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ABSTRACT Pressurized fluid pipelines are among the most crucial components in industrial settings.
Operating under high pressure leads to pipeline susceptibility to cracking, rupture, and significant damage.
Monitoring the condition and predicting the remaining useful life before the failure of pressurized pipes
are essential for informed and timely maintenance decisions. In this work, we propose a novel method for
predicting the remaining useful life of pressurized pipelines based on acoustic emission monitoring and
similarity-based learning. Specifically, acoustic emission sensors are deployed to record acoustic emission
events caused by cracks in the pipeline. A pipeline health indicator is proposed based on accumulated events
detected through a constant false alarm rate signal detector. Leveraging the historical run-to-fail trajectories
of the health indicator, a similarity measure is introduced to predict the remaining pipeline life. This method
computes the similarity between the current health indicator trajectory and past trajectories based on a
Euclidean distance in the proposed derivative convolutional domain. Trajectory similarity determines the
remaining lifetime similarity, which is weighted using data-adaptive fuzzy rules to estimate the current
remaining useful life. Elaborate experimental validations are conducted on a custom pressurized pipeline
system in a laboratory setting. Experimental results demonstrate the high efficacy of the proposed method
in predicting the remaining useful life of the pipeline, surpassing other commonly used methods in both
accuracy and certainty.

INDEX TERMS Remaining useful life, pipelines, acoustic emission, fuzzy logic, similarity learning.

I. INTRODUCTION
Fluid pipeline systems are indispensable components in
industrial settings [1]. Their primary function is to transport
various substances such as gasoline, diesel, natural gas, water,
and steam [2], [3], [4], [5]. Moreover, pipelines are used
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for transporting compressed air and chemicals in industrial
processes [6], [7]. Their widespread use is attributed to their
cost-effectiveness, safety, and capability to transport large
volumes of fluids [8]. However, pipelines are susceptible to
detrimental factors leading to deterioration, such as corro-
sion, cracking, and rupture after prolonged use [9]. These
pose hazards of severe consequences like resource loss, envi-
ronmental pollution, and substantial economic damage [10].
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Particularly, in industrial processes such as chemical pro-
duction and nuclear power, pipelines under high pressure
(pressurized pipelines) frequently encounter higher risks of
destruction, posing numerous dangers [11], [12], [13], [14].
Therefore, monitoring the condition of pressurized pipelines
is a mandatory requirement in production activities to ensure
their safety, stability, and reliability. Furthermore, pressurized
pipelines often operate under specific known profiles, involv-
ing pre-set changes in flow rates and pressures [15], [16]. This
provides the potential for forecasting health conditions, such
as the remaining useful life (RUL), of pressurized pipelines.
Based on the preliminary analyses of necessity and feasibility,
this study focuses on developing methods for monitoring
the health condition and predicting the RUL of pressurized
pipelines in industrial processes.

Generally, monitoring of pressurized pipelines can be
conducted through various methods, such as pressure and
flow rate monitoring [17], acoustic emission (AE) mon-
itoring [18], [19], or visual inspection [20]. For such
pipelines, it is crucial to track and to predict their con-
dition before failure, specifically concerning cracks and
ruptures [21]. While monitoring flow rate and pressure
promptly can detect ruptures in pipelines due to immediate
fluctuation, it is challenging to predict precursor symp-
toms, such as cracks, of malfunction [22]. Visual inspection
might better identify early signs of damage by assessing
pipe surface conditions, such as deformities. However, this
typically requires human labor and faces major limitations
in accessing buried pipelines, those in difficult-to-reach
areas, or detecting damages within the inner layers of a
pipeline [23].
AE monitoring is considered the most promising moni-

toring method for such pipes because it can predict events
due to high sensitivity to discontinuities along the pipe [24].
Even a small discontinuity, such as a small crack, can be
detected by AE sensors, a feat that cannot be accomplished
through other methods [10], [25]. Moreover, AE sensors can
continuously monitor equipment and pipelines in real time,
enabling the tracking of pipeline degradation [26]. Recently,
Quy et al. [27] presented a novel method for detecting and
localizing cracks in a high-pressure fluid pipeline using AE
signals by scanning peaks in signal channels in the time-
frequency domain. These peaks were filtered to determine
genuine AE events, and the time difference of arrival tech-
nique was used to localize the position of the leak. Livadiotis
et al. [28] introduced a new approach to consider the helical
propagation of AE events caused by helical guided waves
(HGW) for monitoring corrosion in steel pipelines. Using the
amplitudes of these events, a qualitative corrosion monitoring
approach employing b-value analysis was proposed. Huang
et al. [29] proposed a lightweight neural network to address
the strain on data transmission and processing resulting from
high-frequency AE sampling for monitoring crack leakage in
pipeline welds. However, these methods focus on detecting
and locating cracks and leaks in pipelines after they occur,
limiting the capability to monitor the health condition of
pipelines before failures occur.

