Consumption using HDDPGTS discussed in
Subsection C, Results analysis discussed in Subsection D.
Extensive simulations conducted using fabricated datasets
with statistical distributions indicated as uniform distribu-
tion indicated as U1, normal distribution indicated as N2,
Left skewed distribution indicated as L3, right skewed dis-
tribution indicated as R4. After completion of simulation
using different distributions, then we used real time super-
computing logs HPC2N indicated as H5, NASA indicated
as N6. Entire simulations are conducted on Cloudsim. Our
proposed HDDPGTS compared over existing DQN [52],
A2C [53] algorithms to evaluate parameters energy consump-
tion, makespan. In Simulation setup, we have mentioned
that we used both fabricated, realtime worklogs. Fabricated
worklogs represents different statistical distributions consists
of U1 which consists of all equal sized small, medium,
large tasks. N2 distribution consists high number of medium,
less number of large, small tasks. L3 distribution consists
high number of small tasks, less large tasks. R4 distribution
consists less small number of tasks, high number of large
tasks. Moreover, real time worklogs are captured as H5, N6
identified from HPC2N [54], NASA [55] parallel worklogs.

A. CONFIGURATION SETTINGS FOR HDDPGTS
This subsection discussed settings used in proposed
HDDPGTS algorithm and they are mentioned in Table 3.

TABLE 3. Configuration settings used in HDDPGTS.

B. EVALUATION OF MAKESPAN BY HDDPGTS
This subsection discussed about calculation of makespan
using proposed HDDPGTS. In our research makespan is cho-
sen as a primary evaluating parameter. Reason for choosing
it as parameter is scheduling of tasks mainly relies on task
execution timewhich is an important component inmakespan
which directly affects quality of service of CSP. Increase in
makespan lead to delay in execution of tasks as variety of
tasks with different capacities and therefore in this research,
a mechanism is induced which classify tasks based on length
and capacity and then assign them to an appropriate VMs
based on processing capacity and VM priorities based on
electricity cost and schedules tasks onto appropriate VMs
using HDDPGTS. Figure 3 indicates makespan generated by
U1 distribution.

FIGURE 3. Makespan evaluation for HDDPGTS using U1 distribution.

Initially as mentioned our proposed HDDPGTS evalu-
ated against DQN, A2C algorithms. Simulation conducted
with 100 iterations. Initial makespan generated with 100,
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500, 1000 tasks with U1distribution for DQN is 787.23,
865.82, 878.17 respectively. Makespan generated for 100,
500, 1000 tasks with U1 distribution for A2C is 756.91,
848.28, 835.23 respectively. Finally, proposed HDDPGTS
generated makespan for 100, 500, 1000 tasks with U1 distri-
bution is 656.18, 732.19, 754.67. From the results mentioned
in Figure 3 it clearly specifies makespan is significantly
minimized over DQN, A2C algorithms for U1 workload.

FIGURE 4. Makespan evaluation for HDDPGTS using N2 distribution.

Makespan generated with 100, 500, 1000 tasks with
N2distribution for DQN is 823.17, 926.37, 954.17 respec-
tively. Makespan generated for 100, 500, 1000 tasks with N2
distribution for A2C is 809.28, 913.42, 908.35 respectively.
Finally, proposed HDDPGTS generated makespan for 100,
500, 1000 tasks with N2 distribution is 645.56, 823.42,
843.66. From results mentioned in Figure 4 it is clearly
specifies makespan is significantly minimized over DQN,
A2C algorithms for N2 workload.

FIGURE 5. Makespan evaluation for HDDPGTS using L3 distribution.

Makespan generated with 100, 500, 1000 tasks with L3
distribution for DQN is 853.45, 925.73, 976.38 respectively.
Makespan generated for 100, 500, 1000 tasks with L3 dis-
tribution for A2C is 822.45, 912.82, 911.87 respectively.
Finally, proposed HDDPGTS generated makespan for 100,
500, 1000 tasks with L3 distribution is 756.38, 867.38,

892.13. From the results mentioned in Figure 5 it is clearly
specifies makespan is significantly minimized over DQN,
A2C algorithms for L3 workload.

