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ABSTRACT In cloud computing and distributed databases, ensuring strong consistency and system
reliability of the leader depends on distributed consensus algorithms such as Raft and Paxos. Raft
is particularly appreciated for its simplicity and ease of understanding, making it a go-to choice for
contemporary distributed systems. However, it faces challenges in efficiency and reliability, especially
during network interruptions and when scaling up. The growing dependence on these consensus protocols
for modern applications calls for improvements to address these issues. This paper presents RaftOptima,
an advanced version of the Raft algorithm, which incorporates proxy leaders into the system to enhance
scalability and introduces robustness against network failures. RaftOptima distributes the tasks of command
distribution and gathering responses to proxy leaders, aiming to mitigate Raft’s scalability problems and
efficiency bottlenecks. Through simulations and TLA+ verification, RaftOptima showed 60% reduction in
latency in configurations with up to 25 servers, highlighting its ability to significantly improve performance.
Our improvements also increased the resilience of the Raft algorithm against partial network issues. This
adaptation not only enhances Raft’s operational effectiveness, but also its applicability and reliability in
distributed systems for modern computing demands, meeting the critical demand for better scalability and
liveness.

INDEX TERMS Raft consensus, aliveness, partial network partitions, scalability, proxy leaders, decreased
latency, simulation.

I. INTRODUCTION
The introduction of the Raft [1] consensus algorithm has been
a significant milestone in the area of distributed consensus,
offering amore understandable alternative to the complex and
somewhat opaque Paxos [2] algorithm. Despite its success
and widespread adoption for its ease of understanding and
implementation, some recent events have underscored the
need for further refinement, particularly in the areas of
resilience to network partitions and scalability within large
distributed systems. As Raft is being adopted tomodern edge-
based use cases, some of it’s non-trivial issues are coming to
the front as serious problems.
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approving it for publication was Martin Reisslein .

The motivation for this research is twofold: to solve real-
world problems arising out of Raft’s wider adoption spanning
the globe and to make Raft more ready by making it more
resilient. A notable example occurred on 2 November 2020
[3], when Cloudflare, a leading content delivery network,
experienced a service disruption lasting over six hours. The
outage was initially attributed to a Byzantine fault within
‘etcd’ [4], a prominent open source distributed key value store
that relies on Raft for consensus. However, this diagnosis
was later contested by researchers in the distributed systems
community, who pinpointed the root cause as a specific
edge case that was not adequately addressed by the Raft
algorithm [5]. Such an oversight highlights a significant gap
in Raft’s design concerning its handling of nontrivial network
partitions, leading to cascading failures that can severely
impact service availability.
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Concurrently, the increasing reliance on consensus algo-
rithms like Raft and Paxos in the backbone of modern
distributed databases and various modern blockchain tech-
nologies has illuminated another pressing issue - scalability.
As the Raft clusters grow in size, the traditional archi-
tecture of consensus protocols, characterized by a singular
leader node responsible for managing multiple tasks, viz
command sequencing and replication, becomes a serious
bottleneck. This centralized design, while effective in smaller
settings, significantly hinders performance in larger clusters
by increasing latency and reducing throughput. Therefore,
the challenge is to devise a mechanism within the Raft
algorithm that maintains its core principles of consistency and
availability while addressing the scalability bottleneck.

Our article proposes a comprehensive approach that
addresses both the resilience and scalability challenges facing
Raft. By delving into the specifics of partial network parti-
tions of Raft [6] and their effects on consensus algorithms,
we aim to enhance Raft’s ability to handle edge cases more
robustly, thereby mitigating the risk of cascading failures
akin to the Cloudflare incident. This involves a detailed
exploration of the underlying causes of such failures and
the integration of solutions that bolster Raft’s fault tolerance
in the face of failures in modern network hardware such as
switches and routers.

Also, we address the scalability issue by re-engineering
the log replication process of the Raft consensus protocol.
Our innovative proposal introduces the concept of proxy
leaders, a significant modification designed to distribute the
workload of the overburdened leader more evenly across
the cluster. By reallocating certain responsibilities from the
Raft leader to a select group of proxy leaders, we aim to
significantly reduce the latency associated with the process
of replicating the leader’s log in large clusters. This not only
alleviates the burden on the leader, but also enhances the
overall performance of the Raft cluster, ensuring significantly
lower latency when compared with a simple raft replication.
This we achieve without compromising the integrity of the
consensus process by not altering the leader election process.

