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ABSTRACT Autonomous vehicle lane change maneuvers are an intricate task that requires multiple
subsystems to work together to ensure the maneuver’s safety and efficiency. This research paper investigates
lane change maneuvers of autonomous vehicles, utilizing a trajectory generated using a sinusoidal function
considering the ISO 3888 standards. The driving maneuver steering angle input is derived from the
generated trajectory, which is adjusted using model predictive control (MPC) to calculate an optimal steering
angle for lateral movement and manage throttle input to maintain longitudinal stability. Throughout lane
change maneuvers, the vehicle’s states are estimated using model-based Kalman filters, relying on input
and measurement data from inertial sensors. The paper compares four state estimator filters: Standard
Kalman Filter, Extended Kalman Filter, Unscented Kalman Filter, and Adaptive Unscented Kalman Filter.
The implementation of the lane change trajectory generator, MPC algorithm, and state estimators within
MATLAB/Simulink, validated through IPG CarMaker, highlights the Adaptive Unscented Kalman Filter as
the optimal choice for lane change state estimation. Its adaptive covariance adjustment sets it apart from the
other filters under examination.

INDEX TERMS Autonomous vehicle, Kalman filter, lane change, lateral control, longitudinal control, state
estimation, trajectory generation.

I. INTRODUCTION
In recent years, technological advancements in autonomous
vehicles have shown tremendous growth in bringing fully
autonomous vehicles into reality. As the achievements
indicate, fully automated self-driving cars will become
pervasive in the coming few years [1], [2]. The main priority
when navigating with autonomous vehicles is to guarantee
passenger safety and ensure collision-free maneuvering
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toward the destination. Even today, the majority of vehicles
are operated by humans, who are tasked with making
decisions to prevent collisions while adhering to established
standards.

However, humans have limitations in making immediate
and accurate decisions to avoid collisions and efficiently
utilize resources, such as time, energy, and managing traffic
congestion. The imperfections inherent in human driving
behaviors result in a tragic loss of life and valuable
resources. Transitioning to fully autonomous vehicles offers a
solution by mitigating accidents stemming from human error.
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By replacing fallible human drivers with Advanced Driver
Assistance Systems (ADAS) functions, and computerized
self-driving technology, we can dramatically reduce both
resource damage and fatalities.

Furthermore, autonomous vehicles have the potential to
alleviate traffic congestion and curb pollutant emissions
by precisely controlling speed, optimizing routes, and
maintaining safe distances from neighboring vehicles [3], [4].
In the realm of self-driving cars, ensuring passenger safety

by preventing collisions remains a critical concern. Lane
changing frequently occurs in both highway and urban
driving, which presents a significant challenge.

Vehicles often change lanes for various reasons, includ-
ing overtaking slower vehicles, yielding to faster ones,
or avoiding obstacles [5]. Thus, making a perfect lane change
increases the safety of the passengers. Making accurate lane
changes depends on the accuracy of the basic components
of autonomous vehicles. Localization, trajectory planning,
and vehicle control are some of the essential subsystems that
affect the decision-making process to put the vehicle on the
right track by avoiding collisions.

The localization component estimates the vehicle’s state
using input from the sensors and the vehicle model. The state
estimator helps the vehicle accurately estimate the next states,
such as the vehicle position, orientation, speed, and yaw rate,
based on the current state, the noisy measured input from
sensors, the control inputs, and the vehicle model.

Accurate estimation of the vehicle’s state is an important
factor in making perfect decisions for taking further action
and maintaining the safety of passengers. In [6], state estima-
tors are classified into two methodologies: the model-based
estimation approach and the data-driven estimation approach.
The model-based technique relies on the vehicle’s kinematic
or dynamic model to estimate its states, establishing direct
correlations between measurements and estimated states.
In contrast, the data-driven estimation approach employs
artificial neural networks to estimate the vehicle’s state. The
main contribution of this work is to develop a model-based
state estimation algorithm. These algorithms aim to accu-
rately estimate the state of an autonomous vehicle during
the lane change process by using control inputs managed
by MPC, enabling the vehicle to follow the generated lane
change trajectory.

Additionally, the proposed approach relies on advanced
vehicle state estimators, primarily based on Kalman filter
estimation techniques. These estimators predict and update
the system’s state and error covariance matrix recursively,
allowing for the most precise estimations possible. Addi-
tionally, to figure out the best state estimator algorithm for
lane change in autonomous vehicles, a comparative study of
four state estimators (KF, EKF, UKF, AUKF) is conducted to
determine the best state estimation algorithm for lane change
in autonomous vehicles, taking into account their accuracy
and computational complexity.

The control inputs for the state estimator are derived from a
lane change trajectory generator, which combines sinusoidal

and linear functions to comply with ISO 3888 standards.
The generated trajectory provided as a reference input to
the controller to generate the control inputs for precise lane
change maneuvering. In this research, the MPC method is
specifically chosen due to its optimal control nature and
its capability to handle multiple input and output controls
effectively.

Integrated with the state estimators, the MPC system
precisely manages steering angle and throttle inputs, ensuring
accurate adherence to the designated route for safe lane
changes. MPC offers the advantage of simultaneously
controlling both lateral and longitudinal inputs, with changes
in lateral motion directly influencing longitudinal motion
parameters [7], [8], [9]. In the context of lane changes, MPC
computes the appropriate steering angle and acceleration,
ensuring stability in longitudinal motion.

In general, the overall lane change system architecture is
illustrated in Figure 1 and comprises three main modules:
the lane change trajectory generator, the state estimator, and
the controller. The trajectory generator module is utilized to
generate the reference lane change trajectory by combining
sinusoidal and linear functions, aiming for an optimal lane
change. Meanwhile, the state estimator module accurately
predicts the vehicle’s future trajectory state by leveraging the
vehicle’s kinematic model and control input.

FIGURE 1. Overall system architecture.