FIGURE 6. Makespan evaluation for HDDPGTS using R4 distribution.

Generated makespan with 100, 500, 1000 tasks with R4
distribution for DQN is 867.27, 956.17, 984.27. Generated
makespan for 100, 500, 1000 tasks with R4 distribution for
A2C is 830.12, 923.34, 928.35 respectively. Finally, proposed
HDDPGTS generated makespan for 100, 500, 1000 tasks
with R4 distribution is 745.12, 884.16, 867.28. From results
mentioned in Figure 6 it is clearly observed that makespan is
significantly minimized over DQN, A2C algorithms for R4
distribution.

FIGURE 7. Makespan evaluation for HDDPGTS using H5 worklogs.

For 100, 500, 1000 tasks makespan generated with H5
worklogs for DQN is 935.18, 1024.12, 1063.48 respectively.
For 100, 500, 1000 tasks makespan generated with H5Work-
logs for A2C is 912.74, 983.47, 988.63 respectively. Finally,
for proposed HDDPGTS for 100, 500, 1000 tasks makespan
generated is 853.28, 912.24, 924.33. From results mentioned
in Figure 7 it is clearly specifies makespan is significantly
minimized over DQN, A2C algorithms with H5 worklogs.

For 100, 500, 1000 tasks makespan generated with N6
worklogs for DQN is 942.28, 1018.36, 1057.11 respectively.
For 100, 500, 1000 tasks makespan generated with with N6
Worklogs for A2C is 921.37, 947.38, 956.29 respectively.
Finally, proposed HDDPGTS makespan for 100, 500,
1000 tasks with N6 worklogs is 862.31, 909.17, 915.69
respectively. From results mentioned in Figure 8 it is clearly
observed makespan is significantly minimized over DQN,
A2C algorithms with H5 worklogs.
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FIGURE 8. Makespan evaluation for HDDPGTS using H5 worklogs.

C. ENERGY CONSUMPTION EVALUATION BY HDDPGTS
This subsection discusses about energy consumption which
is a second evaluation parameter for HDDPGTS. Energy con-
sumption is important evaluation parameter in task schedul-
ing in cloud computing as ineffective mapping of tasks to
VMs without considering VMs processing capacity and task
processing capacity and its runtime then more energy will be
wasted in executing those tasks on VMs in corresponding
datacenters and it also impacts electricity costs for cloud
service providers. Therefore, Cloud Service Provider will
incurs a huge loss due to ineffective task scheduling. This
motivates us to evaluate this parameter to improve scheduling
process using HDDPGTS.

FIGURE 9. Energy consumption evaluation for HDDPGTS using U1
distribution.

Initially as mentioned that our proposed HDDPGTS evalu-
ated against DQN, A2C algorithms. For 100, 500, 1000 tasks
energy consumption generated with U1distribution with
DQN is 79.57, 81.36, 94.47 respectively. For 100, 500,
1000 tasks energy consumption generated with with U1 dis-
tribution for A2C is 76.54, 78.29, 82.54 respectively. Finally,
for proposed HDDPGTS with 100, 500, 1000 tasks energy
consumption generated with U1 distribution is 63.17, 64.22,
79.93. From results mentioned in Figure 9 it is clearly

specifies energy consumption is significantly minimized over
DQN, A2C algorithms for U1 distribution.

FIGURE 10. Energy consumption evaluation for HDDPGTS using N2
distribution.

For 100, 500, 1000 tasks energy consumption gener-
ated with N2 distribution for DQN is 74.37, 77.87, 80.17
respectively. For 100, 500, 1000 tasks energy consumption
generated with N2 distribution for A2C is 70.52, 73.47,
78.91 respectively. Proposed HDDPGTS with 100, 500,
1000 tasks energy consumption generated with N2 dis-
tribution is 62.77, 64.12, 70.58 respectively. From results
mentioned in Figure 10 it is clearly signifies energy consump-
tion is significantly minimized over DQN, A2C algorithms
for N2 distribution.