In the frameworks of condition-based monitoring (CBM)
and prognostics and health management (PHM) using CBM,
an essential task is predicting the RUL. Predicting RUL
involves estimating the duration over which a system or
component can perform its function, which is crucial for
decision-making in contingency mitigation [30]. Typically,
such prediction involves two primary approaches: degrada-
tion model-based and historical data-based predictions [31].
Degradation model-based prediction relies on mathemati-
cal models representing degradation processes, providing
insights into underlying mechanisms and facilitating proac-
tive maintenance planning [32]. However, creating accurate
models can be challenging due to real-world uncertainties and
complexity [33]. Conversely, historical data-based methods
estimate RUL using past run-to-fail data, lacking proac-
tive insights but reflecting real-world failure scenarios [33],
[34]. While degradation models offer accuracy and proactive
maintenance potential, historical data-based methods offer
simplicity and practicality with limited detailed degradation
knowledge or extensive data.

Studies on data-basedmethods for pipeline RUL prediction
have garnered widespread attention due to their feasibil-
ity. Shaik et al. [35] investigated the effects of corrosion
on oil and gas industry piping systems, identifying factors
influencing pipe longevity such as pressure, corrosion, wall
thinning, and age. Subsequently, an artificial neural net-
work was deployed to predict the RUL of pipelines before
leakage based on inspection report data history from an oil
and gas company in Malaysia. Xu et al. [36] used machine
learning (ML) techniques to tackle the complexities of multi-
dimensional corrosion monitoring data, aiming for intelligent
corrosion prediction. They also highlighted the promising
applications of deep learning (DL) methods in this domain.
Priyanka et al. [37] introduced a digital twin-based frame-
work employing ML and prognostics algorithms to analyze
and to predict the risk probability rate of oil pipeline sys-
tems. They focused on pressure-based risk estimation for
RUL evaluation and abnormal pressure detection through
clustering methods. These RUL prediction methods primarily
focus on recent ML/DL models to predict the lifespan of
pipelines due to corrosion over time. Meanwhile, there is
no research on predicting the RUL of pressurized pipelines
where failures are caused by cracks or ruptures. Furthermore,
a major limitation of ML/DL models trained on data involves
data interpretation [38]. In these models, there is uncertainty
in the relationship between input data and predicted output,
reducing the certainty of predictions and the reliability of
models.

The issue of reliability in ML/DL models has been
highlighted in research on engineering prognostics because
certainty in predictions is needed for accurate mainte-
nance decisions. To address this drawback, explicit learning
methods based on data have been proposed, known as
similarity-based RUL prediction [39], [40]. These methods
examine the similarity in degradation behaviors between the
data under examination and historical data, predicting RUL
based on those of the most similar candidates. Recently,
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Lyu et al. [41] transformed historical data into local segments
representing degradation events and employed a strategy to
identify events similar to the current state. These identified
segments served as references for RUL estimation, with a
self-adaptive weight allocation method to enhance predic-
tion performance. Another previous study [42] developed a
multimodal degradation features and adjusted cosine similar-
ity (ACS) method for RUL prediction. The method utilized
empirical mode decomposition to separate global degradation
and random fluctuations and employed slow feature analysis
for local degradation features for enhanced similarity evalu-
ation. Qiu et al. [43] introduced a new approach called the
supervised multi-head self-attention autoencoder (SMSAE)
to directly extract a health indicator (HI) from raw vibration
signals. The proposed HI construction is used in a two-stage
residual life prediction framework based on similarity. How-
ever, current research on similarity-based RUL prediction
primarily focuses onmachines and rarely considers pipelines.

The analyses above show the considerable lack of com-
prehensive research in monitoring and predicting the RUL of
pressurized pipelines in industrial processes. This deficiency
is the main motivation for the present study. Specifically,
we harness the advantages of AE monitoring for assess-
ment of health condition of pressurized pipelines. In this
study, we for the first time propose a HI for pressurized
pipeline systems to represent the current health stage of
the system. The proposed indicator is derived from the
cumulative crack-related AE-hit events, representing poten-
tial failure warnings, detected by a constant false alarm rate
(CFAR) detector [44]. Subsequently, an enhanced data-based
explicit RUL prediction method is suggested to overcome
the limitations inexplicability imposed by the opaque nature
of ML/DL models. Inspired by [41], the proposed method
relies on the similarity between the current HI trajectory and
the past HI segments to estimate the remaining operational
time. The similarity of trajectories of the HI is measured
using Euclidean distances within the introduced derivative
convolutional domain (refer to Section II-B. for this defi-
nition). Afterward, these distances are weighted based on a
data-adaptive fuzzy logic rule to allow all computed distances
to be used with their corresponding similarity level. As the
distance decreases, the similarity in trajectory increases, lead-
ing to a higher allocated weight corresponding to greater
similarity in the RUL. Finally, the predicted RUL is the
weighted sum of the corresponding RULs of the computed
distances.

The main contributions of this research are summarized as
follows:

• A novel health indicator for pressurized pipelines is
introduced, constructed based on the accumulation of
AE-hit events using the CFAR detection algorithm.