In the subsequent sections, we provide a comprehensive
overview of the trajectory generator for lane changes,
the vehicle model, state estimators, and the controller
design. Section II presents how the lane change trajec-
tory is generated, while Section III addresses the vehicle
model. Section IV examines state estimator algorithms,
and Section V provides a comprehensive overview of
MPC methodology. Results and discussion are presented in
Section VI, followed by concluding remarks in Section VII.

II. LANE CHANGE TRAJECTORY GENERATOR
Generating an optimal lane change trajectory ensures an
efficient and smooth lane change maneuver. Before initiating
the lane change process, the autonomous vehicle plans its
trajectory based on its current state as well as the state of the
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surrounding vehicle or potential obstacles. The trajectory set
points generated from this unit will be used as reference paths
in real-time motion planning of a lane change.

Existing literature illustrates various techniques employed
to generate lane change trajectories. For instance, a quintic
polynomial for trajectory planning was implemented by [10]
to optimize jerk, and a 5th polynomial trajectory was
utilized by [11] to determine the virtual reference lane.
The polynomial describes the lateral position as a function
of the vehicle’s longitudinal position for a lane change.
However, quintic polynomial has limitations in handling
real-time, dynamic, and complex environments making
them less suitable for autonomous vehicle lane change
planning compared to more adaptive and flexible approaches.
In addition, quintic polynomials require solving a system
of equations to determine the coefficients, which can be
computationally intensive. This complexity increases with
real-time planning requirements.

An analysis of real driving data from various drivers
during lane changes was conducted by [12], resulting in a
set of simplified trajectories representing typical lane change
behaviors, facilitating more efficient online computation.
Moreover, the lane change process was integrated into a
learning module, allowing for the generation of models used
in online inference and planning. However, this approach has
a limitation since the accuracy of the learning-based method
depends on the quality and quantity of human driving data
which can significantly impact its performance. Low-quality
data or insufficient data can lead to less optimal or unsafe lane
change maneuvers.

Dynamic lane change trajectory planning for an
autonomous vehicle was conducted in [5], utilizing the Frenet
reference frame and cubic polynomial to determine the path
and speed adjustments of the autonomous vehicle during lane
changes.

However, the reliance of the Frenet reference frame on a
predetermined path poses challenges in accurately tracking
dynamic targets. To address this limitation, an elliptic limit-
cycle trajectory is employed for roadway navigation in
the automatic lane change system presented in [13]. This
approach involves extracting dynamic set points and defining
a unique stable control law to mitigate errors and ensure
smoother lane change maneuvers.

In this paper, a safe and optimal lane change trajectory is
generated by using a combination of sinusoidal and linear
functions to meet ISO 3888 standards for double lane change
to overtake the preceding vehicle or avoid obstacles. During
the double-lane change, the ego vehicle shifts from its current
lane to the adjacent one and then reverts to its original lane
after bypassing the preceding vehicle or obstacle.

The sinusoidal and linear functions are integrated to ensure
a safe double-lane change, thereby achieving an optimal
trajectory to prevent collision with the preceding vehicle
or obstacle. The ISO 3888 standard defines the dimensions
of test tracks and procedures for evaluating the ability
of passenger cars and light commercial vehicles to avoid

obstacles. It consists of two parts: one for testing abrupt lane
changes (ISO 3888-1) and another for obstacle avoidance
maneuvers (ISO 3888-2). The test track is designed to
simulate sudden lane changes, featuring a straight section
followed by a curve where an obstacle is placed to assess the
vehicle’s response.

This standard is essential for enhancing vehicle safety
by encouraging carmakers to refine their obstacle-avoidance
technologies.

The double lane change path, outlined by the ISO
3888 standard, is divided into five sections [14], [15].

In the first segment, the vehicle remains in its lane for a
maximum distance of 15 m for ISO 3888-1 and 12 m for ISO
3888-2 before initiating the lane change. During the second
phase, the vehicle must transition to a parallel lane within
30 m for ISO 3888-1 or 13.5 m for ISO 3888-2. The third
and fourth segments are employed to avoid the obstacle or
preceding vehicle and return to the initial lane, respectively.

Finally, a distance of 15m for ISO 3888-1 and 12m for ISO
3888-2 is required after returning to the initial lane to stabilize
the vehicle. To execute maneuver at the second and fourth
segment of lane change maneuver as depicted in Figure 2,
the lane change trajectory is computed using a sinusoidal
function to ensure a smooth transition from the current lane to
the adjacent lane. Where (xei, yei) is the initial location of the
ego vehicle, (xpi, ypi) is the initial location of the preceding
vehicle or obstacle, Ld represents the longitudinal distance
between the ego and the preceding vehicle, and b represents
a constant value of the lateral distance between the centers of
two adjacent lanes.

FIGURE 2. Illustrating parameters for double-lane change trajectory.

In this work, the standard for the width between two
adjacent lanes is considered to be 3.5m. L1, L2, L3, L4, and L5
represent the longitudinal distance of the five sections of the
double lane change according to ISO 3888. And their lengths
for ISO 3888-1 and ISO 3888-2 are described above.

As previously stated, the double-lane change trajectory
is generated according to the standard using a combination
of linear and sinusoidal functions. The linear function is
employed to produce the path in the first, third, and last
sections, maintaining the lane. Meanwhile, the sinusoidal
function is utilized to create a path for changing lanes to the
left and right in the second and fourth sections [16].
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FIGURE 3. Vehicle bicycle model.

Figure 3 depicts this simplified bicycle vehicle model
operating within a two-dimensional space.

Equation (1), as shown at the bottom of the next page,
specifies the relationship between the lateral and longitudinal
displacement trajectory functions for double-lane changes.
where: y denotes the lateral displacement, and x represents
the longitudinal displacement. The vehicle heading angle is
equivalent to the inverse tangent of the slope of the trajectory.
However, for small slope (angle) variations, the heading
angle of the vehicle (ψ) is approximated to the slope of
the trajectory. Hence, the vehicle’s heading angle (ψ) is
determined by differentiating the lateral displacement (y)
with respect to the longitudinal displacement (x), as depicted
in equation (2), as shown at the bottom of the next page.

