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ABSTRACT The main factor limiting the widespread use of industrial robots in machining applications is
the relatively low stiffness of the robot. Stiffness performance not only affects the quality of robotic milling
but also affects the accuracy of the milling process. It is necessary to improve the stiffness performance in
the robotic machining process. A new robot stiffness performance index is proposed to evaluate the robot
stiffness in the direction normal to the surface of the workpiece to be machined. This index is based on
the functional redundancy characteristics of the robot. The relationship between the redundant axis angle
and the stiffness performance index at a random point in Cartesian space, and the stiffness performance
index values on a random path in Cartesian space are obtained. The robot posture optimization model is
established and a new robot milling posture optimization method is introduced. The experimental results
prove a significant reduction in machining error and a significant increase in machining accuracy after using
the proposed robotic milling posture optimizationmethod, which proves the validity of the proposed stiffness
performance index, and the robot milling posture optimization method can be widely used in the industry.
Finally, the distribution of stiffness performance index is analyzed to predict the regions of better robot
stiffness performance in the workbench, which can be used as a criterion before the milling operation to
optimize the robot configuration to improve milling accuracy and save time.

INDEX TERMS Robotic milling, robotic redundancy characteristics, stiffness performance index, robot
posture optimization model, stiffness performance distribution.

I. INTRODUCTION
In recent years, industrial robots are more and more used
in many mechanical manufacturing operations such as
milling [1], turning, and welding [2]. However, industrial
robots are mostly used in palletizing, painting, and deburring
operations due to their low stiffness and low pose repeata-
bility (0.01 mm∼0.5 mm). The stiffness of industrial robots
is typically less than 1 N/µm compared to the stiffness of
computer numerical control (CNC) machines, which is larger
than 50 N/µm. Considering flexibility, intelligence, and low
cost, industrial robots are expected to replace CNC machines
in many specific fields such as aerospace [3], shipbuild-
ing [4], [5], [6], [7], [8], and complex parts machining [9],
[10], [11], [12], [13].
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To propose an index for evaluating robot stiffness perfor-
mance, it is necessary to identify the joint stiffness values.
Research on joint stiffness identification and modeling has
been discussed in recent years. To evaluate robot joint stiff-
ness, the analysis of robot manipulators and the enhanced
stiffness modeling, as well as a method for identifying and
characterizing their stiffness were described by Alici and
Shirinzadeh [14]. To improve the two-dimensional manifold,
two different stiffness-oriented performance indices were
compared and the modeling of the 6-DOF robot stiffness was
introduced by Li et al. [15] A method for identifying the
joint stiffness using laser displacement sensors was presented
by Cen and Melkote, [16] The robot stiffness model was
established by Guo et al. [17] to improve the positional accu-
racy in robotic machining. The static and dynamic stiffness
models were introduced by Cvitanic et al. [18], and a posture
optimization method in robotic machining was proposed.
Dumas et al. [19], [20] introduced a new method for stiffness
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identification, which considers the effect of robot singularity
on stiffness identification. Chen and Kao [21] introduced the
effective stiffness matrix taking into consideration the robot
links deformation. The effective stiffness matrix was based
on the conservative congruence transformation (CCT).

Research on stiffness characteristics and pose optimization
has been discussed in recent years. To obtain better stiffness
performance, the normal stiffness performance index (NSPI)
was proposed by Chen et al. [22] to evaluate the stiffness
performance of the robot for a specific pose. A machining
quality index was presented by Caro et al. [23] to choose the
best location for the workpiece to be machined. The Jacobian
condition number was used by Zargarbashi et al. [24] as
a performance criterion to optimize six-degree-of-freedom
robots in five-axis machining. A method for evaluating and
contrasting the static and dynamic stiffness performance was
presented by Slamani et al. [25] To evaluate the benchmark
circle’s contortion degree, the performance index using the
circularity norm was proposed by Klimchik et al. [26] To
optimize the robot performance, two design goals were pro-
posed by Kucuk and Bingul [27] (i) maximize the local
indices, (ii) maximize the workspace area covered by the
robot manipulator.