Through repeated simulations and careful comparative
analyses, our research evaluates the effectiveness of incor-
porating proxy leaders into the Raft consensus mechanism.
We demonstrate how this adjustment not only addresses
immediate scalability concerns, but also makes Raft a more
resilient and efficient algorithm capable of supporting the
next generation of distributed systems. This dual-focused
approach solves multiple problems in the Raft algorithm
and makes it more ready for modern applications. Our new
improved Raft algorithm would have second and third order
effects of the software that uses it - from cloud services and
distributed databases to blockchain networks.

This paper seeks to solve significant problems in the
Raft consensus algorithm, aiming to solve current and
relevant problems and paving the way for more resilient and
scalable distributed systems. Through thorough testing of our
new Raft through simulations and verification with formal

verification, in this paper, we have shown that Raft can be
improved and can change to the demands of current trends in
Internet-scale computing.

A. ALIVENESS IN RAFT
The Cloudflare incident in November 2020 highlighted a
critical vulnerability within ‘etcd’ (a distributed key-value
store) that relies on the Raft consensus algorithm to maintain
consistency across its nodes. The initial diagnosis of the
outage pointed to a Byzantine fault [7]—an assumption that
later scrutiny revealed to be a misdiagnosis. Instead, the
true culprit was identified as a nontrivial edge case in the
Raft algorithm that it was not originally designed to handle,
leading to a cascading failure affecting the availability of
services for an extended period.

The incident has ignited a conversation among distributed
systems researchers, bringing to light the need for a
deeper examination of Raft’s approach to handling network
partitions and ensuring availability. It was uncovered that
Raft is susceptible to specific types of availability problems,
notably those categorized as Symmetric and Transitive
Reachability issues. These problems, although identified in
early discussions surrounding Raft, had not been the focus of
significant research or solution development efforts up until
recent events compelled a re-evaluation.

Our paper delves into these availability challenges inherent
in the Raft consensus algorithm. We show the nature of these
problems and the circumstances under which they manifest.
We propose a single potential solution that could solve both
of the reachability problems mentioned above. We highlight
algorithmic changes and modifications to the Raft algorithm
that would mitigate these availability concerns and prove the
correctness of our changes through formal verification by
TLA+.

B. PERFORMANCE IN RAFT
The distributed consensus algorithms (e.g. Paxos and Raft)
are fundamental for ensuring robust consistency across
distributed networks, and consistency is guaranteed through
formal proof. Replicating a deterministic state machine
across various nodes guarantees a unified and consistent state
view, essential for the integrity and reliability of distributed
databases, cloud configuration, and blockchain ledgers. The
integration of consensus mechanisms into blockchain tech-
nology, especially those capable of operating in Byzantine
environments, such as Proof-of-Work and Proof-of-Stake,
marks a significant evolution in the design of decentralized
systems. Raft, with its simplicity and efficiency in non-
Byzantine [7] settings, has been adopted for consortium
blockchains, highlighting its flexibility and the wide scope
of its applicability.

However, the scalability of such consensus protocols,
particularly Raft, in the face of expanding distributed
systems presents notable challenges. The centralization of
command sequencing and replication in a single leader
node introduces bottlenecks that impede scalability and
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performance, especially as the size of the system increases.
Here, to mitigate the side effects of larger Raft clusters,
we propose a novel architectural adjustment within the Raft
protocol to address performance bottlenecks. By delegating
specific broadcasting and replication duties to a selected
group of proxy leaders, we aim to alleviate the central
leader’s workload, thereby enhancing the overall system’s
throughput and reducing latency. This approach does not
alter the fundamental leader election process of Raft, but
redistributes the operational load, potentially transforming
the scalability dynamics of the Raft consensus.

Here, we focus on reducing latency as the Raft cluster
scales up, while also making the algorithm configurable
enough for administrators to take maximum advantage of the
underlying network.

We thoroughly evaluated our changes through simulations
with varying numbers of nodes, extending up to 25 servers,
a scale previously unexplored in typical Raft simulations to
the best of our knowledge. Our experimental investigation
is particularly timely as the trend towards edge computing
necessitates a reevaluation of the conventional limitations on
the number of backup replicas. By addressing this problem,
this paper seeks not only to elevate the performance of Raft
within large clusters, but also to expand its applicability in
increasingly distributed computing environments.