III. VEHICLE MODELING
The accuracy and complexity of the vehicle model greatly
affect the lane change process. A more complex model can
better represent motion, but it increases controller design and
computational costs. A simpler model reduces complexity,
but it may not withstand non-linear effects and introduce
uncertainty [11], [17], [18]. The model under consideration
in this work is a basic bicycle car-like kinematic model to
characterize the movement of an autonomous vehicle. This
model simplifies by neglecting direct factors such as forces,
torque, and inertia that influence motion. By representing a
four-wheeled vehicle with only two wheels, one at the front
and one at the rear, the model reduces control to managing
two wheels and one steering angle.

The state of the vehicle, which describes the condition
of the vehicle at time step k during its motion, is represented
by the following set of state variables:

x(k) = (x(k), y(k), ψ(k),Vx(k),Vy(k), r(k)) (3)

At each time step k , x(k), and y(k) respectively represent the
abscissa and ordinate of the position of the vehicle’s center

of gravity. ψ(k) denotes the vehicle’s heading angle in the
global frame at time step k , while Vx(k) and Vy(k) represent
the longitudinal and lateral velocities at the same time step,
expressed in the same frame. r(k) is the yaw rate at time step
k . The resultant velocity V is the norm of the longitudinal
velocity Vx and lateral velocity Vy.

This paper introduces an advanced control strategy aimed
at achieving precise lane changes. MPC law is developed to
regulate both the longitudinal acceleration (ax) and steering
angle (δ). This ensures stable and precise movements in
the longitudinal and lateral directions, respectively. This
approach ensures effective lane change management by
keeping longitudinal velocity variations under control.

The angle β(k) denotes the side slip angle of the vehicle
at time step k , calculated using equation (4) where vx and vy
represent the longitudinal and lateral velocities of the vehicle
in a body frame. These velocities in a body frame are then
transformed into the global frame using equation (6).

β(k) = tan−1 vy(k)
vx(k)

(4)

Considering the current state, the motion of the ego vehicle
can be expressed using the following discrete state equations:

x(k + 1) =


x(k + 1)
y(k + 1)
ψ(k + 1)
Vx(k + 1)
Vy(k + 1)
r(k + 1)



=



x(k) + Vx(k)1t
y(k) + Vy(k)1t
ψ(k) + r(k)1t

V (k) cos(ψ(k) + β(k)) + ax1t
V (k) sin(ψ(k) + β(k))

V (k)δ(k)
lr+lf

 (5)

where, 1t is the sampling time step duration, lf is the length
between the front wheel and the center of the vehicle, and lr
is the length between the rear wheel and the vehicle’s center.[

Vx(k)
Vy(k)

]
=

[
cos(ψ(k)) −sin(ψ(k))
sin(ψ(k)) cos(ψ(k))

] [
vx(k)
vy(k)

]
(6)

IV. STATE ESTIMATION
The state estimation unit is responsible for accurately
determining the vehicle’s state, considering factors such as
the mathematical model, sensor data, previous state, and
control input. However, the presence of sensor noise and
model imperfections can lead to inaccuracies in estimation,
thereby compromising lane change safety. To address this
issue, estimators, including Kalman filters KF, EKF, UKF,
and AUKF, are designed to optimize the estimation of
autonomous vehicle states.

These filters recursively process noisy sensor data and
potentially inaccurate models to enhance estimation preci-
sion. A comparative analysis of these estimators will be
presented in the results and discussion section.
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A. STANDARD KALMAN FILTER
The Kalman filter, a recursive mathematical algorithm,
is commonly utilized for estimating the state of a linear
system based on noisy measurement inputs, the system
model, its previous state, and control input. Illustrated in
Figure 4, the algorithm comprises two phases: prediction and
update. In the prediction step, the filter forecasts the system’s
state at the next time step using the current state and system
model. Subsequently, in the update step, it refines its state
estimate based on the current measurement input [19].

The general state space model for the Kalman filter
involves two equations: the state estimate equation and
the observation equation. The discrete-time state estimate
equation in a linear system, the Kalman filter expresses it as
follows:

x(k + 1) = Ax(k) + Bu(k) +W (k) (7)

where x is the state estimate vector, u is the control input
vector, A is the state matrix, B is the control input matrix
and W represents the system or process white Gaussian
noises with corresponding system noise covariance matrixQ.
Matrices A and B are determined from the vehicle model and
their matrices are given by:

A =


1 0 0 1t 0 0
0 1 0 0 1t 0
0 0 1 0 0 1t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 ,B =



0 0
0 0
0 0
0 1t
0 0
V

lf+lr 0

 ,

where the current vehicle state (x(k)) and the control input
(u(k)) matrices at time step k are given by:

x(k) =


x(k)
y(k)
ψ(k)
Vx(k)
Vy(k)
r(k)

 and u(k) =

[
δ(k)
ax(k)

]

The observation equation is also expressed with the following
linear equation:

y(k) = Cx(k) + V (k) (8)

where y is themeasurement vector of the current state,V is the
measurement of white Gaussian noises with corresponding
measurement noise covariance matrix R, and C is the output
matrix represented as n by n identity matrix, where n is the
number of state parameters.

As shown in Figure 4, at the prediction stage of the
Kalman filter, the state (x̂) and the covariance error (P̂) are
estimated using the previous state, previous covariance error,
and control input.