• An enhanced similarity-based RUL prediction method is
proposed, using HIs from historical run-to-fail data. The
similarity evaluation strategy is based on Euclidean dis-
tances in an introduced derivative convolutional domain
and is weighted by a data-adaptive fuzzy rule.

• Validation experiments are conducted on a custom
in-laboratory setup for pressurized pipes to verify the

effectiveness and to compare the performance of the
proposed method with others.

II. BACKGROUND CONCEPTS
A. CONSTANT FALSE ALARM RATE DETECTION
The CFAR is a classic signal detection algorithm used to
detect targets in radar engineering. The advantage of the
CFAR lies in its adaptability to signal variations without prior
knowledge of the target waveform [44]. In the present study,
the CFAR is implemented to perform AE-hit detection to
identify crack events in the pipeline. The CFAR principle
is straightforward: it estimates an adaptive threshold and
produces a signal if this threshold is surpassed. The detection
threshold (Th) for each cell is calculated using the back-
ground noise power level (Pn), estimated from neighboring
cells as follows [44]:

Th = αPn (1)

where α is a scaling factor called the threshold factor.
In CFAR detectors, the most common approach is cell

averaging (CA-CFAR), which involves calculating Pn based
on the average power of neighboring cells. However, to avoid
the influence of the cell under test (CUT), cells (guard cells)
directly adjacent to it are excluded (see Figure 1). Conse-
quently, Pn is computed based on the remaining neighboring
cells (training cells) as [44]:

Pn =
1
N

∑N

i=1
xi (2)

where N is the number of training cells and xi is the sample
in the i-th training cell.

FIGURE 1. The relationships among the CUT, guard cells, and training
cells.

As the value of α decreases, the threshold value decreases,
leading to a higher false alarm rate, i.e., a higher probability
of false detection of noise as a signal. Therefore, to determine
an appropriate α value, practitioners limit the false alarm rate
to a pre-defined level denoted as Pfa (probability of false
alarm). With the CA-CFAR detector, the threshold factor can
be written as follows [44]:

α = N
(
P

−
1
N

fa − 1
)

(3)
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FIGURE 2. Flowchart of the proposed method.

B. SIMILARITY-BASED RUL PREDICTION
The first mature proposal of similarity-based RUL predic-
tion was introduced in [45] and has been revisited in recent
years due to its transparency surpassing ML/DL ‘‘black
box’’ algorithms. Similarity-based RUL prediction comprises
three fundamental steps: data collection and fusion, similarity
assessment, and prediction aggregation [39]. In the first step,
run-to-fail data are gathered from various sensors and fused
to generate a singular representative index known as the
HI [39]. Based on this HI, the system’s condition or degree
of degradation can be ascertained. Naturally, these HIs must
satisfy certain criteria, such as monotonicity and trendability,
to be meaningful for prognostics [46]. Monotonicity refers to
the consistent direction of change in a variable with regard
to another variable. This means that, as the health condi-
tion of a population improves or deteriorates, the indicator
consistently moves in the same direction [47]. Meanwhile,
trendability relates to the ability of anHI to capture and reflect
trends in health outcomes over time. A health indicator should
be sensitive to changes in health stage, allowing identification
of patterns and trends [47]. The formulas for monotonicity
and trendability are presented in (4) and (5), respectively:

Mon. =
1

N − 1

∣∣∣∣∑N−1

i=1
sgn (xi+1 − xi)

∣∣∣∣ (4)

Tren. = |cov (ti, xi)| (5)

where N is the length of the HI trajectory, xi is the i-th point
of the trajectory and ti is the corresponding time, sgn is the
sign function and cov is the covariance.
In the second step, the in-service HI is compared with HIs

present in the historical data to assess similarity. This process
involves computing similar metrics andmatching trajectories.

Greater similarity implies more analogous patterns, indicat-
ing a closer resemblance in degradation trends, aiding in
predicting the current in-service system trend. There are var-
ious types of distances commonly used to measure similarity,
such as Euclidean and Mahalanobis distances, chosen based
on the characteristics of the data. Without loss of generality,
the Euclidean distance is considered in this study, and the
formula for two points (x1, y1) and (x2, y2) is as follows:

D =

√
(x2 − x1)2 + (y2 − y1)2 (6)

Finally, in the third step, prediction of the RUL is deter-
mined based on the similarity distance from the previous
step. Specifically, for each distance between the in-service
HI and a reference HI, the similarity distance corresponds
to a reference RUL value of the reference HI. Consequently,
the in-service RUL typically is calculated either simply by
selecting the RUL where the distance is minimal or by a
weighted sum of the reference RULs. In this study, weights
weightk are distributed to reference RULs RULk and the final
predicted RUL is calculated as shown in (7), where M is the
number of reference RULs:

RUL =

∑M

k=1
weightk × RULk (7)

III. METHODOLOGY
A. OVERVIEW
This section provides an overview of the proposed method
for predicting the RUL of pressurized pipelines. This section
offers a preliminary description and outlines the main data
flow, and the specific details regarding individual steps
will be expounded upon in subsequent sections. Figure 2
illustrates the flowchart of the proposed method, compris-
ing three primary blocks corresponding to three stages in
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similarity-based RUL prediction: HI construction, similarity
evaluation, and RUL estimation.

