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ABSTRACT As a crucial component in marine transportation, the precision of ship-mounted rotary cranes
directly impacts the efficiency and safety of lifting operations. However, the inability to directly control
the swing angle of the load through the drive mechanism renders ship-mounted rotary cranes inherently
complex, featuring underactuated and coupled characteristics. In this study, we propose an optimal feedback
controller leveraging adaptive dynamic programming (ADP), which integrates sliding mode control with
optimal control strategies. Specifically, we devise a judicious cost function and solve the Hamilton-Jacobi-
Bellman (HJB) equation using the adaptive dynamic programming approach. Subsequently, the optimal
feedback controller is derived through iterative batch neural network training facilitated by the adaptive
update algorithm. Moreover, we establish the stability of the proposed controller through rigorous Lyapunov
techniques and LaSalle’s invariance principle. Experimental validation confirms the efficacy of our approach,
highlighting its practical utility in real-world scenarios.

INDEX TERMS Underactuated systems, adaptive dynamic programming, motion control, vibration control.

I. INTRODUCTION
The ship-mounted rotary crane stands as a pivotal component
within the modern maritime industry, serving primarily
for the lifting and transportation of large-scale materials.
With the rapid advancement of shipbuilding practices, the
demand for heightened performance and control precision in
marine rotating cranes has surged. Functioning as precision-
centric lifting apparatus, ship-mounted rotary cranes neces-
sitate attributes of superior stability, precision, and safety.
Diverging from their land-based counterparts, ship-mounted
rotary cranes confront an array of intricate operational
environments, including wind, waves, currents, tides, and
other natural variables, alongside vessel movement and load
lifting conditions. These environmental nuances profoundly
influence the operational efficacy and safety performance
of rotary cranes at sea. Consequently, investigating the
control mechanisms of marine rotating cranes assumes
paramount importance, carrying significant practical implica-
tions and application value. Moreover, the unique operational
dynamics of ship-mounted rotary cranes present distinctive
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challenges. As the crane’s load can only be tethered to the
cantilever via a rope, and the crane’s drivingmechanism lacks
direct control over load swing, the system manifests intricate
underactuated characteristics. When compounded by the
complexities of fluctuating waves and wind perturbations, the
control of ship-mounted rotary cranes becomes an intricate
endeavor. Furthermore, in certain operational scenarios,
solely relying on the cantilever for load positioningmay prove
inadequate, necessitating consideration for variable rope
length. Unlike their fixed-rope-length counterparts, variable-
rope-length cranes witness fluctuations in the inherent
frequency of the load swing subsystem, engendering intricate
system dynamics oscillating between drive/underdriven and
drive/torque configurations.

In recent decades, many effective control methods have
been proposed for underactuated systems [1], [2]. Among
them, open-loop control [3], [4] is a focus of research,
which mainly includes input shaping [5], [6] and trajectory
planning [7], [8]. Furthermore, the actual system is usu-
ally affected by external perturbations as well as internal
instability factors, and simple open-loop control cannot fully
meet the control requirements, so the stability of the whole
system can be improved by the closed loop control [9], [10],
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such as sliding mode control [11], [12], adaptive control [13],
MPC control [14], and robust control [15], [16]. Optimal
control [17], [18], [19] of nonlinear systems has developed
rapidly in recent years. n general, optimal control requires
the solution of HJB equations, which are relatively easy to
solve for linear systems, but the solution of nonlinear partial
differential equations in nonlinear systems has been an urgent
problem.