During the updated phase, the KF determines the Kalman
gain and updates the predicted state x(k + 1) and covariance
error P(k + 1) of the system using the current measurement
input u(k). The variable K which is indicated in Figure 4
represents the Kalman gain. It determines how much the
measurement is included in the new state estimate. Finally,
the updated estimated state and covariance error become the
current state and covariance error, which become input for the
next state estimation.

y =



yei, for xei ≤ x < xpi − L2 −
L3
2

yei +
b
2π

(
2π
L2

· (x − (xpi − L2 −
L3
2
)) − sin

(
2π
L2

· (x − (xpi − L2 −
L3
2
))

))
, for xpi − L2 −

L3
2

≤ x < xpi −
L3
2

yei + b, for xpi −
L3
2

≤ x < xpi +
L3
2

yei + b−
b
2π

(
2π
L4

· (x − (xpi +
L3
2
)) − sin

(
2π
L4

· (x − (xpi +
L3
2
))

))
, for xpi +

L3
2

≤ x < xpi +
L3
2

+ L4

yei, for xpi +
L3
2

+ L4 ≤ x ≤ xpi

+
L3
2

+ L4 + L5
(1)

ψ =



0, for xei ≤ x < xpi − L2 −
L3
2

b
L2

(
1 − cos

(
2π
L2

· (x − (xpi − L2 −
L3
2
))
))

, for xpi − L2 −
L3
2

≤ x < xpi −
L3
2

0, for xpi −
L3
2

≤ x < xpi +
L3
2

−
b
L4

(
1 − cos

(
2π
L4

· (x − (xpi +
L3
2
))
))

, for xpi +
L3
2

≤ x < xpi +
L3
2

+ L4

0, for xpi +
L3
2

+ L4 ≤ x ≤ xpi +
L3
2

+ L4 + L5

(2)
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FIGURE 4. Standard Kalman filter algorithm.

B. EXTENDED KALMAN FILTER
The standard Kalman filter operates effectively with linear
systems. However, when dealing with autonomous vehicles,
which often exhibit nonlinear behaviors, relying solely on
the standard Kalman filter becomes impractical for state
estimation.

Consider a scenariowhere a vehicle initiallymoves straight
and then transitions into a turn, perhaps for a lane change.
Using a standard Kalman filter to predict the vehicle’s next
state may lead to position estimations that deviate from
the actual path taken. Consequently, due to the inherent
nonlinearity of vehicle dynamics, it becomes necessary to
employ a nonlinear variant of the Kalman filter, such as the
Extended Kalman Filter (EKF), for accurate state estimation.

The EKF addresses this challenge by approximating
the nonlinear state equations through linearization via a
first-order Taylor expansion. Although this simplification dis-
regards higher-order terms in the state function, it enables the
estimation of vehicle states more effectively than a standard
Kalman filter in nonlinear scenarios [20], [21], [22], [23].

The state and observation equations of the model are
characterized by nonlinear functions denoted as f (x, u) and
h(x), respectively.

x = f (x, u) + w (9)

y = h(x) + v (10)

where f (x, u) is a nonlinear function representation of the
system process, which takes the state vector x and the control
input u as the parameter, h(x) is a nonlinear observation
function,w is the process noise of the system and v represents
the measurement noise.

The nonlinear vehicle model state function for x =

[x, y, ψ,Vx ,Vy, r] and u = [δ, ax] is defined as:

f (x, u) =


f 1(x, u)
f 2(x, u)
f 3(x, u)
f 4(x, u)
f 5(x, u)
f 6(x, u)

 =



x(k) + Vx(k)1t
y(k) + Vy(k)1t
ψ(k) + r(k)1t

V (k) cos(ψ(k) + β(k)) + ax1t
V (k) sin(ψ(k) + β(k))

V (k)δ(k)
lr+lf


(11)

FIGURE 5. Extended Kalman filter algorithm.

h(x, u) =


h1(x)
h2(x)
h3(x)
h4(x)
h5(x)
h6(x)

 =


x(k)
y(k)
ψ(k)
Vx(k)
Vy(k)
r(k)

 (12)

Figure 5 below depicts the step to estimate the state and the
covariance matrix in the Extended Kalman filter.

To linearize the nonlinear process and observation func-
tions, EKF uses Jacobian or first-order terms of the Taylor
series expansion of state and observation functions.

F =

[
∂f (x,u)
∂x

] ∣∣∣∣
x̂,u
, H =

[
∂h(x)
∂x

] ∣∣∣∣
x̂

(13)

F =



∂f1(x,u)
∂x

∂f2(x,u)
∂x

∂f3(x,u)
∂x

∂f4(x,u)
∂x

∂f5(x,u)
∂x

∂f6(x,u)
∂x


=

∂

∂x



x(k) + Vx(k)1t
y(k) + Vy(k)1t
ψ(k) + r(k)1t

V (k) cos(ψ(k) + β(k)) + ax1t
V (k) sin(ψ(k) + β(k))

V (k)δ(k)
lr+lf


(14)

H =



∂h1(x)
∂x

∂h2(x)
∂x

∂h3(x)
∂x

∂h4(x)
∂x

∂h5(x)
∂x

∂h6(x)
∂x


=

∂

∂x


x(k)
y(k)
ψ(k)
Vx(k)
Vy(k)
r(k)

 (15)

where F is the state matrix and H is the output matrix. After
the linearization process, the current covariance matrix is
calculated from the state transition matrix F and previously
estimated covariance error at the prediction stage as follows.

P̂ = FP(k)FT + Q (16)

whereQ is the system process noise covariance. At the update
stage, the state and covariance estimates are corrected using
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FIGURE 6. Overall flowchart of unscented kalman filter algorithm.

the measurement input (y) and Kalman gain (K ).

K =
P̂HT

HP̂HT + R
(17)

x(k + 1) = f (x̂, u) + K [y(k) − h(x̂)] (18)

P(k + 1) = (I − KH )P̂ (19)

EKF has a limitation when the function is highly non-linear
since it uses only first-order derivatives to linearize the
system. Thus the EKF is not optimal when the system is
highly nonlinear. The other issue, it is difficult to calculate
the Jacobians and needs a high computational cost.