In the initial step, the HI construction block is tasked with
generating trajectory lines that represent the health condition
of the pipeline. These HIs are calculated by accumulating AE
events/hits detected by CFAR, as they signify the severity
of faults. The HI trajectory lines include reference trajec-
tories constructed from historical run-to-fail data and test
trajectories constructed from in-service data. Subsequently,
these trajectory lines undergo similarity evaluation to identify
similarities between the in-service and reference HIs. The
degree of similarity is measured using Euclidean distances
in the derivative convolutional domain, detailed further in
subsequent sections. From this stage onwards, each computed
distance is accompanied by a corresponding reference RUL
value associated with the compared reference HI. In the
third step, the RUL estimation block assigns weights to the
distances and corresponding reference RULs based on their
influence on the predicted RUL using data-adaptive fuzzy
logic. Then, the predicted RUL is calculated as the sum of
the weighted reference RULs.

B. HI CONSTRUCTION
In this study, we implement the CA-CFAR algorithm to
detect AE events/hits in the monitored signals. Specifically,
based on prior research experiences regarding crack detec-
tion in pipelines [45], the proposed parameter values for the
CA-CFAR detector are as follows: the false alarm probability
is maintained at 10−7, a cell size of 500 points (0.5 ms) is
used, with 10 guard cells and 20 training cells. Once the noise
level is estimated using CA-CFAR, any CUT surpassing the
energy threshold is considered to contain AE information.
An independent AE event is defined as a group of consecutive
CUTs containing AE information. Figure 3 illustrates a seg-
ment of the signal in this study, with dotted boxes highlighting
the detection of independent AE events/hits. Subsequently,
the proposed HI is constructed by totaling cumulatively the
number of AE hits detected over time.

FIGURE 3. Illustration of AE hits (in dotted boxes) detected by the CFAR
algorithm.

C. SIMILARITY EVALUATION
The evaluation of similarity is conducted using the HIs
introduced in the previous section. Based on our observa-
tions, industrial processes often exhibit repetitive patterns
following predetermined working condition profiles, render-
ing them conducive for similarity assessment. However, the
actual trajectories of pipeline health conditions between these
instances are never entirely identical. As the AE count in the
HI experiences abrupt shifts each time pressure alterations
cause material bond ruptures, these patterns become critical
for assessing similarity. Therefore, to augment information
derived from the working condition profile, we introduce
the derivative convolution operation to extract information
regarding the temporal changes in the count of AE events:

DC (x, n) = x ∗ sawn(t) (8)

where ∗ signifies the convolution operation, x is the original
signal transformed, and sawn is the n-point sawtooth function
(n = 1000 in this research):

sawn(t) =

{
1 −

2t
n−1 ,

0,
t= 0, . . . ,n− 1
otherwise (9)

The ensuing task involves comparing whether the test HI
exhibits patterns that resemble reference HIs. Given the varia-
tions in the lengths of HI trajectories, we adopted the concept
of multi-local segments from [41] to segment the reference
HIs into sections equivalent in length to the test HI. Specif-
ically, we partition the reference HI into segments with a
step of 100,000 points (0.1 s) to retain inter-segment asso-
ciations. Then, the test HI is compared with reference HI
segments based on Euclidean distances within the derivative
convolutional domain. For every segmented reference HI,
there is a corresponding RUL, denoting the remaining opera-
tional duration from the segment’s endpoint. These RULs are
referred to as reference RULs for convenience in subsequent
discussions about RUL prediction.

D. RUL ESTIMATION
In the final step of the proposed method, predictions about
the RUL of in-service HIs are based on their similarity levels
with the reference HIs. In many similarity-based methods,
this is accomplished by assigning weights to the measured
distances of similarity and then computing their sum with
corresponding weights. In this study, the first step is to assess
the importance of each distancemeasure of similarity, accom-
plished by introducing a weight allocation scheme based on
fuzzy logic. While smaller distances should be associated
with larger weights, and vice versa, attention must be paid
to the correlations between the weights. However, this is
somewhat challenging as we do not have knowledge of the
true distribution of distance variables. Therefore, in this study,
the variables are assumed to follow a normal distribution.
A Gaussian membership function, adapted to the observed
data, is utilized to calculate weights for the similarity distance
variables, as follows:

w (x) = exp
(

−
x2

2σ 2

)
(10)
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where x represents the input distance value, and σ stands
for the standard deviation. With this membership function,
x = 0 corresponds to the highest similarity, yielding the
highest weight. Meanwhile, the adaptive parameter σ is com-
puted based on the standard deviation of the observed data as
defined in equation (11), where x̄ represents the mean of the
distance values xk , andM denotes the number of these values.
Figure 4 presents the Gaussian membership function with a
mean of 0 and a standard deviation of 1.