FIGURE 11. Energy consumption evaluation for HDDPGTS using L3
distribution.

For 100, 500, 1000 tasks energy consumption gener-
ated with L3 distribution for DQN is 75.26, 81.23, 88.37
respectively. For 100, 500, 1000 tasks energy consumption
generated with L3distribution for A2C is 74.13, 78.17, 83.24
respectively. Proposed HDDPGTS with 100, 500, 1000 tasks
energy consumption generated with L3 distribution is 64.04,
74.28, 79.11. From results mentioned in Figure 11 it is clearly
shows energy consumption is significantly minimized over
DQN, A2C for L3 distribution.
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FIGURE 12. Energy consumption evaluation for HDDPGTS using R4
distribution.

For 100, 500, 1000 tasks energy consumption gener-
ated with R4 distribution for DQN is 85.23, 87.51, 92.67
respectively. For 100, 500, 1000 tasks energy consumption
generated with R4 distribution for A2C is 81.07, 82.13, 90.91
respectively. Proposed HDDPGTS with 100, 500, 1000 tasks
energy consumption generated with R4 distribution is 76.21,
78.58, 88.73. From results mentioned in Figure 12 it is clearly
observed that energy consumption is significantly minimized
over DQN, A2C for R4 distribution.

FIGURE 13. Energy consumption evaluation for HDDPGTS using H5
worklogs.

For 100, 500, 1000 tasks energy consumption gener-
ated with H5 worklogs for DQN is 94.57, 98.29, 100.36
respectively. For 100, 500, 1000 tasks energy consump-
tion generated with H5 Worklogs for A2C is 92.13, 91.66,
95.39 respectively. Proposed HDDPGTS with 100, 500,
1000 tasks energy consumption generated for H5 worklogs
is 89.44, 82.78, 86.38. From results mentioned in Figure 13
it is clearly observed Energy Consumption is significantly
minimized over DQN, A2C algorithms with H5 worklogs.

For 100, 500, 1000 tasks energy consumption gener-
ated with N6 worklogs for DQN is 98.62, 105.47, 112.58
respectively. For 100, 500, 1000 tasks energy consump-
tion generated with N6 Worklogs for A2C is 91.36, 94.91,
97.85 respectively. Proposed HDDPGTS with 100, 500,
1000 tasks energy consumption generated for N6 worklogs
is 85.37, 87.19, 89.87. From results mentioned in Figure 14

FIGURE 14. Energy consumption evaluation for HDDPGTS using N6
worklogs.

it is clearly observed, Energy Consumption is significantly
minimized over DQN, A2C algorithms with N6 worklogs.

D. RESOURCE UTILIZATION EVALUATION BY HDDPGTS
It discusses about utilization of resources as it directly affects
overall performance of scheduler and cost optimization of
resources in perspective of cloud users. Therefore, utilization
of resources with proposed HDDPGTS using statistical dis-
tributions, realtime workloads.

FIGURE 15. Resource utilization evaluation for HDDPGTS using U1
distribution.

For 100-1000 tasks resource utilization evaluated with U1
distribution for DQN is 64.68, 71.37, 74.57 respectively.
Resource utilization evaluated with U1 distribution for A2C
is 72.56, 74.19, 84.58 respectively. Proposed HDDPGTS
with 100-1000 tasks resource utilization generated with
U1distribution is 83.49, 86.58, 89.38 respectively. From
results mentioned Figure 15 it is clearly observed that
Resource utilization is significantly improved over DQN,
A2C for U1 distribution.