C. UNSCENTED KALMAN FILTER
The EKF simplifies the complexity of the nonlinear sys-
tem by using first-order Taylor expansion, which ignores
higher-order terms in the state function [20], [24].
The Unscented Kalman filter(UKF) ignores the Jacobian

operations in the EKF by propagating the distribution
through nonlinear transformation on a set of so-called sigma
points [24], [25], [26]. That is, the probability distribution
of sample points and the corresponding weights of sampling
points are computed. These sigma points are selected and
used as values in the nonlinear system model. It is an
unbiased, minimum-mean squared error estimator of a
dynamic system with the state vector and covariance matrix.
Using an unscented transformation method, the weighted set
of sigma points propagates the means and covariance matrix
of nonlinear transformations of random variables.

The unscented transform propagates the mean and covari-
ance estimates into the nonlinear transform by assigning the
weights to the corresponding sigma points [27].

Similar to other Kalman filter methods, the UKF operates
in two phases: the prediction phase and the correction phase,
as illustrated in Figure 6.
In the prediction phase, the UKF performs the following

steps:

• Generate sigma points Xi and the corresponding scalar
weight Wi. The sigma points are calculated from the
previous state estimate and the covariance matrix Px of
the random variable as inputs and distributed around the
previous estimated state based on the covariance matrix.
The number of sigma points and the corresponding
weights generated are 2n + 1, where n is the number
of parameters that represent the vehicle’s state. In this
work, the vehicle state is represented by six variables,
so n = 6.

Xi =


X0 = x̂ i = 0
Xi = x̂ + (

√
(n+ λ)Px) i = 1, .., n

Xi = x̂ − (
√
(n+ λ)Px) i = n+ 1, .., 2n

.

(20)

Wi =


W0 =

λ

n+ λ
i = 0

Wi =
1

2(n+ λ)
i = 1, .., 2n

. (21)

where λ is a scaling parameter and n is the number of
parameters in the given state.

• Determine the nonlinear process model function
fi = f (Xi, u) by passing the generated sigma points,
where i represents the iteration from 0 to 2 × n.

fi = f (Xi, u) =


f1(x, u)
f2(x, u)
f3(x, u)
f4(x, u)
f5(x, u)
f6(x, u)



=



x(k) + Vx(k)1t
y(k) + Vy(k)1t
ψ(k) + r(k)1t

V (k) cos(ψ(k) + β(k)) + ax1t
V (k) sin(ψ(k) + β(k))

V (k)δ(k)
lr+lf

 (22)

• Determine the measurement model function hi = h(fi)
by passing predicted measurement input yi, where i
represents the iteration from 0 to 2 × n.

hi = h(fi) =


h1(f1i)
h2(f2i)
h3(f3i)
h4(f4i)
h5(f5i)
h6(f6i)

 =


f1i
f2i
f3i
f4i
f5i
f6i

 (23)
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• Compute the weighted process mean and covariance by
transforming the sigma points through fi.

x̂ =

2n∑
i=0

Wi × fi (24)

Px =

2n∑
i=0

Wi(fi − x̂)(fi − x̂)T + Q (25)

In this equation, Q represents the state noise covariance
matrix, a diagonal matrix that describes the behavior of
the noise in the system or process.

• Compute the weighted measurement mean and covari-
ance by transforming the sigma points through hi.

ŷ =

2n∑
i=0

Wi × hi (26)

Py =

2n∑
i=0

Wi(hi − ŷ)(hi − ŷ)T + R (27)

Here, R denotes the measurement noise covariance
matrix which is a diagonal matrix that describes the
behavior of the noise that exists in the measurement.

• Obtain the weighted cross-covariance matrix Pxy which
measures the correlation between the predicted state and
the predicted measurement.
The cross-covariance matrix, Pxy, illustrates how the
predicted state influences the predicted measurement.

Pxy =

2n∑
i=0

Wi(fi − x̂)(hi − ŷ)T (28)

• During the update phase, the UKF performs the
following steps:
– Calculate the Kalman gain (K )

K =
Pxy
Py

(29)

– Update the predicted state and covariance matrix.

x(t + 1) = x̂ + K [y− ŷ] (30)

P(t + 1) = Px − KPyKT (31)

D. ADAPTIVE UNSCENTED KALMAN FILTER
The UKF is extensively employed to tackle the non-linear
issues in vehicle state estimation. However, when the system
noise covariance is unknown, the standard UKF algorithm is
not able to manage the change in system noises and withstand
the effect of gross errors [28], [29], [30].
Thus, adaptive UKF (AUKF) based on the Sage-Husa

filter will be the best solution to compensate for the system
noise. This algorithm directly adopts the Sage-Husa noise
estimation technique so that the system noise matrices are
kept as positive or semi-positive [29]. It is a maximum
likelihood estimation algorithm that adjusts the process
and measurement noise covariance matrices based on the
observed data [31].

FIGURE 7. Adaptive unscented kalman filter algorithm.

The estimation process for the AUKF closely mirrors that
of the UKF. However, in the case of AUKF, the adaptive
process extends beyond updating the estimated state and
error. It iteratively refines the covariance of system and
measurement noise (Q and R) to better adapt to varying noise
conditions.

The entire process of the AUKF is detailed in Figure 7,
illustrating its iterative nature and its capability to adjust
system noise for robust state estimation in vehicle systems.

The adaptive process to determineQ and R is shown below
in the equations:

dk =
1 − α

1 − αn
(32)

qk = (1 − dk )qk−1 + dk (x − x̂) (33)

rk = (1 − dk )rk−1 + dk (y− ŷ) (34)

vk = y− ŷ− rk (35)

Qk = (1 − dk )Qk−1 + dk (K (vkvTk )K
T

+ P− Px) (36)

Rk = (1 − dk )Rk−1 + dk (vkvTk − Py) (37)

qk denotes the mean of the system noise vector, while Qk
represents the system noise variance matrix; whereas Rk
represents the measurement noise variance matrix; rk is the
mean of the measurement noise vector; vk is a residual factor
representing the discrepancy between the actual and expected
observations; n is the tuning parameter and α is a correction
factor, with the range of values is 0.95 < α < 0.99 [28], [29].
To ensure the system noise covariance matrix Qk and the

measurement noise covariance matrix Rk stay positive or
semi-positive definite values. If Qk and Rk are a negative
definite value, the Qk and Rk are calculated by the following
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equations:

Qk = (1 − dk )Qk−1 + dk (K (vkvTk )K
T

+ P) (38)

Rk = (1 − dk )Rk−1 + dk (vkvTk ) (39)

V. MODEL PREDICTIVE CONTROL DESIGN
To ensure optimal control inputs for a smooth and safe
lane change, it’s essential to manage both the lateral and
longitudinal motions of the vehicle effectively.