To solve the problem with unknown parameters and
dynamic uncertainty, Jiang and Jiang [20] designed a
decentralized optimal controller by combining robust con-
trol with policy iteration techniques. In [21], the GFHM
policy iteration algorithm is used to solve the approximate
solution of the coupled Hamilton-Jacobi-Bellman equations
for the optimal coordinated control of multiple intelligence.
In [22], a model-free distributed controller for multiple
intelligencewas designed to achieve perturbation suppression
and asymptotic stabilization of each follower using online
input and state data. Ming et al. [23] achieved optimal
tracking of a discrete system through a new static triggering
mechanism by sampling and updating the control signal.
In [24], a RAOTC (robust adaptive optimal tracking control)
method combining adaptive control, robust control and
optimal control is presented to achieve the stabilization of
transient tracking error dynamics and verify the effectiveness
through experiments. Zhao et al. [25] reconstructed the
unpredictable states of the system through an input-output
redefinition method, proposed an optimal method combin-
ing triggered output feedback and adaptive control, and
successfully applied it to a multi-machine power system.
Liu et al. [26] successfully applied ADP to a complex
traffic light system and optimized the traffic light operation
method. Wang et al. [27] transformed the current distribution
and voltage regulation into an optimization problem, and
proposes an efficient voltage and current regulation method
for wind/solar hybrid systems based on Bellman’s distributed
adaptive dynamic planning, which achieves the optimization
of the control objective. Tang et al. [28] approximated
the optimal solution of the HJB equations by a critical
neural network and realized the steady-state control of the
hypersonic gliding vehicle using the dynamic surface control
(DSC) method. Dong et al. [29] designed a sliding mode
optimal approximation law using ADP to constrain the
reduced-order system dynamics in the desired region, and
implemented a tracking control method for n-links robots
under parameter uncertainty, time profile failure, and input
saturation constraints. In [30], the researchers simplified
the dimensions of the problem by dividing the energy
management problem of a hybrid vehicle into the scheduling
problems of the engine and themotor, and proposed an energy
scheduling method for a hierarchically operated vehicle with
switching capabilities. Na et al. [31] proposed a new optimal
control method by estimating themodelling uncertainty of the
wave-energy converter through a new estimator with a simple
structure combined with robust control. Wang et al. [32]
measured the inputs and outputs of the system by means

of an observer and proposed a new ADP method based on
the principle of internal model principle, which was finally
experimentally verified on a grid-connected LCL inverter
system.

The preceding research elucidates a prevailing trend:
a plethora of studies have delved into optimal control
methodologies for linear systems featuring low dimensions.
However, the formidable challenge persists in tackling the
control intricacies of ship-mounted rotary cranes. These sys-
tems are emblematic of underactuation, robust coupling, and
nonlinearity, compounded by the imperative to contend with
input constraints and uncertain external wave perturbations.
Addressing these multifaceted challenges remains an exigent
task necessitating immediate attention and resolution.

This paper delves into the control quandary posed by
ship-mounted rotary cranes with external perturbations,
presenting an adaptive learning sliding mode controller as
a viable solution. Through the integration of driveable and
underdriven state variables, the system’s state equations
are reformulated into standard state-space form, facilitating
the construction of a novel HJB equation. Diverging from
conventional ADP algorithms necessitating both action and
critic neural networks, our approach mandates solely a critic
neural network. Leveraging an adaptive algorithm update,
the approximate optimal control can be attained efficiently.
The proposed methodology’s stability is rigorously estab-
lished through theoretical frameworks employing Lyapunov
techniques and LaSalle’s invariance principle. Subsequently,
robust validation is carried out by an experimental platform
to demonstrate the relevance of this paper’s method for real-
world applications.

The main contributions of this paper are as follows:
1) Diverging from existing models, this paper meticulously

considers the impact of continuous yaw, roll, and heave
disturbances on ship-mounted rotary cranes. It achieves
this by adeptly transforming the prevailing dynamical
model into a standard state-space form through the
strategic coupling of state variables.

2) This paper amalgamates optimal control with sliding
mode control theory to achieve dual objectives: ensur-
ing precise load displacement and eliminating pendu-
lum angle deviations, all while effectively mitigating
external perturbations.

3) The stability of the proposed controller is rigorously sub-
stantiated through Lyapunov techniques and LaSalle’s
invariance principle, underscoring its robustness in
dynamic scenarios. Furthermore, the efficacy of the
proposed method is empirically validated through
meticulous experimentation.

II. PROBLEM STATEMENT
In this section, we first model the dynamics of the ship-
mounted rotary crane. The original mathematical model
of the ship-mounted rotary crane does not conform to
the standard form of adaptive dynamic programming.
Therefore we made some reasonable transformations to the
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mathematical model of the crane, the underactuated part of
the system is first coupled to the actuated part of the system
by state transformation, and then the coupled system model
is converted to a state space representation.

A. MODEL CONSTRUCTION
The ship-mounted rotary crane is modeled as follows [33]:

Ms(q)q̈+ C(q, q̇)q̇+ G = τ + d

Ms =


m11 m12 m13 m14 m15
m21 m22 m23 m24 m25
m31 m32 m33 m34 m35
m41 m42 m43 m44 m45
m51 m52 m53 m54 m55