σ =

√
1

M − 1

∑M

k=1
(xk − x̄)2 (11)

FIGURE 4. The Gaussian membership function.

Once the weights are assigned to the distance measures,
they are used to calculate the ultimate RUL. For each refer-
ence distance, there exists a corresponding reference RUL.
Thus, the weight of each reference distance is multiplied by
its corresponding reference RUL, as specified in the follow-
ing formula:

RUL =

∑M

k=1

wk∑M
j=1 wj

× RULk (12)

where M represents the number of distance measures, and
RULk and wk respectively denote the reference RUL and its
corresponding weight for its reference distance.

IV. EXPERIMENTAL SETUP
This section presents the organization of validation experi-
ments, including the setup of the test bed, data collection
scenarios, evaluation criteria, and a comparative analysis of
the experimental results.

Figure 5 depicts the schematic design of a test bed sys-
tem for simulating industrial pressurized pipeline systems.
The system includes a cylindrical pipe segment (the test
pipeline), measuring 2000 mm in length, which is marked
and capped with flanges at both ends. Accompanying this is
a water tank system and a pump to provide a flow of fluid
into one end of the pipe and out the other. The pump and
two valves are software-controlled to generate the desired
pressure, measured by two pressure sensors (PS1 and PS2)
at the ends of the pipe segment. To monitor crack events
using acoustic emissions, four AE sensors (labeled S5, S6,

S7, and S8) are mounted at opposite ends of the pipe segment
(refer to Figure 5). All sensors (pressure, AE) and actuation
mechanisms (the pump and valves) are controlled and mon-
itored through a data acquisition (DAQ) unit connected to a
computer and storage.

Figure 6 shows an actual image of the test bed system
located in the laboratory. In addition to the described com-
ponents, the actual system includes two supports/props to
brace the pipe segment. To ensure safety, the experimental
area is segregated from the control and monitoring area. The
technical specifications of the equipment used in the test bed
system are detailed in Table 1.

TABLE 1. Testbed equipment specifications.

The data acquisition scenario is designed to describe a
pressure increase process typical in industrial operations.
Accordingly, the pipeline pressure is increased gradually in
the following sequence: initially initiated at 0 bar, increased
to 50% of the pressure design (Pd) for the next 10 minutes,
followed by 10 minutes at 65% Pd, and then 10 minutes
at 80% Pd. The pressure is maintained at 100% Pd for the
subsequent 30 minutes. After that, the pressure is increased
further as 5 minutes at 200% Pd, 5 minutes at 400% Pd,
and then 5 minutes at 600% Pd. Thereafter, the pressure is
increased incrementally by 100% Pd every 5 minutes until
the pipeline ruptures. Illustrations of the pressure increment
process and an image depicting a ruptured pipeline are shown
in Figure 7. Considering that the AE signal frequency in steel
ranges from 100 to 300 kHz [46], the sampling rate for the
AE sensors is set at 1MHz, adhering to the Nyquist–Shannon
sampling theorem.

The four experimental pipes are designated as B, C, D,
and E. The entirety of data from each sensor for a specific
pipe and location is stored independently in a single data file.
The data structure for our validation experiments is planned
as follows: the data files obtained from AE sensors 7 and
8 of all four test pipes are used as historical reference data
to construct reference HIs. The remaining data files collected
from AE sensors 5 and 6 are utilized as test data resembling
in-service data. Hence, there are eight reference files denoted
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FIGURE 5. Schematic design of the experimental testbed.

FIGURE 6. Photographs of the experimental testbed setup.

as B7, B8, C7, C8, D7, D8, E7, and E8 and eight test files
denoted as B5, B6, C5, C6, D5, D6, E5, and E6. For each

test file, to simulate the in-operation state of the pipeline,
segments of data from the initial stage are extracted, ranging
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FIGURE 7. Illustration of (a) the pressure increment process and photographs of (b) a ruptured pipeline.

from 10% to 90% at intervals of 5% of the total operating
time of that pipeline. These data segments will be used as
in-service data for the proposedmethod to predict their RULs.

The criteria for evaluating the accuracy of the pre-
dicted RUL in the experiments include the mean absolute
error (MAE), root mean square error (RMSE), and PHM
score [47]. The first two criteria are familiar and fundamental
measures commonly used in assessing overall accuracy. The
formula for the MAE is presented in (13), and that for the
RMSE in (14):

MAE =
1
N

∑N

k=1

∣∣ŷk − yk
∣∣ (13)

RMSE =

√
1
N

∑N

k=1

(
ŷk − yk

)2 (14)

where N denotes the number of predictions, and yk and ŷk
respectively denote the real (true) RUL and predicted RUL.
The PHM score demonstrates that predictions in the early
stages typically are more challenging and less critical than
those in the later stages. Therefore, the formula for the PHM
score involves assigning weights to predictions at different
times rk (unit: % of total operating time), as shown in (15):

PHM =

∑N

k=1

rk∑
rk

×
∣∣ŷk − yk

∣∣ (15)

V. RESULTS AND DISCUSSION
In this section, we begin by assessing the proposed HI
to verify its effectiveness in representing and predicting
the health condition of pressurized pipelines. Subsequently,
experiments on predicting the RUL using our dataset are
carried out to assess the accuracy of the proposed method.
Additionally, uncertainty assessments in the predictions are
evaluated through uncertainty testing experiments. Alongside
the verification experiments, comprehensive comparisons are
performed to strengthen the achieved results of this study.