This study focuses on the precise control of these motions:
the steering angle actuator handles lateral movement, while
the throttle/brake actuator manages longitudinal motion.
Adjusting the throttle regulates fuel consumption, affecting
acceleration and deceleration, while the steering angle
dictates the vehicle’s direction by turning the front wheels.
Since lateral and longitudinal maneuvers are interconnected,
simultaneous control of both inputs is crucial for executing
lane changes that are both safe and comfortable [32].

Designing multiple input and output systems using tradi-
tional controllers like PID, Stanly, and Pure Pursuit can pose
significant challenges [17], [33], [34], [35], [36]. This diffi-
culty arises from the interdependence between longitudinal
and lateral motion. In contrast, the MPC controller excels
in managing both lateral and longitudinal control inputs
simultaneously, while considering their interactions [32].
MPC functions as a feedback controller, leveraging the
system’smodel to predict its future behavior. It then addresses
an online optimization problem to determine the optimal
controller action, driving the predicted output towards the
reference. Furthermore, MPC accommodates constraints on
control inputs, ensuring that the constraints are not violated
to avoid undesirable outcomes.

The general MPC formulation for autonomous vehicle
lateral and longitudinal control can be expressed as the
following discrete-time optimal control problem:

min
{uk}Ni=1

J (xk,i, uk,i) ∀i = 1, 2, . . . ,N (40a)

Subject to:

xk+1 = Axk + Buk
yk = Cxk (40b)

umin < uk,i < umax (40c)

1umin < 1uk,i < 1umax
∀i = 1, 2, . . . ,N (40d)

where xk represents the state vector at time step k , which
includes the vehicle’s lateral position, longitudinal position,
yaw angle, lateral velocity, longitudinal velocity, and yaw
rate, xk = [x, y, ψ,Vx ,Vy, r] and uk denotes the control
input vector at time step k , which is composed of the steering
angle (δ) and longitudinal acceleration (ax) of the vehicle,
uk = [δk , axk ].
Equation (40b) represents the vehiclemodel used to predict

the vehicle’s future state with respect to the predicted control
inputs of the vehicle (uk ).

This work focuses solely on controlling input constraints,
aiming to ensure a safe and comfortable lane change. The
steering angle and longitudinal acceleration are restricted
within specific intervals: ax ∈ [−1m/s2, 1m/s2] for longitu-
dinal acceleration and δ ∈ [−28.6◦, 28.6◦] for steering angle,
allowing for smooth lateral movement while maintaining
constant longitudinal velocity. To enhance tracking of the
generated lane change trajectory and stabilize longitudinal
motion changes, the cost function incorporates errors in
lateral distance, heading angle, and longitudinal velocity
between reference and predicted target states.

In addition, the rate of change of control inputs (1u) is
included in the cost function to mitigate discomfort caused by
abrupt control input changes. This involves considering the
difference between consecutive control inputs (1u = uk −

uk−1) for both steering angle and longitudinal acceleration.
Thus, the following quadratic cost function in equation (40a)
is implemented for accurate lane change maneuvers.

J (xk , uk ) =

N∑
i=1

Wde||de(k+i)||2 +Wψ ||ψe(k+i)||
2

+Wv||ve(k+i)||2

+

N∑
i=2

Wδ||δ(k+i) − δ(k+i−1)||
2

+Wax ||ax(k+i) − ax(k+i−1)||
2

∀i = 1, 2, . . . ,N (41)

where de is the distance error or cross-tracking error between
the predictive position (xk |pred , yk |pred ) and the reference
position (xk |ref , yk |ref ), which is calculated as follows:

dek+i

=

√
(x(k+i)|ref − x(k+i)|pred )2 + (y(k+i)|ref − y(k+i)|pred )2

(42)

ψe represents the heading error of the vehicle, which is the
difference between the predicted and reference yaw angles.

ψe(k+i) = ψ(k+i)|ref − ψ(k+i)|pred (43)

In which ve denotes the velocity error, which minimizes the
velocity error and helps to find the corresponding optimal
controller inputs. Wde,Wψ ,Wv,Wδ, and Wax are weighting
coefficients that are tuned according to the control objectives
to find optimal steering and longitudinal acceleration control
inputs.

VI. RESULT AND DISCUSSION
To ensure the accuracy of the proposed system in lane
change maneuvers, rigorous tests were conducted to meet
ISO 3888-1 and ISO 3888-2 standards. These standards pro-
vide autonomous vehicle researchers with a comprehensive
evaluation of the system’s capabilities and ensure compliance
with safety criteria.
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FIGURE 8. Setting a restricted area on a simple two-lane straight road
with pylons on IPG Carmaker Road Scenario.

FIGURE 9. Generated reference double-lane change trajectory according
to the ISO 3888-1 standards.

All system components, including the trajectory generator,
model predictive control, and state estimators, were carefully
implemented using MATLAB.

Furthermore, to accurately recreate real-world traffic
situations and road conditions, IPG Carmaker was used to
create a highly realistic simulation environment. This precise
simulation allowed for a thorough evaluation of the vehicle’s
behavior during lane change maneuvers.

Special attention was given to the lane change process,
which was subjected to testing according to ISO 3888 stan-
dards, and the outcomes were analyzed. The test is run for 6.2
seconds over a total distance of 130mwith a 72 km/h forward
speed of the ego vehicle. The distance between the ego and
preceding vehicles is around 58 m. The vehicle selected on
IPGCarmaker has a 1.5mwidth and a 1.67m longwheelbase.
Additionally, the accuracy and computational complexity

of the KF, EKF, UKF, and AUKF state estimator algorithms
are compared for the six vehicle states in both tests. The
state estimators were combined with a double-lane change
trajectory generator and MPC to complete the lane change
trajectory process.