For 100-1000 tasks resource utilization evaluated with N2
distribution for DQN is 66.78, 69.39, 71.69 respectively.
Resource utilization evaluated with N2 distribution for A2C
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FIGURE 16. Resource utilization evaluation for HDDPGTS using N2
distribution.

is 71.07, 66.86, 75.86 respectively. Proposed HDDPGTS
with 100-1000 tasks resource utilization generated with N2
distribution is 82.57, 87.68, 92.18 respectively. From results
mentioned Figure 16 it is clearly observed that Resource
utilization is significantly improved over DQN, A2C for N2
distribution.

FIGURE 17. Resource utilization evaluation for HDDPGTS using L3
distribution.

For 100-1000 tasks resource utilization evaluated with L3
distribution for DQN is 68.76, 72.59, 78.57 respectively.
Resource utilization evaluated with L3 distribution for A2C
is 78.45, 80.37, 81.87 respectively. Proposed HDDPGTS
with 100-1000 tasks resource utilization generated with L3
distribution is 89.92, 92.78, 96.89 respectively. From results
mentioned Figure 17 it is clearly observed that Resource
utilization is significantly improved over DQN, A2C for L3
distribution.

Resource utilization evaluated with R4 distribution for
DQNwith 100-1000 tasks is 57.92, 64.35, 72.76 respectively.
Resource utilization evaluated with R4 distribution for A2C
is 83.67, 78.04, 86.25 respectively. Proposed HDDPGTS
with 100-1000 tasks resource utilization generated with R4
distribution is 86.18, 92.32, 95.78 respectively. From results

mentioned Figure 18 it is clearly observed that Resource
utilization is significantly improved over DQN, A2C for R4
distribution.

FIGURE 18. Resource utilization evaluation for HDDPGTS using R4
distribution.

Resource utilization evaluated with H5 worklogs for DQN
with 100-1000 tasks is 54.37, 65.78, 72.16 respectively.
Resource utilization evaluated with H5 worklogs for A2C
is 65.67, 71.88, 74.29 respectively. Proposed HDDPGTS
with 100-1000 tasks resource utilization generated with H5
worklogs is 84.33, 88.12, 91.54 respectively. From results
mentioned in Figure 19 it is clearly observed that Resource
utilization is significantly improved over DQN, A2C for H5
workload.

FIGURE 19. Resource utilization evaluation for HDDPGTS using H5
worklogs.

Resource utilization evaluated with N6 worklogs for DQN
with 100-1000 tasks is 50.37, 63.24, 68.53 respectively.
Resource utilization evaluated with N6 worklogs for A2C
is 72.17, 78.43, 81.11 respectively. Proposed HDDPGTS
with 100-1000 tasks resource utilization generated with H5
worklogs is 89.46, 90.36, 96.28 respectively. From results
mentioned in Figure 20 it is clearly observed that Resource
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utilization is significantly improved over DQN, A2C for N6
workload.

FIGURE 20. Resource utilization evaluation for HDDPGTS using N6
worklogs.

E. SCALABILITY EFFICIENCY EVALUATION BY HDDPGTS
It discusses scalability efficiency of task scheduler with
different workload distributions of proposed HDDPGTS.
Reason to choose scalability as evaluation parameter is to
balance workload and act upon diversified tasks comes to
cloud platform. Therefore, to evaluate robustness of proposed
HDDPGTS with diversified workloads, scalability is calcu-
lated here in this research.

FIGURE 21. Scalability evaluation for HDDPGTS using U1 distribution.

Scalability evaluated with U1 distribution for DQN with
100-1000 tasks is 56.88, 69.27, 74.38 respectively. Scalability
evaluated with U1 distribution for A2C is 62.45, 72.18, 80.33
respectively. Proposed HDDPGTS with 100-1000 tasks scal-
ability generated with U1 distribution is 79.55, 83.51, 88.87
respectively. From results mentioned Figure 21 it is clearly
observed that Scalability is significantly improved over DQN,
A2C for U1 distribution.