II. RELATED WORKS
There is growing research in blockchain technology, and
this is reflected in the number of academic papers. The
consensus mechanisms like Proof-Of-Work, Proof-Of-Stake,
PBFT, etc. are at the core of any blockchain technology. With
the rising popularity of permissioned blockchain platforms
like Hyperledger Fabric, traditional distributed consensus
algorithms like Paxos, Raft, Viewstamped Replication, etc.,
are seeing wider adoption. Given this, we provide a bird’s-
eye view of the latest literature on blockchain. The article
[8] presents a comprehensive survey of the evolution of
blockchain technology. Provides a comparative analysis of
frameworks, classification of consensus algorithms, and
more. The study [9] provides an overview of the use of
Index SGX to improve the security and privacy of blockchain
systems. SGX with blockchain is a promising technology.
The article [10] provides an in-depth perspective on the
deployment of blockchain-based solutions for telecommuni-
cations networks, estimating costs, comparing infrastructure
options, and choosing appropriate blockchain platforms. This
study shows that the interest of blockchain technology in
various domains is still growing. The authors in the paper
[11] evaluate the frameworks by exploring the risks of double
spending and Sybil attacks in Ethereum-based healthcare
applications and discuss various other security and imple-
mentation challenges of blockchain systems. The article [12]
analyses data management in blockchain-based systems,
covering aspects from governance to architecture. Examines
storage, query processing, provenance management, and data

models in blockchain systems. The survey [13] focuses
on techniques for scaling blockchain systems to improve
transaction throughput and reduce latency. It proposes a
taxonomy based on layer 1 and 2 scaling solutions and
compares their merits and demerits.

Additionally, Raft’s application extends beyond tradi-
tional distributed systems, finding utility within consortium
blockchains. The paper [14] proposes a simple but accu-
rate analytical model to analyze the probability of split
of distributed networks in the Raft consensus algorithm.
This model allows for predicting the network split time
and optimizing the Raft algorithm parameters. The article
[15] proposes KRaft, which is based on K -buckets for
permissioned blockchains. Their results show that throughput
increased by 41% and election speed by 67% while
maintaining the requirements of safety and liveness. The
article [16] optimizes the Raft consensus algorithm for the
Hyperledger Fabric platform in terms of log replication and
leader election. AdRaft algorithm improves throughput by
5.8% and reduces latency by 1.3%. The paper [17] shows that
the performance of blockchain consensus can be improved
by lowering the probability of network failure. It suggests
exploiting federated learning to evaluate them for network
stability for private blockchains. The paper [18] proposed
weighted RAFT, an improved blockchain consensus mech-
anism for Internet of Things applications. The exploration
of enhancements to the performance and liveness of the Raft
consensus algorithm encompasses a wide range of academic
and industry research, with several notable contributions
mentioned below.

A. ALIVENESS
Many academic papers are proposed to make consensus
protocols, like Paxos and Raft, more robust and able to
survive failures. Below are some of the articles that try to
improve consensus protocols, especially Raft. Their work
tries to improve many aspects of the consensus mechanism
and not just liveness.

• The study [19] developed a byzantine fault-tolerant
version of Raft algorithm called B-Raft and it used
Schnorr signaturemechanism. Their experiment demon-
strated that B-Raft significantly improved safety when
compared with the original Raft consensus algorithm.

• The article [20] introduced an improved Raft Consensus
algorithm called hhRaft. It adds a monitor role to
supervise the participant nodes and identify malicious
behaviour during both the leader election and log
replication process. The results show that hhRaft
outperforms Raft in transaction throughput, consensus
latency and anti-byzantine fault capabilities. However,
the study does not thoroughly explore the potential
vulnerabilities or attack vectors that could still affect the
hhRaft algorithm in highly adversarial environments

• The paper [21] proposed MLRaft which divides the
single Raft log file intro multiple logs, each with a

105976 VOLUME 12, 2024



K. K. Kondru, S. Rajiakodi: RaftOptima: An Optimised Raft

different leader of it’s own. These multiple leaders
work together to improve throughput, latency and
load balancing functions. Experiments shows it out
performed the original Raft. However the paper does
not address the potential complexities and overhead
introduced by managing multiple leaders and log files
and the experimental setup is limited to a 3 node Key-
Value storage system which may not fully represent the
scalability and robustness of the protocol.