A. HEALTH INDICATOR ASSESSMENT
In this section, the proposed HI is examined and evaluated
to demonstrate its effectiveness in addressing the prognostics
problem. Figure 8 presents a visualization of the HI trajec-
tories across all data files over the entire lifetime, including
HI reference trajectories (in blue) and HI test trajectories (in
red). These HI trajectories exhibit varying lifespans and an
increasing trend due to computation based on the cumulative
number of AE hits caused by cracks, which increase over
time.

Quantitative assessment of the quality of these HIs requires
computation of metrics related to monotonicity and trendabil-
ity, as outlined in Section II-B. These indices range between
0 and 1, with values closer to 1 indicating a higher potential
for application in prognostic problems. Furthermore, to com-
pare the proposed HI with other HIs built on traditional
statistical features, we extracted features from AE signals,
including root mean square (RMS), mean, standard deviation,
kurtosis, skewness, crest factor, and entropy. Subsequently,
traditional HIs were defined as trajectories of these features
over the lifetime and were computed every second.

Figure 9 contrasts the monotonicity and trendability of the
proposed and traditional HIs. First, focusing onmonotonicity,
a significant difference is evident between the proposed HI
and the others. Specifically, while the proposed HI exhibits a
remarkably high monotonicity of 0.94, the mean and entropy
are only 0.16 and 0.13, respectively; the remaining indices
do not surpass 0.01. The reason behind this is that traditional
HIs are less affected or altered by a pressure increase. The
difference arises during pressurization due to the appearance
of AE hits, which rapidly affect the signal features, hindering
their detection.

Regarding trendability, as it correlates the HI amplitude
with time, it shows some improvement compared to mono-
tonicity. Specifically, the proposed HI attains an absolute
trendability of 1.00, entropy of 0.97, and mean trendability
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FIGURE 8. Plots of the proposed HI trajectories.

of 0.64. The RMS and standard deviation are 0.32 and 0.35,
respectively, while the remaining variables are less than 0.1.
Although traditional HIs can be used to predict the RUL, their
nature makes them insensitive to signs of failure, particularly
regarding AE hits, limiting their reliability. Conversely, the
proposed HI aligns with the context and presents excellent
quantitative metrics, surpassing traditional HIs to serve as an
indicator for the health of pressurized pipelines.

FIGURE 9. Monotonicity and trendability comparisons between the
proposed and traditional HIs.

Although the proposed HI can be used to predict the RUL
for a pressurized pipeline, its value range is not consistent
across HIs. Thus, relying solely on conventional distance
measures to gauge similarity is insufficient. For instance,
Figure 10 illustrates four HI trajectories (dashed lines) from
sensors 5 and 7 on pipes B and C, along with their mappings
in the derivative convolutional domain (solid lines). Notably,
when two HIs from the same pipe share the same RUL, the
similarity between sensor 5 on pipe B and sensor 5 on pipe
C or sensor 7 on pipe C can be difficult to distinguish due to
their proximity in the two-dimensional space.

Considering the derivative convolutional domain (the solid
lines in Figure 10) proposed in section III-C., similar patterns
between two truly analogous HIs, sensor 5 (pipe B) and
sensor 7 (pipe B), easily are observable. These patterns stem
from the same pressure profiles of the sensors, accurately
depicting the resemblance between two HIs on the same pipe.
Therefore, measuring similarity within this domain can pro-
vide accurate insights into the resemblance between two HIs,
enabling precise predictions of the RUL with high accuracy.
It is evident that the proposed method lays the foundation
for determining similarities in the derivative convolutional
domain. In subsequent experiments, various similarity calcu-
lation methods are evaluated to validate the effectiveness of
the proposed approach.

B. RUL PREDICTION PERFORMANCE
This section presents the performance of the proposed
method on test data B5, B6, C5, C6, D5, D6, E5, and
E6, encompassing predictions of the RUL and accuracy
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FIGURE 10. Illustration of four HI trajectories along with their mappings in the derivative convolutional domain.

metrics. Moreover, to demonstrate the superiority of the pro-
posed method over others, comparative experiments were
conducted. Specifically, the examined methods all directly
estimated RUL based on the proposed HI but differed in their
similarity evaluation approaches, including the Euclidean
distance method (Euclidean method), the Euclidean method
with weights assigned according to a proposed fuzzy logic
scheme (weighted Euclidean method), and the multiple local
similarities method (MLS method) in [41].