Scalability evaluated with N2 distribution for DQN with
100-1000 tasks is 64.34, 71.56, 79.92 respectively. Scalability

FIGURE 22. Scalability evaluation for HDDPGTS using N2 distribution.

evaluated with N2 distribution for A2C is 69.04, 74.38, 81.78
respectively. Proposed HDDPGTS with 100-1000 tasks scal-
ability generated with N2 distribution is 80.37, 85.18, 89.22
respectively. From results mentioned Figure 22 it is clearly
observed that Scalability is significantly improved over DQN,
A2C for N2 distribution.

FIGURE 23. Scalability evaluation for HDDPGTS using L3 distribution.

Scalability evaluated with L3 distribution for DQN with
100-1000 tasks is 60.23, 70.58, 78.37 respectively. Scalability
evaluated with L3 distribution for A2C is 62.18, 72.43, 80.33
respectively. Proposed HDDPGTS with 100-1000 tasks scal-
ability generated with L3 distribution is 83.58, 87.99, 90.56
respectively. From results mentioned Figure 23 it is clearly
observed that Scalability is significantly improved over DQN,
A2C for L3 distribution.

Scalability evaluated with R4 distribution for DQN with
100-1000 tasks is 63.55, 67.21, 71.42 respectively. Scalability
evaluated with R4 distribution for A2C is 67.57, 74.86, 82.15
respectively. Proposed HDDPGTS with 100-1000 tasks scal-
ability generated with R4 distribution is 85.62, 89.09, 92.36
respectively. From results mentioned Figure 24 it is clearly
observed that Scalability is significantly improved over DQN,
A2C for R4 distribution.

Scalability evaluated with H5 Worklogs for DQN with
100-1000 tasks is 78.17, 79.88, 86.78 respectively. Scala-
bility evaluated with H5 worklogs for A2C is 80.45, 82.37,
88.99 respectively. ProposedHDDPGTSwith 100-1000 tasks
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FIGURE 24. Scalability evaluation for HDDPGTS using R4 distribution.

FIGURE 25. Scalability evaluation for HDDPGTS using H5 worklogs.

FIGURE 26. Scalability evaluation for HDDPGTS using N6 worklogs.

scalability generated with H5 worklogs is 90.18, 92.37, 94.21
respectively. From results mentioned Figure 25 it is clearly
observed that Scalability is significantly improved over DQN,
A2C for H5 worklogs.

Scalability evaluatedwithN6Worklogs for DQNwith 100-
1000 tasks is 74.23, 80.33, 84.78 respectively. Scalability
evaluated with N6 worklogs for A2C is 82.73, 86.11, 89.25
respectively. Proposed HDDPGTS with 100-1000 tasks scal-
ability generated with N6 worklogs is 92.87, 95.76, 97.32
respectively. From results mentioned Figure 26 it is clearly
observed that Scalability is significantly improved over DQN,
A2C for N6 worklogs.

F. SCHEDULING OVERHEAD EVALUATION BY HDDPGTS
It discusses evaluation of scheduling overhead which is a
crucial parameter in scheduling process. It affects memory
usage pattern as diversified tasks may arrive at cloud platform
and the way proposed HDDPGTS schedules tasks impacts
scheduling overhead in this research. Therefore, it is evalu-
ated using different workloads.

FIGURE 27. Scheduling overhead evaluation for HDDPGTS using U1
distribution.

Scheduling overhead evaluated with U1 distribution for
DQNwith 100-1000 tasks is 78.56, 82.57, 97.15 respectively.
Scheduling overhead evaluated with U1 distribution for A2C
is 79.97, 87.36, 96.73 respectively. Proposed HDDPGTS
with 100-1000 tasks, scheduling overhead generated with U1
distribution is 68.53, 70.74, 67.36 respectively. From results
mentioned Figure 27 it is clearly observed that Scheduling
overhead is minimized over DQN, A2C for U1 distribution.