 ,

C =


c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

 ,
G(q) =

[
g1 g2 g3 g4 g5

]T
,

τ =
[
τ1 τ2 τ3 0 0

]T
,

q =
[
q1 q2 q3 q4 q5

]T
,

m11=mL2+
1
3
M1L2,m12=mLq3S1S5,m13=−mLC1−4C5,

m14=mLq3S1−4C5,m15=mLq3C1−4S5,m21=mLq3S1S5,

m22=
1
3
M1L2C1

2
+ mL2C1

2
+ mq32S42C5

2
+ mq32S52

+2mLq3C1S4C5,m23=mLC1S5,m24=−mq32C4S5C5,

m25=mq32S4 + mLq3C1C5,m31=−mLC1−4C5,

m32=mLC1S5,m33=m,m34=0,m35=0,
m41=mLq3S1−4C5,m42=−mq32C4S5C5,m43=0,
m44=mq32C5

2,m45=0,m51=mLq3C1−4S5,
m52=mq32S4 + mLq3C1C5,m53=0,m54=0,m55=mq32,
c11=0, c12=mL2S1C1q̇2 + mLq3S1S4C5q̇2

+
1
3
M1L2S1C1q̇2 + mLq̇3S1S5 + mLq3S1C5q̇5,

c13=mLS1S5q̇2 − mLS1−4C5q̇4 + mLC1−4S5q̇5,
c14=mLq3C1−4C5q̇4 − mLq̇3S1−4C5 + mLq3S1−4S5q̇5,
c15=mLq3C1−4C5q̇5 + mLq3S1C5q̇2 + mLq̇3C1−4S5

+mLq3S1−4S5q̇4, c21=−mL2S1C1q̇2−mLq3S1S4C5q̇2

+ mLq3C1C5q̇1 −
1
3
M1L2S1C1q̇2, c22=−mL2S1C1q̇1

−
1
3
M1L2S1C1q̇1 − mLq3S1S4C5q̇1 + mq32S4C4C5

2q̇4

+ mLq3C1C4C5q̇4+mq32C4
2S5C5q̇5−mLq3C1S4S5q̇5

+ mq3q̇3S42C5
2
+ mq3q̇3S52 + mLq̇3C1S4C5,

c23=mq3q̇2S42C5
2
+ mq3q̇2S52 + mLC1S4C5q̇2

−mq3C4S5C5q̇4 + mLC1C5q̇5 + mq3S4q̇5,
c24=mq32S4S5C5q̇4 + mq32S4C4C5

2q̇2 + mLq3C1C4C5q̇2
+ mq32C4S52q̇5 − mq3q̇3C4S5C5, c25=−mLq3C1S5q̇5
+ mq32C4

2S5C5q̇2 + mq3q̇3S4 − mLq3C1S4S5q̇2
+ mq32C4S52q̇4 + mLq̇3C1C5,

FIGURE 1. Crane model.

c31=mLS1−4C5q̇1 − mLS1S5q̇2, c32=−mq3S42C5
2q̇2

−mq3S52q̇2 − mLC1S4C5q̇2 − mLS1S5q̇1
+ mq3C4S5C5q̇4

−mq3S4q̇5, c33=0, c34=−mq3C5
2q̇4 + mq3C4S5C5q̇2,

c35=−mq3q̇5 − mq3S4q̇2, c41=−mLC1−4q̇1,
c42=−mq32S4C4C5

2q̇2 − mLq3C1C4C5q̇2 − mq32C4C5
2q̇5

−mq3q̇3C4S5C5, c43=mq3C5
2q̇4 − mq3C4S5C5q̇2,

c44=mq3q̇3C5
2
− mq32S5C5q̇5, c45=−mq32C4C5

2q̇2
−mq32S5C5q̇4, c51=−mLq3S1−4S5q̇1 − mLq3S1C5q̇2,

c52=−mq32C4
2S5C5q̇2 + mLq3C1S4S5q̇2 − mLq3S1C5q̇1

+ mq3q̇3S4 + mq32C4C5
2q̇4, c53=mq3S4q̇2 + mq3q̇5,

c54=mq32S5C5q̇4 + mq32C4C5
2q̇2, c55=mq3q̇3,

g1= (m+
1
2
M1)gLC1, g2=0, g3=−mgC4C5,

g4=mgq3S4C5, g5=mgq3C4S5, (1)

We abbreviate sin qj and cos qj as Sj and Cj (j=1,2,3,4,5)
for readability, respectively. Detailed parameters are shown
in Table 1:

TABLE 1. Parameters of the ship-mounted rotary crane.

The control input state quantity of the system is 3 and
the output state quantity is 5, so the whole system exhibits
underactuated characteristics. Next, we performed a par-
tial feedback linearization of the dynamic model of the
ship-mounted rotary crane.