The white noise is added to the inertial measurement
sensor input of the state estimator to investigate which state
estimator filter is best for reducing measurement and process
noise.

Following the configuration of the IPG Carmaker, two
simulations were performed. One involved executing an
ISO 3888-1 double-lane change to overtake a slow-moving
vehicle, while the other involved utilizing ISO 3888-2

FIGURE 10. Generated steering angle and longitudinal acceleration
control inputs for double lane change according to ISO 3888-1 standard.

FIGURE 11. White noise to be added to the measurement inertial sensor
input.

FIGURE 12. Estimated states (the longitudinal displacement, lateral
displacement, yaw angle, longitudinal velocity, lateral velocity, and yaw
rate).

protocols to navigate around obstacles. The subsequent
section delves into a discussion of the obtained results.

A. DOUBLE LANE CHANGE TEST WITH ISO 3888-1
In this section, our focus shifts to assessing the autonomous
vehicle’s proficiency in executing a double-lane change
seamlessly while ensuring control, stability, and obstacle
avoidance. For this evaluation, the vehicle undergoes a test
where its lateral movement is constrained by a sequence of
pylons arranged in an alley, adhering to the specifications
outlined in the ISO 3888-1 standard.

Utilizing IPG Carmaker, we create road scenarios incor-
porating different traffic signs. The pylons are strategically
positioned according to the standard’s guidelines, specifically
in the first, third, and fifth sections, as illustrated in Figure 8.

A double-lane change trajectory, which is used to take over
the preceding vehicle, is generated according to the standard

105036 VOLUME 12, 2024



H. M. Hailu et al.: Optimizing Lane Change Precision in Autonomous Vehicles

FIGURE 13. Estimated longitudinal versus lateral displacement.

FIGURE 14. Estimated yaw angle.

ISO 3888-1 using equation (1). The generated reference
double-lane change trajectory (y[m] with respect to x[m]) is
shown in Figure 9.

From the generated lane change trajectory, the steering
angle (δ) and longitudinal acceleration control inputs are
derived, which become the inputs to the state estimator after
theMPC adjusts them to evaluate the next state of the vehicle,
[x, y, ψ,Vx ,Vy, r]. The steering angle control input (δ) is
determined from the orientation (ψ) of the vehicle, which
is a slope of the trajectory calculated by derivation of the
generated reference lane change trajectory, which is shown
in Figure 9. Then, the steering angle is calculated from the
change in the orientation angle.

Figure 10 below shows the generated steering angle
and the corresponding longitudinal acceleration for perfect
double-lane change according to the standard ISO 3888-1
after being controlled by the MPC.

To assess the robustness of the proposed filters, the white
Gaussian noise shown in Figure 11 is generated and added to
the measurements of the inertial sensors. This process helps
to determine which state estimator can maintain performance
despite this measurement noise.

Figure 12 illustrates the estimated state variables of the
vehicle (including longitudinal displacement, lateral dis-
placement, yaw angle, longitudinal velocity, lateral velocity,
and yaw rate) for a vehicle moving at a speed of 72 km/h for
6.2 seconds. It compares the outcomes derived from the four-
state estimator, the measured inputs, and the output from IPG
Carmaker, presenting them together for comparison.

The results of each estimation method were compared
with IPG Carmaker estimation results and noisy measured
data to assess accuracy. By looking closely at specific

FIGURE 15. Estimated longitudinal velocity.

FIGURE 16. Estimated lateral velocity.

FIGURE 17. Estimated yaw rate.

sections of the estimated graph, we identified the state
estimation algorithm that produces the most accurate results.
The estimated lateral and longitudinal displacements are
shown in Figure 13. When zoomed in, we can observe that
UKF and AUKF accurately estimate both longitudinal and
lateral displacements. However, AUKF demonstrated slightly
superior accuracy and convergence compared to UKF, unlike
classical KF and EKF, which yielded the least accurate
estimates.

Figure 14 depicts the estimated yaw angle. Upon closer
examination in the zoomed section, it becomes evident that
UKF and AUKF provide satisfactory estimations of the yaw
angle. In contrast, the yaw angle estimation results obtained
with standard KF and EKF appear noisy, and the graphs are
not smooth, which indicates their estimation is not accurate.

Figure 15 shows the estimated longitudinal velocity.
Upon closer examination in the zoomed section, it becomes
apparent that AUKF provides more accurate estimates of
the longitudinal velocity compared to the other filters.
Additionally, the results from AUKF closely align with the
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FIGURE 18. Error on the estimated states.

TABLE 1. RMS state estimation and measurement errors.

desired longitudinal velocity, whereas the estimations from
the other filters, including UKF, diverge from the desired
longitudinal velocity.

Figure 16 illustrates the estimated lateral velocity. Upon
closer inspection in the zoomed section, it is apparent that
both UKF and AUKF provide satisfactory estimations of the
lateral velocity.

Figure 17 illustrates the estimated yaw rate. A closer
look at the zoomed section reveals that AUKF accurately
estimates the yaw rate and maintains a more stable trajectory.
Additionally, AUKF demonstrates faster convergence to the
desired yaw rate compared to the classic KF and EKF
estimations, which exhibit instability and fail to converge
within the specified time frame.

Comparing estimation errors helps to determine which
estimators are performing well. Figure 18 illustrates the
estimation error for each filter. The AUKF stands out with
low estimation errors for all six state variables, represented
in cyan. The UKF performs well in estimating the yaw
angle and yaw rate. However, the classic KF and EKF filters
show high estimation errors and struggle to effectively reduce
measurement noise.