Scheduling overhead evaluated with N2 distribution
for DQN with 100-1000 tasks is 85.78, 96.17, 100.36
respectively. Scheduling overhead evaluated with N2 distri-
bution for A2C is 89.37, 78.17, 98.35 respectively. Proposed
HDDPGTS with 100-1000 tasks, scheduling overhead gener-
ated with N2 distribution is 70.12, 72.18, 69.18 respectively.
From results mentioned Figure 28 it is clearly observed that
Scheduling overhead is minimized over DQN, A2C for N2
distribution.

Scheduling overhead evaluated with L3 distribution for
DQNwith 100-1000 tasks is 78.92, 86.72, 98.36 respectively.
Scheduling overhead evaluated with L3 distribution for A2C
is 56.35, 68.77, 89.18 respectively. Proposed HDDPGTS
with 100-1000 tasks, scheduling overhead generated with L3
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FIGURE 28. Scheduling overhead evaluation for HDDPGTS using N2
distribution.

FIGURE 29. Scheduling overhead evaluation for HDDPGTS using L3
distribution.

distribution is 52.21, 61.33, 70.57 respectively. From results
mentioned Figure 29 it is clearly observed that Scheduling
overhead is minimized over DQN, A2C for L3 distribution.

Scheduling overhead evaluated with R4 distribution
for DQN with 100-1000 tasks is 79.17, 89.15, 100.35
respectively. Scheduling overhead evaluated with R4 distri-
bution for A2C is 73.21, 69.18, 90.25 respectively. Proposed
HDDPGTS with 100-1000 tasks, scheduling overhead gener-
ated with R4 distribution is 51.66, 60.24, 68.37 respectively.
From results mentioned Figure 30 it is clearly observed that
Scheduling overhead is minimized over DQN, A2C for R4
distribution.

Scheduling overhead evaluatedwithH5workload for DQN
with 100-1000 tasks is 105.64, 123.56, 134.56 respectively.
Scheduling overhead evaluated with H5 workload for A2C
is 98.57, 121.33, 12787 respectively. Proposed HDDPGTS
with 100-1000 tasks, scheduling overhead generated with H5
distribution is 84.32, 78.18, 75.67 respectively. From results
mentioned Figure 31 it is clearly observed that Scheduling
overhead is minimized over DQN, A2C for H5 workload.

FIGURE 30. Scheduling overhead evaluation for HDDPGTS using R4
distribution.

FIGURE 31. Scheduling overhead evaluation for HDDPGTS using H5
workload.

FIGURE 32. Scheduling overhead evaluation for HDDPGTS using N6
workload.

Scheduling overhead evaluatedwithN6workload for DQN
with 100-1000 tasks is 112.64, 125.28, 136.73 respectively.
Scheduling overhead evaluated with N6 workload for A2C
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is 95.23, 128.76, 132.54 respectively. Proposed HDDPGTS
with 100-1000 tasks, scheduling overhead generated with N6
distribution is 88.53, 79.45, 82.35 respectively. From results
mentioned Figure 31 it is clearly observed that Scheduling
overhead is minimized over DQN, A2C for N6 workload.

G. DISCUSSION AND RESULT ANALYSIS
Simulation Analysis of proposed HDDPGTS discussed in
this subsection. The below tables 4, 5, 6, 7, 8, 9 shown
improvement of makespan for proposed HDDPGTS over
DQN [52], A2C [53] algorithms.

TABLE 4. Improvement of makespan for HDDPGTS for u1 distribution.

TABLE 5. Improvement of makespan for HDDPGTS for N2 distribution.

TABLE 6. Improvement of makespan for HDDPGTS for L3 distribution.

TABLE 7. Improvement of makespan for HDDPGTS for R4 distribution.

TABLE 8. Improvement of makespan for HDDPGTS for H5 worklogs.

TABLE 9. Improvement of makespan for HDDPGTS for N6 worklogs.