Taking a split of Eq. (1), we obtain:

M11q̈a +M12q̈u + C11q̇a + C12q̇u + Ga = ua + da (2)

M21q̈a +M22q̈u + C21q̇a + C22q̇u + Gu = du (3)
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where Ms =

[
M11 M12
M21 M22

]
,C =

[
C11 C12
C21 C22

]
,G =

[
Ga
Gu

]
,

qa =
[
q1 q2 l

]T
, qu =

[
q3 q4

]T
, ua =

[
τ1 τ2 τ3

]T .
By means of Eq. (3), it is obtained that:

q̈u = M−1
22 (−M21q̈a − C21q̇a − C22q̇u − Gu + du) (4)

Bringing Eq. (4) into Eq. (2) yields:

M̄1(q)q̈a + C̄(q, q̇)q̇a + Ḡ = ū+ d̄ (5)

where M̄1(q) = M11 − M12M
−1
22 M21, C̄(q, q̇) =

−M12M
−1
22 C21 + C11, Ḡ = (−M12M

−1
22 C22 + C12)q̇u −

M12M
−1
22 Gu + Ga, ū = ua, d̄ = da − M12M

−1
22 du. With the

coupling transformations described above, we transform the
original form containing underactuated state variables into a
form containing only actuatable variables.

Through Eq. (5), we can obtain the following state space
expressions:

ẋ1 = x2
ẋ2 = v(qa, q̇a) + h(qa)(ū+ d̄)
y = x1

(6)

where x1 =
[
q1 q2 q3

]T . v(qa, q̇a) and h(qa) can be
expressed as follows:

v(qa, q̇a) = −M̄−1
1 (Ḡ+ C̄q̇a) (7)

h(qa) = M̄−1
1 (8)

III. MAIN RESULTS
In this section, we integrate the integral sliding mode
controller with optimal control theory, aligning it with the
practical application of marine rotating cranes. We refine
the cost function and formulate an enhanced HJB equation
tailored to this context. Furthermore, we devise a batch neural
network to approximate the HJB equation, culminating in
the design of an optimal sliding mode controller grounded
in adaptive dynamic programming (ADP).

A. CONTROL ALGORITHM DESIGN
1) OPTIMAL FEEDBACK CONTROLLER DESIGN
The control objective of this paper is to make the following
equations hold:

lim
t→∞

q = qd (9)

lim
t→∞

q̇ = q̇d (10)

where qd = [q1d q2d q3d 0 0]T represents the expected
values.

For the ship-mounted rotary crane model, we need to
ensure accurate positioning of the load and pendulum
angle suppression. To reduce the positioning and pendulum
angle inaccuracies stemming from model uncertainties, the
following sliding mode surface is devised:

s = ėa + k1ea + k2

∫ t

0
ea(τ )dτ (11)

where ea = qa − qd = [q1 − q1d q2 − q2d q3 − q3d ]T

is the error signal of the driveable variable, q1d , q2d , q3d
represent the desired localization position, and k1, k2 are
positive variable gains.

Derivation of Eq. (10) yields:

ṡ = ëa + k1ėa + k2ea = v(qa, q̇a) + h(qa)(ū+ d̄) + p (12)

where p = −q̈d + k1ėe + k2ea.
To procure the optimal feedback controller and ensure both

the convergence of the designed sliding mode surface and the
trajectory tracking performance, our aim is to determine the
optimal solution u∗ for the input ū.
We design the following performance optimization index

function:

J (s) =

∞∫
0

Z (ū(s), s) + ψ(3∗(s))2dt (13)

where Z (ū(s), s) = ūTRū + sTQs ≥ 0 is utility function,
Q ∈ R3×3andR ∈ R3×3 are positive definite matrices. ψ is a
positive variable gain, 3∗(s) =

∂J∗(s)
∂s is the partial derivative

of the function J∗(s) with respect to s.
The infinitesimal form of Eq. (13) can be expressed as:

Z (ū(s), s)+ψ(3∗(s))2+3(s)T ṡ

= Z (ū(s), s)+ψ(3∗(s))2+3(s)T (v(qa, q̇a)

+ h(qa)(ū+ d̄) + p)

= 0 (14)

where is a nonlinear Lyapunov equation.
Then we define the HJB equation:

H (ū(s), s,3(s)) = Z (ū(s), s) + ψ(3∗(s))2

+3(s)T (v(qa, q̇a) + h(qa)(ū+ d̄) + p)
(15)

In order for ū = u∗, the HJB equation needs to satisfy the
following form:

min
ū(s)∈9

H (ū(s), s,3∗(s)) = 0 (16)

where 9 is the input constraint on ū and J∗(s) is the
optimal performance index function, J∗(s) can be expressed
as follows:

J∗(s) = min
ū(s)∈9

∞∫
0

Z (ū(s), s) + ψ(3∗(s))2dt (17)

The optimal feedback control algorithm can be obtained
through the policy iteration algorithm as follows:

u∗(s) = −
1
2
R−1h(qa)T3∗(s) (18)

And we have the following expression for the HJB
equation:

H (u∗(s), s,3∗(s))

= Z (u∗(s), s) + ψ(3∗(s))2

+3(s)T (v(qa, q̇a) + h(qa)(ū+ d̄) + p) = 0 (19)
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2) PERFORMANCE INDEX FUNCTION APPROXIMATION
For the linear systems, the HJB equation outlined in Eq. (15)
simplifies into the Riccati equation, rendering the problem
of finding the optimal solution akin to a linear quadratic
regulator problem, which is comparatively more tractable.
However, for the nonlinear system under consideration in this
paper, solving the HJB equation poses significant challenges.
As such, the prevalent approach involves employing neural
network approximation methods for estimating an approxi-
mate solution.

The performance index function can be reconstructed using
neural network approach as follows:

J (s) = W T ζ (s) + ι (20)

where W ∈ Rn is the weight of the neural network, n is the
number of hidden layers of the neural network. ζ (s) ∈ Rn is
the activation function, and ι is the approximate residual. The
derivation of J (s) leads to:

3(s) = (1ζ (s))TW+1ι (21)

where1ζ (s) =
∂ζ (s)
s is the gradient of the activation function.

Next in order to complete the derivation,substituting Eq. (21)
into Eq. (14):

Z (ū(s), s)+((1ζ (s))TW+1ι)T ṡ

+ ψ((1ζ (s))TW+1ι)T (1ζ (s))TW+1ι) = 0 (22)

From this, the HJB equation can also be expressed as:

H (ū(s), s,W ) = Z (ū(s), s) + ψ((1ζ (s))TW+1ι)T

× ((1ζ (s))TW+1ι) + ((1ζ (s))TW )T ṡ

− ιH = 0 (23)

where ιH = −1ιT ṡ is the approaching critic neural network
residuals.

The weight vectorW in the HJB function is unknown, and
we use a neural network to estimate the weight vectorW and
realize an approximation of the performance index function.

Ĵ (s) = Ŵ T ζ (s) (24)

where Ĵ (s) is an approximation of J (s), Ŵ is an approxima-
tion ofW , and it can be found that the gradient of Ĵ (s) is:

3̂(s) = (1ζ (s))T Ŵ (25)

and the HJB function can be expressed as:

H (ū(s), s, Ŵ ) = Z (ū(s), s) + ψ((1ζ (s))T Ŵ )T

× ((1ζ (s))T Ŵ )

+ ((1ζ (s))T Ŵ )T ṡ (26)

Define the error value of the weight vector estimate of the
neural network as:

W̃ = W − Ŵ (27)

and define the estimation error of the Hamiltonian function
to be of the following form:

e = H (ū(s), s, Ŵ ) − H (ū(s), s,W ) (28)

The weight values in the neural network have a significant
effect on the performance exponential function, and in
order to achieve a better approximation of the performance
exponential function, we update the weight vector W using
the following adaptive law:

˙̂W = −αeφ (29)

where α > 0, φ = 1ζ (s)ṡ, select E =
1
2e

T
1 e1 as the objective

function of the gradient descent method for ζ (s).
Combining Eq. (22), Eq. (26), and Eq. (27), this gives:

e = ιH − W̃ Tφ (30)

The derivation of Eq. (27) is obtained:

˙̃W = Ẇ −
˙̂W = −

˙̂W = αeφ = α(ιH − W̃ Tφ)φ (31)

The ideal adaptive learning sliding-mode controller and
adaptive learning sliding mode controller for neural network
estimation can be obtained by Eqs. (16), (17) and (20):

u(s) = −
1
2
R−1h(qa)T ((1ζ (s))TW +1ι) (32)

û(s) = −
1
2
R−1h(qa)T (1ζ (s))T Ŵ (33)

B. PROOF OF STABILITY
In this section, we will prove the boundedness of neural
network algorithms and the asymptotic stability of marine
rotating cranes using e Lyapunov techniques and LaSalle’s
invariance principle.
Theorem 1: The performance index function of Eq. (20)

is approximated by Eq. (24), the weight vector estimation
error W̃ is eventually bounded under the weight vector update
rate Eq. (29).