A new robot milling posture optimization method is pro-
posed in this paper to improve the robot milling accuracy.
The stiffness model and performance index of robot stiffness
are introduced in Section II. A larger stiffness performance
index means less end-effector (EE) displacement. Therefore,
the stiffness performance index can be used to represent
deforming resistance of the end-effector (EE). In Section III,
the robot posture optimizationmethod is presented. The influ-
ence of the redundant axis on stiffness performance index
is analyzed. In Section IV, the experiment procedure and
discussion are described, and the distribution of stiffness
performance index for a specific height plane are analyzed.
Finally, the conclusion is obtained in Section V.

II. STIFFNESS MODEL AND PERFORMANCE INDEX
In this section, the stiffness model and performance index of
robot stiffness are introduced. The relationship between stiff-
ness performance index and end-effector (EE) displacement
is analyzed. It proves that the stiffness performance index kfs
can represent the ability of EE to resist deformation.

TABLE 1. DHm parameters and joint stiffness values of the KUKA KR60-3
robot.

The KUKA KR60-3 robot is used as an illustrative exam-
ple. The DHm parameters and the joint stiffness values of the
KUKA KR60-3 robot are shown in Table 1 [28], and the link
frames are presented in Figure 1.

FIGURE 1. Link frames of the KUKA KR60-3 robot.

A. STIFFNESS MODEL OF ROBOT
The enhanced model introduced by Alici and Shirin-
zadeh [14] describes the relationship between Cartesian
stiffness and joint stiffness.

KX = J−T (Kθ − KC ) J−1 (1)

where J is the Jacobianmatrix,Kθ is the joint stiffness matrix,
KX is the Cartesian stiffness matrix and KC is the comple-
mentary stiffness matrix (CoSM), expressed as the robot is
subjected to external loading or the Jacobian changes with its
configuration. KX is more sensitive to Kθ and the impact of
Kθ on KX is much greater than that of KC . Therefore, as long
as the robot configurations are chosen appropriately, KC can
be negligible [20]. Thus equation (1) is simplified as:

KX = J−TKθJ−1 (2)

The compliance matrix C is the inverse of the Cartesian
stiffness matrix KX . Therefore, the compliance matrix C can
be expressed as:

C = JK−1
θ JT (3)

where C can be divided into four (3 × 3) submatrices as
follows:

C =

[
Ctt Ctr
CT
tr Crr

]
(4)

whereCtt ,Ctr , andCrr represent the translational compliance
submatrix, coupling compliance submatrix, and rotational
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compliance submatrix, respectively. The end-effector (EE)
rotational displacement compared to the translational dis-
placement can be neglected because the tool radius from the
workpiece surface to the tool center axis is relatively small.
Thus, the translational displacement δt can be expressed as:

δt = CttFt (5)

where δt =
[
δx δy δz

]T , and Ft =
[
Fx Fy Fz

]T is the
external forces applied on the EE.

Expanding equation (5) as δx
δy
δz

 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 Fx
Fy
Fz

 (6)

B. PERFORMANCE INDEX OF ROBOT STIFFNESS
Considering the unit translational displacement on the EE:

∥δt∥ = δTt · δt = 1 (7)

Thus, equation (5) therefore becomes

FTt C
T
tt CttFt = 1 (8)

FIGURE 2. Force stiffness ellipsoid on EE and the redundant axis of the
robot.

Force stiffness ellipsoid on EE is shown in Figure 2. Ellip-
soid long radius λe1 represents the maximum force required
to produce a unit linear displacement on EE, and ellipsoid
short radius λe2 represents the minimum force required to
produce a unit linear displacement on EE. Therefore, a larger
force is required to produce the unit linear displacement,
which means better stiffness performance at the λe1 vector
direction, and a smaller force is required to produce the

unit linear displacement, which means worse stiffness per-
formance at the λe2 vector direction. λ is the force required
to produce a unit linear displacement in the z-axis direction.
Thus, λ is the index to evaluate the stiffness performance.