From the above tables, It clearly observed that proposed
HDDPGTS is adaptive to different workloads and minimizes
makespan over DQN, A2C algorithms. In view of improve-
ment for HDDPGTS N2 distribution gave best makespan
over the other distributions and the reason for that is N2
distribution consists of all types of medium, short, long tasks
which proves that proposed approach is adaptive to all types
of workload distributions. When it is compared with other
approaches DQN, A2C using realtime worklogs H5worklogs
significantly improved makespan over other algorithms and
even if it consists of high performance tasks in H5 work-
logs HDDPGTS generated schedules in order to improve
makespan.

The below tables 10, 11, 12, 13, 14, 15 shown improvement
of Energy consumption for proposed HDDPGTS over DQN,
A2C algorithms.

TABLE 10. Improvement of energy consumption for HDDPGTS for U1
distribution.

TABLE 11. Improvement of energy consumption for HDDPGTS for N2
distribution.

TABLE 12. Improvement of energy consumption for HDDPGTS for L3
distribution.

TABLE 13. Improvement of energy consumption for HDDPGTS for R4
distribution.

From the above tables, it clearly observed that proposed
HDDPGTS is adaptive to different workloads and minimizes
energy consumption over DQN, A2C algorithms. In view
of improvement for HDDPGTS N2 distribution gave best
energy consumption over the other distributions and the rea-
son for that is N2 distribution consists of all types of medium,
short, long tasks which proves that proposed approach is
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TABLE 14. Improvement of energy consumption for HDDPGTS for H5
worklogs.

TABLE 15. Improvement of energy consumption for HDDPGTS for N6
worklogs.

adaptive to all types of workload distributions. When it is
compared with other approaches DQN, A2C using realtime
worklogs H5 worklogs significantly improved energy con-
sumption over other algorithms and even if it consists of
high performance tasks inH5worklogsHDDPGTS generated
schedules in order to improve energy consumption.

The below tables 16, 17, 18, 19, 20, 21 shown improve-
ment of utilization of resources for proposed HDDPGTS over
DQN, A2C algorithms.

TABLE 16. Improvement of resource utilization (%) for HDDPGTS for U1
distribution.

TABLE 17. Improvement of resource utilization (%) for HDDPGTS for N2
distribution.

TABLE 18. Improvement of resource utilization (%) for HDDPGTS for L3
distribution.

From the above tables, it clearly observed that proposed
HDDPGTS is adaptive to different workloads and improves
resource utilization over DQN, A2C algorithms. In view
of improvement for utilization of resources for HDDPGTS
U1 distribution gave significant improvement in resource
utilization over DQN and the reason for that is U1 distri-
bution consists of all types of medium, short, long tasks

TABLE 19. Improvement of resource utilization (%) for HDDPGTS for R4
distribution.

TABLE 20. Improvement of resource utilization (%) for HDDPGTS for H5
workload.

TABLE 21. Improvement of resource utilization (%) for HDDPGTS for N6
workload.

which proves that proposed approach is adaptive to all types
of workload distributions. Proposed HDDPGTS improves
resource utilization with R4 distribution over A2C approach
as it consists of high large number of tasks. When it is
compared with other approaches DQN, A2C using realtime
worklogs H5, N6worklogs there is a significant improvement
in resource utilization over DQN with H5 worklogs and over
A2C it gives best utilization of resources even if it consists of
high performance tasks inH5worklogsHDDPGTS generated
schedules in order to improve resource utilization.

The below tables 22, 23, 24, 25, 26, 27 shown improve-
ment of Scalability for proposed HDDPGTS over DQN, A2C
algorithms.

TABLE 22. Improvement of scalability (%) for HDDPGTS for U1
distribution.

TABLE 23. Improvement of scalability (%) for HDDPGTS for N2
distribution.

From the above tables, it clearly observed that proposed
HDDPGTS is adaptive to different workloads and improves
scalability over DQN, A2C algorithms with diversified work-
loads. In view of scalability for HDDPGTS N2 distribution
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TABLE 24. Improvement of scalability (%) for HDDPGTS for L3
distribution.

TABLE 25. Improvement of scalability (%) for HDDPGTS for R4
distribution.