The aforementioned Figure 18 compares the estimators
based on the estimated error value in the time domain.
However, the most effective method for comparing the
accuracy of state estimation filters is through root mean
square error (RMS error), which provides a quantitative
measurement of error. The estimated state RMS errors are

FIGURE 19. Some snapshot images taken from IPGMovie of IPG
CarMaker for ISO 3888-1 double lane change visualization.

calculated using equation (44), and the RMS errors for the
six state variables of each filter are presented in Table 1.

RMSerror =

√√√√1
n

n∑
i=1

(xi − x̂i)2 (44)

where xi is the actual state value, x̂i is the estimated
state value, and n is the number of estimated state values
throughout the process.

Regarding the computational complexity of the state
estimators, KF, EKF, UKF and AUKF algorithms are
compared for double lane change with MATLAB simulation.
The simulation is carried out in MATLAB R2024a running
on a laptop computer with 11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz and 16 GB RAM. With this perfor-
mance of a laptop, the computational complexity of the state
estimator indicates that theAUKF is the slowest estimator and
the classic KF is the fastest estimator followed by UKF. The
EKF and AUKF have the highest computational complexity.
The reason for the difference in computational complexity
is the way that each filter updates its state estimate.

The steering angle generated was also fed in real-time
to the IPG CarMake vehicle. The double-lane change
maneuver was visualized using IPGMovie in IPGCarMaker’s
simulation environment. The simulation results from IPG
CarMaker demonstrate that the lane change algorithm can
execute lane changes successfully without colliding with
the preceding vehicle or other road users, adhering to the
restricted area defined by pylons.

Throughout the lane change maneuver, the trajectory of
the ego vehicle remains smooth and stable. Snapshot images
of the vehicle maneuver during the lane change, presented
in Figure 19, indicate that the vehicle completed the double
lane change without deviating from the lateral constraints set
by the pylons, as per ISO 3888-1 standard. This confirms
the effectiveness of the proposed system in performing safe
double-lane change maneuvers.

B. OBSTACLE AVOIDANCE TEST WITH ISO 3888-2
The ISO 3888-2 standard test is very crucial for evaluating
the ability of the autonomous vehicle to avoid obstacles
safely while maintaining stability and control of the vehicle.
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FIGURE 20. Setting simple two-lane straight road with pylons on IPG
Carmaker Road Scenario.

FIGURE 21. Generated double-lane change reference trajectory according
to ISO 3888-2 to avoid obstacle.

FIGURE 22. Generated steering angle control input for obstacle
avoidance according to ISO 3888-2.

It can assess the autonomous vehicle’s ability to react quickly
and effectively to unexpected obstacles or hazards. As done
above for the ISO 3888-1 test, the vehicle’s lateral position is
restricted by a pylon alley.

Figure 20 shows the lateral movement restriction made
with pylons, which are placed according to ISO 3888-2
standards in the first, third, and fifth sections.

A double-lane change trajectory, which is used to avoid
obstacles, is generated according to the standard ISO 3888-2
using equation (1). The generated reference double-lane
change trajectory is shown in Figure 21 below. Relative to
ISO 3888-1, the ISO 3888-2 lane change trajectory has a very
steep slope, which needs a higher steering rate to make the
lane change.

The steering angle has been generated from the change in
the orientation angle of the vehicle in real time. Figure 22

FIGURE 23. Some snapshot images taken from the IPGMovie of IPG
CarMaker for ISO 3888-2 double lane change visualization. The images
are numbered according to the sequence of navigation.

FIGURE 24. Estimated states (the longitudinal displacement, lateral
displacement, yaw angle, longitudinal velocity, lateral velocity, and yaw
rate).

FIGURE 25. Error on the estimated states.

below shows the generated steering angle for perfect obstacle
avoidance according to the standard ISO 3888-2 after the
MPC controls it.

The double-lane change to avoid obstacles has been visu-
alized on IPG CarMaker using IPGMovie. IPG CarMaker’s
simulation result shows that the lane change algorithm can
successfully move through the restricted area by pylons to
avoid obstacles on the road. The ego vehicle’s trajectory is
smooth and stable throughout the lane change maneuver.
Some snapshot images of the vehicle maneuver during the
lane change in Figure 23 below show that the vehicle has
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avoided the obstacle by completing the double lane change
without crossing the restricted lateral constraint set with
pylons according to standard ISO 3888-2.

The estimated states and errors of the vehicle states for
avoiding obstacles according to ISO 3888-2 standards are
shown in the figures below. The results show the AUKF
with the trajectory generator and MPC created a smooth lane
change trajectory with the smallest estimation error relative
to the other estimator.

VII. CONCLUSION
This paper introduces a novel methodology aimed at achiev-
ing precise double-lane changes for autonomous vehicles,
adhering closely to the stringent requirements set forth
by ISO 3888-1 and ISO 3888-2 standards. The proposed
approach integrates a suite of components, including a lane
change trajectory generator, Kalman filters, and a model
predictive controller.

The trajectory generator functions to develop safe and
efficient lane change paths, while the state estimator precisely
assesses the vehicle’s position, velocity, and orientation.
Subsequently, control actions are carried out by theMPC con-
troller to ensure the vehicle accurately tracks the designated
trajectory. Employing both linear and sinusoidal function-
based trajectories, managed by the MPC, yields stable lane
change paths that meet ISO standards. The MPC offers
enhanced performance and robustness by simultaneously
controlling longitudinal and lateral motion.

Integrating real-time interaction with surrounding vehicles
enhances safety and reliability. Among state estimation meth-
ods, the AUKF emerges as the most accurate, particularly in
handling nonlinearities. Comparatively, the Classic Kalman
Filter (KF) performs poorly due to its linear nature, while
the EKF struggles with higher-order nonlinear systems.
Despite its higher computational complexity, the AUKF is
considered the optimal choice for state estimation in lane
changes.

Experimental validation, conducted using IPG Carmaker
and MATLAB/Simulink, confirms the effectiveness of inte-
grating AUKF with the model predictive controller. This
integration ensures stable and smooth lane-changemaneuvers
while meeting the safety standards delineated in ISO 3888-1
and ISO 3888-2.
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