Let CC = CT
tt Ctt , equation (8) becomes

FTt · CC · Ft = 1 (9)

namely

[
Fx Fy Fz

]  cc11 cc12 cc13
cc21 cc22 cc23
cc31 cc32 cc33

 Fx
Fy
Fz

 = 1 (10)

Expanding equation (10) as

cc11F2
x + cc22F2

y + cc33F2
z + (cc12 + cc21)FxFy

+ (cc13 + cc31)FxFz + (cc23 + cc32)FyFz = 1 (11)

where Fx = 0, Fy = 0 when we want to obtain the the
distance from the intersection point of the stiffness ellipsoid
and the normal to the milling plane. Therefore, the stiffness
performance index kfs can be expressed as the length of
vector λ

kfs =

√
1
cc33

=

√
1

c213 + c223 + c233
(12)

kfs is defined as the stiffness performance index. As shown
in Figure 3, the external force Ft = [200200200] (N), and
larger stiffness performance index values mean smaller EE
displacements. Therefore, the stiffness performance index kfs
can represent deforming resistance of EE.

FIGURE 3. The relationship between stiffness performance index kfs and
EE displacement.

C. COMPARISON WITH OTHER PERFORMANCE INDICES
The normal stiffness performance index (NSPI) proposed by
Chen et al. [22] and the Rayleigh quotient index proposed by
Tian et al. [29] are compared with the index proposed in this
paper as below.
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The NSPI is defined as follows

kn =

√
FTtt Ftt

δ2n
(13)

where kn is the normal stiffness performance index (NSPI),
Ftt represents the external forces applied on the EE, and δn is
the deformation in the surface normal direction during robotic
milling. Compared to the NSPI, the stiffness performance
index kfs proposed in this paper represents the stiffness in
the normal direction of the surface of the workpiece to be
machined during the robotic milling. kfs does not depend
on the magnitude and direction of external forces, and is a
property of the robot itself. This means that kfs can be more
conveniently obtained and widely applied in robot processing
applications.

The Rayleigh quotient index is defined as follows:

RK (d) =

√
|Ktt · d |

2

|d |
2 (14)

where RK (d) is the Rayleigh quotient index,Ktt is the inverse
matrix of the translational compliance submatrix Ctt , and d is
the linear displacement components of the EE.

The Rayleigh quotient index RK (d) does not have direc-
tionality and cannot reflect the stiffness performance of
robots in specific directions, and there is the area near the
singularity of the robot’s wrist with a large Rayleigh quotient
index value affects the true evaluation of the robot’s stiffness
performance.

III. ROBOT POSTURE OPTIMIZATION
The robot posture optimization method is introduced in this
section. First, robot posture optimization model is estab-
lished. Then, the influence of redundant axis on stiffness
performance index is analyzed. The redundant axis is shown
in Figure 2. Finally, the variation of the stiffness performance
index on the random path is analyzed (shown in Figure 5).

KUKA robot has six degrees of freedom, while it only
takes five degrees of freedom for the robot TCP to reach
most points in the Cartesian workspace, and the remaining
one is redundant degrees of freedom. The redundant degrees
of freedom of the serial robot rotates around the tool spindle,
so when the robot is milling the same path, it can be optimized
based on redundancy angles. The redundant axis angle γ is
shown in Figure 2.

A. ROBOT POSTURE OPTIMIZATION MODEL
The solution of robot inverse kinematics usually contains six
postures. Thus, the posture with the maximum value of the
stiffness performance index is selected. In milling operations,
maximizing the stiffness performance index values corre-
sponding to redundant axis is used to optimize robot posture.
With the above description, a robot posture optimization

model is established as follows:
max kfs
s.t.qmik = max ikine (T (qi))
s.t.T (qm) = T (qmik , γ )

qimin ≤ qi ≤ qimax i = 1, . . . , 6

(15)

where ikine is the inverse kinematics of the robot, T is the
kinematic matrix of the robot, qmik is the posture with the
largest stiffness performance index among eight groups of
robot inverse kinematics postures, qi is the stiffness value
of the robot joint, i = 1,. . . ,6, and qm is the posture that
considers the maximum stiffness performance index of robot
with redundant axis angles.

FIGURE 4. The relationship between kfs and redundant axis angle for
point P in the Cartesian workspace.