Proof: The following Lyapunov candidate functions are
chosen:

Vw(t) =
1
2α

W̃ T W̃ (34)

Deriving Eq. (34) and substituting Eq. (29) into it results
in:

V̇w(t) =
1
2α

˙̃W
T
W̃ +

1
2α

W̃ T ˙̃W =
1
α
W̃ T ˙̃W

=
1
α
W̃ Tα(ιH − W̃ Tφ)φ = W̃ T (ιH − W̃ Tφ)φ

= W̃ T ιHφ − (W̃ Tφ)2

≤ −
1
2
((W̃ Tφ)2 − ιH

2)

≤ −
1
2
(ι
∥∥∥W̃∥∥∥2 − ῑ2H ) (35)

where ι is a positive number and satisfies 0 < ι < ψmin(φTφ)

and ῑH is an upper bound for ιH . If W̃ >

√
ῑ2H
ι
, then Vw(t) will
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continue to decrease until W̃ ≤

√
ῑ2H
ι
. Thus W̃ is eventually

bounded, and the proof of Theorem 1 is completed.
Theorem 2: For the ship-mounted rotary crane system

shown in Eq. (1), the control of the adaptive learning sliding
mode controller in Eq. (33) results in the system being asymp-
totically stabilized at the rate of weight update in Eq. (29).

Proof: Given the following Lyapunov candidate
function:

V (t) = 3∗(s) (36)

Deriving Eq. (36) results in:

V̇ (t) = (3∗(s))T (v(qa, q̇a) + h(qa)(u∗
+ d̄) + p) (37)

Substituting the optimal feedback controller in Eq. (18)
into Eq. (14):

sTQs+
1
4
(3∗(s))T h(qa)R−1RR−1h(ga)T3∗(s)

+ ψ(3∗(s))2+3(s)T (v(qa, q̇a) + h(qa)d̄ + p)

−
1
2
3(s)T v(qa)R−1h(qa)T3∗(s) = 0 (38)

Deforming Eq. (38), we have

3(s)T (v(qa, q̇a) + h(qa)d̄ + p) =

− sTQs−
1
4
(3∗(s))T v(qa)R−1RR−1v(qa)T3∗(s)

− ψ(3∗(s))2 +
1
2
3(s)T v(qa)R−1v(qa)T3∗(s) (39)

Substituting Eq. (39) into Eq. (37) yields:

V̇ (t) = (3∗(s))T (v(qa, q̇a) + p)+(3∗(s))T v(qa)(u∗
+ d̄)

= −sTQs−
1
4
(3∗(s))T h(qa)R−1RR−1h(qa)T3∗(s)

− ψ(3∗(s))2 − (3(s))T h(qa)(u∗
− û) (40)

Substituting Eq. (31) and Eq. (32) into Eq. (40):

V̇ (t) = −sTQs−
1
4
(3∗(s))T h(qa)R−1RR−1h(qa)T3∗(s)

−ψ(3∗(s))2+
1
2
(3(s))T h(qa)R−1h(qa)T (((1ζ (s))TW

+1ι) − (1ζ (s))T Ŵ )

= −sTQs−
1
4
(3∗(s))T h(qa)R−1RR−1h(qa)T3∗(s)

− ψ(3∗(s))2 +
1
2
((1ζ (s))TW+1ι)T h(qa)R−1h(qa)T

((1ζ (s))T W̃ +1ι) (41)

Let I =
1
2 ((1ζ (s))

TW+1ι)T h(qa)R−1h(qa)T ((1ζ (s))T

W̃ +1ι) then:

I =
1
2
((1ζ (s))TW+1ι)T h(qa)R−1h(qa)T ((1ζ (s))T W̃ +1ι)

≤
1
2
((1ζ (s))TW+1ι)T h(qa)R−1h(qa)T ((1ζ (s))TW +1ι)

≤
1
2
(3∗(s))T h(qa)R−1h(qa)T (3∗(s))

≤

∥∥∥∥12(3∗(s))T h(qa)R−1h(qa)T (3∗(s))

∥∥∥∥
≤ ν

where ν is the upper limit of ∥
1
2 (3

∗(s))T h(qa)R−1h(qa)T

(3∗(s))∥.
Since R is a positive definite matrix, we can obtain:

1
4
(3∗(s))T h(qa)R−1RR−1h(qa)T3∗(s)

=
1
4
(3∗(s))T h(qa)R−1h(qa)T3∗(s) ≥ 0 (42)

Obviously, ψ(3∗(s))2 ≥ 0, combining Eqs. (41) and (42),
we obtain an upper bound on V̇ (t):