The predicted RUL results of the proposed method and
other examined methods are presented in Figure 11. Initially,
the compared methods relatively accurately predict RUL in
an intuitive manner, especially those based on the Euclidean
distance. This achievement is attributed to the selection of a
suitable HI for the problem. Second, these methods exhibit
a tendency for increased prediction errors in the early life-
time due to the scarcity of available information during that
period. As expected, accuracy gradually improves as more
information becomes available. The MLS method appears to
be an exception, as it frequently deviates from the real RUL
trajectory in the late stages.

In most tests, the RUL predicted by the proposed method
closely aligns with the real RUL line, especially in the latter
periods. This observation is noticeable in the tests of B5, B6,
C5, C6, and E6. In contrast, the Euclidean method shows
results that run parallel to the true RUL, which is unfavorable
due to its misinterpretation of the test HI to resemble a
reference. The weighted Euclidean method produces more
accurate predictions in the latter stages compared to the
Euclidean method. However, the predictions from the MLS
method intersect the real RUL line, leading to substantial
deviations in both initial and final predictions from the real
values. Comparing these methods, the proposedmethod qual-
itatively is superior. These initial observations, discussions,
and comparisons aim to demonstrate the effectiveness and

superiority of the proposed method in predicting the RUL of
pressurized pipes. The quantitative comparisons will further
elucidate the superiority of the proposed method.

Table 2 displays the comparative analysis of mean MAE
across different methods employed for testing pipes. Notably,
the proposed method showcases remarkable efficiency, yield-
ing the lowest MAE values across most test pipes. Specifi-
cally, for pipes B5, B6, C5, C6, and E6, the proposed method
recorded substantially lower errors of 2.60, 4.46, 4.05, 2.91,
and 5.44, respectively, compared to other methodologies.
Meanwhile, the Euclidean method achieves the smallest
MAE in pipes D5, D6, and E5 with respective values of
5.00, 4.64, and 4.69, as observed in Figure 11. In these
tests, the proposed method achieves the second-best values of
6.83, 6.89, and 7.53. Both the weighted Euclidean and MLS
methods exhibit MAE values inferior to the other methods.
This suggests the superior predictive accuracy and reliability
of the proposed method in estimating the RUL of these pipes,
underscoring its potential for enhanced performance in this
domain.

In Table 3, the RMSE among various methods applied to
test pipes is presented. The proposed method consistently
demonstrates favorable RMSE values across multiple test
pipes, as in Table 2. Specifically, for pipes B5, B6, C5, C6,
and E6, the proposedmethod shows notably lower RMSE val-
ues at 4.37, 5.27, 4.35, 3.40, and 5.91, respectively, compared
to other methodologies. The Euclidean method continues to
showcase its performance with RMSE values of 5.00, 6.21,
and 4.82 for pipes D5, D6, and E5, respectively. In these
tests, the proposed method achieves the second-best values
of 8.22, 8.54, and 8.32. The other two methods demonstrate
inferior performance, as seen in the previous Table 2. These
further underscore the superiority of the proposed method,
highlighting its capability in estimating the RUL of pressur-
ized pipelines.
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FIGURE 11. Performance of the proposed method in RUL prediction and comparison with other methods.
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Table 4 presents the comparative analysis of the PHM
scores across various methods applied to test pipes. Notably,
the proposed method consistently exhibits superior perfor-
mance with notably lower PHM scores across multiple test
pipes. Specifically, for pipes B5, B6, C5, C6, D5, and E6,
the proposed method demonstrates substantially lower PHM
scores of 1.47, 3.35, 4.07, 2.74, 4.71, and 4.95, respec-
tively, in comparison to alternative methodologies. These
findings accentuate the effectiveness of the proposed method
in achieving more accurate prognostic assessments, signi-
fying its potential for enhanced reliability in predicting the
health and prognosis of pipes.

The evaluation of the three distinct performance met-
rics of the MAE, RMSE, and PHM scores across various
methodologies in pipes B5, B6, C5, C6, D5, D6, E5, and E6
underscores the remarkable efficacy of the proposed method.
Obviously, the proposed method consistently outperforms
other methodologies across all three assessments. All the
best values per test (the smallest values in each row) in the
tables are highlighted in red, while the second-best values
are highlighted in blue. In all test pipes, the proposed method
predominantly occupies positions with the best and second-
best positions. The Euclidean method frequently secures the
second-best position, while the other two methods have few
strengths to consider. Collectively, these results underscore
the exceptional performance of the proposed method, high-
lighting its consistent and superior predictive capabilities in
estimating pipe remaining lifetime compared to alternative
methodologies.

TABLE 2. Mean absolute error comparison.

C. UNCERTAINTY EVALUATION
In addition to evaluating the accuracy of RUL predictions,
uncertainty also is assessed as a prognostic algorithm. Uncer-
tainty is defined as the range of predicted values that the
model considers correct. Evidently, the smaller is the range
of predicted values, the smaller is the uncertainty, meaning
a greater certainty of prediction. To compute uncertainty, the
model must provide output predictions that include the prob-
ability of their occurrence. In this case, models with weighted
predictions can meet this requirement, where the weights are
scaled to resemble probability values. In this section, the
proposed method, the weighted Euclidean method, and the

TABLE 3. Root mean square error comparison.