B. INFLUENCE OF REDUNDANT AXIS ON THE STIFFNESS
PERFORMANCE INDEX
Different redundant axis angles are selected to analyze the
influence of redundant axis on the stiffness performance
index. As shown in Figure 4, for one point in the Cartesian
workspace, the redundant axis angle has a significant effect
on the stiffness performance index. It can be seen that from
a redundant axis angle of 8◦ to 59◦, the value of increases.
The best stiffness performance is achieved with a redundant
axis angle of 59◦. As the redundant axis angle continues to
increase, the stiffness performance decreases. Take point P
(150, 1200, 486) mm as an example, the relationship between
and redundant axis angles is shown in Figure 4.

Two points P1 (−43, 834, 486) mm and P2 (57, 947,
486) mm on the workbench are randomly selected to ver-
ify the validity of the stiffness performance index. Figure 5
shows the variation of kfs values on the path from P1 to P2 for
a redundant axis angle of 0◦. It can be seen that from an x-axis
value from −43 mm to 0 mm, the value of kfs decreases.
The worst stiffness performance is achieved with an x-axis
value of 0 mm. As the x-axis value continues to increase, the
stiffness performance increases.
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FIGURE 5. kfs values on the path from P1 to P2.

IV. EXPERIMENT SETUP AND DISCUSSION
In this section, the experimental setup is first introduced.
Then the relationship between stiffness performance index kfs
and milling error is obtained. Finally, the variation of milling
error relative to kfs is analyzed.

FIGURE 6. Experimental setup.

A. EXPERIMENTAL SETUP
In Figure 6, the experimental system consists of a robot
(KUKA KR60-3), an electric spindle, and a milling tool.

The rated power of the spindle is 2.2 kW, the rated current
of the spindle is 6.4 A, and the rated speed of the spindle
is 12000 rpm. The spindle is mounted on the flange of the
robot. The tool parameters and cutting conditions for milling
experiments are shown in Table 2. The stiffness of the robot
is related to its posture, and changes in the robot’s posture
can cause changes in milling forces. Therefore, the robot’s
posture is an important factor affecting the robot’s milling
accuracy when the milling parameters and milling conditions
remain unchanged.

TABLE 2. Tool parameters and cutting conditions for milling experiments.

TABLE 3. Laser displacement sensor parameters.

B. DISCUSSION
To verify the changes of kfs in Figure 4, the redundant axis
angles of 10◦, 30◦, 59◦, and 100◦ are selected for stiffness
performance validation experiments. Given that the milling
length is as small as 10 mm, it is considered that the kfs
value remains unchanged during the milling process. The
reference surface is obtained by repeating the milling path
and the measured surface is obtained by a single milling path.
Therefore, the milling error can be considered as the normal
distance between two surfaces. The milling error is measured
by a laser displacement sensor (parameters are shown in
Table 3).

Figure 7 shows the relationship between kfs and milling
error. Larger kfs values mean higher robot stiffness in the
pose, which leads to higher milling accuracy. Consistent with
the above analysis, higher milling accuracy means smaller
milling errors. Therefore, choosing the suitable kfs can effec-
tively improve the milling accuracy of robotic milling.
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FIGURE 7. The relationship between kfs and milling error.

The path from P1 to P2 is chosen to verify the variation
in milling error due to changes in kfs values. As shown in
Figure 8, smaller milling errors represent higher milling accu-
racy. The milling error is consistent with the variation of kfs
values, which means that the proposed stiffness performance
index kfs can effectively reflect the accuracy of the milling
process.

FIGURE 8. The milling error.

To further analyze the validity of the stiffness performance
index kfs in Figure 5, the path from P1 to P2 with differ-
ent redundant axis angles is selected to verify the milling
accuracy.

As shown in Figure 9, the optimization path (OP) consists
of points 2 mm apart on the milling path from P1 to P2,
and the robot posture at each position is the posture of the
maximum stiffness performance index. The mean milling
errors are consistent with the variation of the mean kfs values.
Therefore, the stiffness performance index kfs can be used to
evaluate the robot milling accuracy.