V̇ (t) ≤ −sTQs+
1
2
((1ζ (s))TW+1ι)T h(qa)R−1h(qa)T

((1ζ (s))T W̃ +1ι)

≤ −ψmin(Q)s2 + ν (43)

where −ψmin is the minimum eigenvalue of the matrix Q.
For Eq. (43), if ∥s∥ > ν

ψmin(Q)
, then V̇ (t) < 0, and

ultimately s converges to the set �2 : ∥s∥ ≤
ν

ψmin(Q)
. And

because of V (t) ≤ V (0) and V (0) ∈ l∞, it follows that
V (t) ∈ l∞. Further we can get s ∈ l∞, ea, ėa ∈ l∞.
Next a set � = {(qa, q̇a)|V̇ (t) = 0} is defined, and S is the

maximal invariant set of �.
From Eq. (38), we have

ṡ = 0 ⇒ ea = 0, ėa = 0 ⇒ qa = 0, q̇a = 0

Combined with Eq. (1), this yields:

q1 = 0, q2 = 0, q3 = 0, q4 = 0, q5 = 0,

q̇1 = 0, q̇2 = 0, q̇3 = 0, q̇4 = 0, q̇5 = 0.

The proof of Theorem 2 is completed.

IV. RESULTS AND DISCUSSION
In the previous section, we proved the convergence of
the proposed method theoretically and in this section the
performance of the proposed method will be further verified
through experiments.To assess its effectiveness, we con-
ducted comparative experiments referencing the proposed
controllers against the linear quadratic regulator (LQR) and
traditional sliding mode control (SMC) on the experimental
platform.

A. EXPERIMENTAL PLATFORM AND EXPERIMENTAL
PARAMETERS
We validate the methods in this paper using the experiment
platform shown in FIGURE 2 used the following S-shaped
trajectory as the target trajectory in this section:

χ (i)r =

 (χ (i)h − χ (i)0)
(

t
th

−
sin( 2π tth

)

2π

)
+ χ (i)0, t ∈ [0, th)

χ (i)h, t ∈ [th, td ]

(44)
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FIGURE 2. Experiment platform.

The values of the parameters used during the experiment
are as follows, where M = 2.1[kg],L = 0.5[m], and the
initial and final target angles in the undulation direction are
0◦ and 15◦, respectively. The initial and final target angles
in the direction of rotation are 0◦ and 15◦, respectively. The
variation of rope length is 0.2[m].

The proposed controller is theoretically analyzed and
empirically simulated experiments to obtain the most suitable
controller gain as:

k1 = 6, k2 = 3.5,Q = [1, 0, 0; 0, 1, 0; 0, 0, 1]T ,

R = 0.2[0.2, 0, 0; 0, 0.2, 0; 0, 0, 0.2]T ,

α = 0.001, ψ = 2, Ŵ0 = [1, 1, 1]T ,

where Ŵ0 is the initial value of weights W0, in our
experiments, we ensured that all the above parameters were
constant.

B. COMPARATIVE EXPERIMENTS
We selected the LQR controller and SMC as the comparison
controller.

LQR controller is as follows:

τ1 = −k11e1 − k12ė1 − k13q4 − k14q̇4 + τ1f

τ2 = −k21e2 − k22ė2 − k23q5 − k24q̇5 + τ2f

τ3 = −k31e3 − k32ė3 − mg+ τ3f

where e1 = q1−q1d , e2 = q2−q2d , e3 = q3−q3d , k11 = 45,
k12 = 24, k13 = 4.5, k14 = −0.1, k21 = 45, k22 = 31,
k23 = 3.9, k24 = 5.5, k31 = 31, k32 = 8.
The crane model shown in Eq. (1) is linearized as follows:

(mL2 +
1
3
M1L2)q̈1 − mLC1d q̈3+mLq3dS1d q̈4

+ (m+
1
2
M1)(g+ ḧ)LC1d = τ1

(
1
3
M1L2C1d

2
+ mL2C1d

2)q̈2 + mLq3dC1d q̈5 = τ2

−mLC1d q̈1 + mq̈3 − m(g+ ḧ) = τ3

mLq3dS1d q̈1 + mq3d 2q̈4 + m(g+ ḧ)q3dq4 = 0

mLq3dC1d q̈2 + mq3d 2q̈5 + m(g+ ḧ)q3dq5 = 0

The linearized equation is then deformed to obtain:

q̈ = βs + ηU

Then,we set:

S1 = e+ ϕė,

Ṡ1 = −µS1 − ρ tanh(S1),

where

e = q− qd ,

q =
[
q1 q2 q3 q4 q5

]T
qd =

[
q1d q2d q3d 0 0

]T
ϕ = diag(ϕ1, ϕ2, ϕ3, ϕ4), ϕ5)

The specific expressions for SMC are as follows:

τsmc=η
T

[
q̈d+ϕT (−µS − ρ tanh(S)−q̇+ q̇d )−βs

]
(45)

where ϕ1 = 65, ϕ2 = 50, ϕ3 = 3, ϕ4 = 2, ϕ5 = 1.5, µ = 45,
ρ = 10.