TABLE 26. Improvement of scalability (%) for HDDPGTS for H5 worklogs.

TABLE 27. Improvement of scalability (%) for HDDPGTS for N6 worklogs.

gave significant improvement in scalability over DQN, A2C
and the reason for that is N2 distribution consists of all types
of medium, short, long tasks which proves that proposed
approach is adaptive to all types of workload distributions.
When it is compared with other approaches DQN, A2C using
realtime worklogs H5, N6 worklogs there is a significant
improvement in scalability over DQN with H5 worklogs and
over A2C it gives best scalability with N6 worklogs even
if it consists of high performance tasks in H5, N6 work-
logs HDDPGTS generated schedules in order to improve
scalability.

The below tables 28, 29, 30, 31, 32, 33 shown improvement
of Scheduling overhead for proposed HDDPGTS over DQN,
A2C algorithms.

TABLE 28. Improvement of scheduling overhead (%) for HDDPGTS for U1
distribution.

From the above tables, it clearly observed that proposed
HDDPGTS is adaptive to different workloads and mini-
mizes overhead of scheduling in terms of memory capacity
over DQN, A2C algorithms with diversified workloads.
In view of scalability for HDDPGTS U1 distribution gave

TABLE 29. Improvement of scheduling overhead (%) for HDDPGTS for N2
distribution.

TABLE 30. Improvement of scheduling overhead (%) for HDDPGTS for L3
distribution.

TABLE 31. Improvement of scheduling overhead (%) for HDDPGTS for R4
distribution.

TABLE 32. Improvement of scheduling overhead (%) for HDDPGTS for H5
workload.

TABLE 33. Improvement of scheduling overhead (%) for HDDPGTS for N6
workload.

best scalability improvement over DQN and the reason for
that is N2 distribution consists of all types of medium, short,
long tasks. For A2C best scalability improvement given by
L3 workload which consists of more small tasks and less
large tasks which proves that proposed approach is adaptive
to all types of workload distributions. When it is compared
with other approaches DQN, A2C using realtime worklogs
H5, N6 worklogs there is a significant improvement in
scalability over DQN with H6 worklogs and over A2C it
gives best scalability with N6 worklogs even if it consists
of high performance tasks in H5, N6 worklogs HDDPGTS
generated schedules in order to minimize scheduling over-
head. Therefore, from analysis of results, our proposed
HDDPGTS scheduler is adaptive to the diversified worklogs
and improves all mentioned above parameters which proves
that proposed approach is robust over diversified workloads.
Moreover that, HDDPGTS improved scalability over both
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types of statistical distributions, real time worklogs while
minimizing scheduling overhead.

VI. CONCLUSION AND FUTURE WORK
Task Scheduling in cloud paradigm is prodigious challenge
as various (Hybrid) types of tasks (mostly HPC and HTC)
generated from various resources. Scheduling these types of
tasks to precise VMs is a critical issue. Many existing authors
used metaheuristic, machine learning based algorithms to
design task schedulers but still there is a chance to optimize
scheduling is highly dynamic in cloud environment. Aim of
our task scheduling process is to identify and classify the type
of traffic under two categories as either HPC or HTC based
on their length, run time capacity. After classification these
tasks are to be fed toDDPG task scheduler tomake decision to
schedule tasks onto corresponding VMs based on electricity
cost while tracking the underlying resources in VMs. Exten-
sive simulations are conducted using Cloudsim with different
fabricated workload distributions, realtimeworklogs to facili-
tate HPC and HTC traffic in simulation. Finally, our proposed
HDDPGTS evaluated against DQN, A2C algorithms to check
effectiveness of HDDPGTS in terms of makespan, energy
consumption, scheduling overhead, utilization of resources,
scalability. From results, it shown that there is a significant
improvement over DQN, A2C algorithms while improving
above mentioned parameters. In future, our aim is to deploy
HDDPGTS inAWS cloud environment to check effectiveness
of it for other operational parameters in cloud environment.
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