The percentage of kfs values (N/mm) and milling errors
(mm) is shown in Table 4. The larger milling error represents
the smaller milling accuracy, and the mean milling error is
also the same. For the milling path at −40 mm and 0 mm,
the milling error is reduced from 0.069 mm to 0.038 mm,

FIGURE 9. The mean milling error.

a 45.0% reduction. Consistent with the variation in kfs in
Figure 5, the maximum kfs value (−40 mm) has the smallest
milling error and the best milling accuracy, and the minimum
kfs value (0 mm) has the largest milling error and the worst
milling accuracy. The percentage of mean kfs values (N/mm)
and mean milling errors (mm) is shown in Table 5. For the
optimization path (OP) and the redundant axis angle of 0◦, the
mean milling error is reduced from 0.086 mm to 0.029 mm,
a 66.3% reduction. Consistent with the variation in kfs, the
optimization path (maximummean kfs) has the smallest mean
milling error and the best milling accuracy, and the redundant
axis angle of 0◦ (minimum mean kfs) has the largest mean
milling error and the worst milling accuracy.

TABLE 4. Percentage of kfs values (N/mm) and milling errors (mm).

TABLE 5. Percentage of mean kfs values (N/mm) and mean milling
errors (mm).

C. DISTRIBUTION OF STIFFNESS PERFORMANCE INDEX
IN THE ROBOT WORKSPACE
After obtaining the optimal redundant axis angle, the stiffness
performance distribution map can be drawn by interpolating
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and fitting coordinate points at 1mm intervals. It can be seen
from Figure 10 that milling areas with higher values are
located close to the robot base. The distribution of kfs for
the plane of 486 mm height is shown in Figure 10. It can
be seen that the stiffness performance of the robot varies
with the red- undant axis angle and the position of the TCP.
From Figure 10(a)-(c), as the red region increases in size, the
stiffness of the robot increases. At a redundant axis angle of
60◦, a stiffer region is shown in Figure 10(c). As the redundant
axis angle continues to increase, the robot stiffness decreases.
Therefore, there will always be a redundant axis angle that
maximizes the stiffness of the robot on a specific plane.

FIGURE 10. Distribution of kfs for plane of 486mm height, with different
redundant axis angles.

The mean, standard deviation, and PV (Peak to Valley)
values of stiffness performance index kfs are presented in
Figure 11. Larger kfs mean values reflect better stiffness
performance on the workbench, and smaller kfs standard
deviation values reflect a smaller variation of the stiffness
on the workbench. The variation in standard deviation values
is small, which means the variation of the stiffness is small.

The PV values represent the dispersion of the stiffness per-
formance index kfs.

FIGURE 11. Stiffness performance index kfs mean, standard deviation,
and PV values.

As shown in Figure 11, the value of the standard deviation
varies very little, so the standard deviation can be used not as
a selection criterion to predict the region of milling accuracy.
The change trend of the mean value is close to the PV value
(only 15 ◦ to 45 ◦ is the opposite), which means that the
dispersion is similar to the change of concentration degree.
The mean value is an important criterion for reflecting the
stiffness performance, so the mean value is used as the selec-
tion standard for predicting the milling accuracy area. When
the redundant axis angle is equal to 60◦, the mean value is
maximum, which means the stiffest region. Therefore, before
the milling operation, the stiffness performance distribution
can be used to optimize the robot configuration, which can
improve milling accuracy and save time.

V. CONCLUSION
In this paper, a new stiffness performance index kfs is pro-
posed to evaluate the robot stiffness in the direction normal
to the surface of the workpiece to be machined. The index
does not dependent on the direction of the external force,
which reduces the limitations of robotic milling and is more
widely applicable to industrial applications. Amilling posture
optimization model based on the redundancy characteris-
tics of the robot is proposed. This model is applicable to
6 degrees of freedom serial robots and can be extended to
multi degrees of freedom robots. Then the distribution rules
of kfs for different redundant axis angles are presented to
predict the stiffness performance distribution of robot in the
workspace space. Finally, the results of milling experiments
show that a larger stiffness performance index results in a
smaller machining error, which means that machining errors
can be reduced and machining accuracy can be improved by
optimizing the redundant axis angles.
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