The results from the comparative experiments are illus-
trated in FIGURE 3. While tracking the same reference
trajectory, both the SMC and LQR controllers exhibit certain
overshooting and hysteresis responses during the rising
phase, contrasting with the smoother trajectory tracking
demonstrated by the proposed controller. Regarding pen-
dulum suppression, during the rising phase, the pendulum
angles of the LQR and SMC controllers notably display larger
oscillations compared to those of the proposed controller.
After 5 seconds, the pendulum angles of the proposed
controller stabilize, whereas those of the LQR and SMC
controllers continue to exhibit instability. TABLE 2 shows
more detailed parameters including reaching time tq1, tq2 , tq3
and maximum swing angle q4max , q5max . The jib positioning
manoeuvres and rope length changes of the cranes using
the proposed controllers tracked the reference trajectory
better, however, the cranes using the LQR and the SMC
increased the time to complete the above manoeuvres by
−9.5◦,13.9◦,−4.2◦ and 13.75◦,19.9◦,−2.8◦. In terms of
pendulum angle suppression, the maximum pendulum angles
using the proposed controller are 0.59◦ and 1.1◦, which
are 63%,26% and 69.9%,61.1% lower than those of LQR
and SMC, respectively. In summary, it is evident that the
proposed controller yields significantly smoother pendulum
trajectories compared to the SMC and LQR controllers.

Next, the robustness of the proposed controller is assessed
by varying the model parameters of the ship-mounted rotary
crane. When comparing the positioning effectiveness and
swing angle suppression of the SMC and LQR controllers
under changes in loadmass and initial rope length, as depicted
in FIGURES 3 and 4, it becomes evident that although
the LQR and SMC controllers can achieve a relatively
satisfactory positioning effect, they struggle to adequately
suppress swing angles, especially when the system’s model
parameters and intrinsic frequency are altered. Even as the
experimental duration progresses, significant swing angles
persist. In contrast, the proposed controller effectively
confines swing angles within a predefined range throughout
the experiment’s duration.
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TABLE 2. Comparative experiment results (m = 0.5[kg],l = 0.3[m]).

TABLE 3. Comparative experiment results (m = 1[kg],l = 0.5[m]).

FIGURE 3. Experimental results (m = 0.5[kg], l = 0.3[m]).

FIGURE 4. Experimental results (m = 1[kg], l = 0.5[m]).

More detailed parameters are shown in TABLE 3. The
crane jib positioning operations and the tracking of rope
length changes to the reference trajectory using this controller
remained good with changing system parameters, but the
time to complete the above operations increased by 3.5◦,
−7.6◦, −4◦, and −5◦ for the cranes using the LQR and
SMC, respectively, and −13.2◦, and −2◦. Similarly, the
maximum swing angles using this controller are 0.97◦ and
0.95◦, which are 33.6%, 80.2%51.5%, and 62.9% smaller
than those of the LQR and SMC, respectively. Therefore,

the controller proposed in this paper also has a relatively
excellent performance in terms of robustness.

Under both LQR and SMC, tq1 , tq2 and tq3 still fail to
reach the predetermined time and as a result, the load swing
angle becomes more jittery. Because for the q-matrix, if the
LQR can only be adjusted manually by experience, which
is difficult to attain good positioning effect while achieving
good swing angle suppression. sgn, the sign function included
in the SMC, maintains the control quantity on the surface of
the sliding mode, but on the other hand it also causes the
load swing angle to be existed. The controller proposed in
this paper reduces the error generated in the control process
by establishing the optimal performance indicator function
of the sliding mode and solving the HJB equation based
on the strategy iteration algorithm, which approximates the
unknown function through neural network.

V. CONCLUSION
In this paper, in order to solve the control problem of the
ship-mounted rotary crane, an optimal feedback controller is
proposed by combining the optimal control and sliding mode
control, which achieves the precise positioning of the load
and the suppression of the pendulum angle, and finally the
validity of the proposed method is verified by theories and
experiments.
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