TABLE 4. PHM score comparison.

MLS method are introduced to conduct an assessment and
comparative analysis.

The next step is to determine the range of values where
the model is most certain, i.e., when the probability of failure
reaches a predefined threshold, set at 90% in this study.
To achieve this, the probability distributions of the predic-
tions need to be estimated, which commonly is accomplished
using kernel density estimation (KDE) methods [48]. This
method is a non-parametric estimation technique that does
not require prior knowledge about the probability distribution
of a population. The kernel density estimator is an estimated
probability function for a random variable x, defined as
follows [48]:

f̂h(x) =
1
Nh

∑N

k=1
K

(
x − xk
h

)
(16)

where N is the number of samples, K is the kernel smoothing
function (Gaussian), and his the bandwidth estimated by
Silverman’s rule of thumb [47].

Figure 12 illustrates the probability density function esti-
mation of the predicted RUL associated with three examined
methods in tests B, C, D, and E (sensor 6) at the 70% lifetime
mark. Additionally, the range of values where the prediction
probability reaches 90% is highlighted in green and referred
to as the certainty zone. Notably, the accuracy of the predic-
tions, depicted by the proximity between the predicted RUL
(red line) and the real RUL (blue line), does not inherently sig-
nify the model confidence level. For instance, in test C, while
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FIGURE 12. Uncertainty evaluation at 70% of the lifetime using: (a) the proposed method, (b) weighted Euclidean method, and
(c) MLS method.

the weighted Euclidean method exhibits higher accuracy than
the proposed method, it also displays greater uncertainty,
as indicated by a narrower certainty zone.

Overall, uncertainty is relatively consistent across meth-
ods, as indicated by the width of the certainty zone. Specif-
ically, the weighted Euclidean method displays uncertainty
ranging from 21.2 to 36.5 minutes, and that of the MLS
method ranges from 48.4 to 60.0 minutes. In contrast, the pro-
posed method demonstrates lower uncertainty than the other
two methods, with only approximately 12.3 to 16.3 minutes
of uncertainty. This superior certainty likely is attributable to
the meticulous selection of similarity metrics and appropriate
weight allocation. The proposed method selectively priori-
tizes smaller similarity distances, effectively diminishing the
impact of larger distance values. This showcases the promis-
ing potential for applications involving the prediction of RUL
in pressurized pipes, particularly within industries demanding
high reliability, such as the energy and chemical sectors.

The above observations clearly indicate that the proposed
method exhibits the smallest mean uncertainty among all
three methods. Specifically, in test pipes B5, D5, and D6, the
mean uncertainty of the proposed method reached the lowest
values of 8.68, 7.32, and 4.49 minutes, respectively. In con-
trast, the figures for the weighted Euclidean method ranged
higher from 16.83 to 20.27 minutes, indicating a higher
level of uncertainty compared to the proposed method. The
MLS method displayed the highest uncertainty, ranging from
34.59 to 59.97 minutes on average. Consequently, the relative
stability of uncertainty is noticeable among the methods. This
reveals that the robustness of the proposed model’s certainty
is superior to the other two methods. This achievement can be

attributed to the appropriateness of the employed similarity
metrics and weight allocation mechanisms.

TABLE 5. Uncertainty comparison.

VI. CONCLUSION
Pressurized pipeline systems play a critical role in industrial
plants, and accurately predicting their RUL is imperative
for pipeline health management. This research proposed
a method to predict the RUL of pressurized pipelines in
industrial processes based on acoustic emissions. A novel
HI was introduced based on accumulated AE hits detected
from material crack-induced events using the CA-CFAR
algorithm. The proposed method relied on the learned
similarity from historical HI trajectories to predict the RUL
for the current HI. Similarity was measured using Euclidean
distance in the derivative convolutional domain of the HI
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trajectories. Finally, an adaptive fuzzy logic-based weighting
distribution assigned weights for the similarity distances to
estimate the RUL.

The efficacy of the proposedmethod was validated through
experiments conducted on a testbed for pressurized pipelines
in the laboratory. The experimental results revealed that the
proposed method achieved high accuracy outperforming the
other methods, as measured by the MAE, RMSE, and PHM
scores. Furthermore, experiments testing the uncertainty of
RUL predictions based on the KDE probability density esti-
mation were conducted. The experimental outcomes affirmed
that the proposed method achieved lower uncertainty com-
pared to the other methods. These findings again confirmed
the effectiveness and reliability of the proposed RUL pre-
diction method for pressurized pipelines. However, it does
not provide information on the exact location coordinates
of cracks. Moreover, pipeline cracks can result from various
factors such as fatigue, corrosion, and natural hazards, which
remain undetermined. In the future, we will explore enhanc-
ing our method to include accurately locating and identifying
the causes of cracks.
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