• The article [22] developed Pirogue, a lighter and
dynamic version of Raft that replaces static quorums
with dynamic ones. It bases this on the number of
available nodes in the cluster. Analysis shows that
a 4-node Pirogue cluster have the nearly the same
availability as that of a 5-node ordinary Raft clus-
ter while also tolerating failures. However, Pirogue
introduces additional dynamic metadata on top of the
Raft update protocol. This adds some complexity. The
analysis is also limited to three specific configurations.
The analysis assumes server failures are independent
events following an exponential distribution. Read-
world failure patterns might deviate.

• The study [23] argues for Raft as a better replacement
for P2P systems like Cassandra databases. Their exper-
iments proved that Raft offers better load balancing
and performance than Paxos. The testing in the context
of Cassandra Distributed Database. The experiment
were conducted using 4 virtual machine in a single
physical server. Testing on more realistic multi-server
deployments could reveal additional performance and
scalability limitations

• The paper [24] an energy efficient Raft variant. The key
idea is to disable some nodes that do not participate
in leader election (as per the configurable ‘‘suspended
rate’’ parameter). This reduces the number of messages
required thereby improving energy efficiency. The
algorithm resumes suspended nodes if the number of
active nodes decreases a certain majority. Simulations
showed the average number of messages is reduced by
up-to 40 %. However, the paper does not quantify the
actual energy savings achieved when compared to the
original Raft algorithm. By disabling some nodes from
participating in leader election, the protocol potentially
sacrifices some degree of fault-tolerance.

• The paper [25] proposes Raft-PLUS, an improved Raft
algorithm that addresses the asymmetric relationship
between the leader and the follower nodes. Here
the followers can send negative votes to the leader
if performance deteriorates. The leader steps down
voluntarily if it receives majority of negative votes.
The voting mechanism also changes with multiple
policies. Their experiments prove that when network
quality fluctuates, Raft-PLUS provided a 38-40% higher
average write throughput. However the study has some
limitations. It would have been good if a formal proof

of correctness is provided. The experimental simulation
is done with a small 12-node cluster. For evaluating
scalability and performance in a larger more realistic
deployments would have been better.

A particularly compelling study [26] ventured into the
realm of experimental replication through the development
of a Discrete Event Simulator (DES) in O’Caml [27].
This work underscores the challenges inherent in systems
research, especially within computer science, where the repli-
cation of experimental results is fraught with complexities
due to the intricate design and configuration diversity of
networked systems. Despite these hurdles, the researchers
achieved results similar to those promised by Raft, although
not identical, highlighting the nuanced differences that
experimental settings can introduce. Their findings also
illuminated potential optimizations that could further refine
Raft’s operational efficiency.

Moreover, the discourse around addressing Raft’s reach-
ability issues has seen the proposition of alternative mech-
anisms like Pre-vote [28], aimed at mitigating specific
scenarios that could compromise the system’s integrity.
However, the Pre-vote mechanism, despite its merits, does
not offer a panacea for all reachability challenges. It opens the
dialogue for additional solutions to these complex problems,
emphasizing the need for continued innovation and explo-
ration to enhance the robustness and reliability of consensus
algorithms. This article aims to contribute to this ongoing
conversation by proposing alternative strategies to navigate
the nuanced challenges of network reachability within Raft-
based systems, seeking to improve their resilience and
performance in distributed environments.

B. PERFORMANCE
The quest to improve the performance of consensus algo-
rithms such as Raft and Paxos has spurred a multitude of
research efforts aimed at mitigating latency and increasing
throughput. These endeavors typically address specific archi-
tectural bottlenecks with the goal of refining the efficiency
of these protocols without eroding the safety properties
they guarantee. In the following, we outline several notable
studies that have ventured to improve Raft throughput or
latency, showcasing their objectives, methodologies, and
contributions within the context of this paper’s focus.
Although not exhaustive, this summary emphasizes studies
of particular relevance to our investigation.

• An Optimized Key-Value Raft Algorithm for Satisfying
Linearizable Consistency [29]: This research introduces
ALB-Raft, an optimized iteration of Raft designed to
boost performance by resolving log entry conflicts and
minimizing message traffic for linearizable consistency.
The study highlights ABL-Raft’s efficacy in enhancing
key-value-based Raft algorithm performance through
rapid conflict resolution and backward tracer updates.

• MLRaft: Improvement of Raft Based on Multi-log
Synchronization Model [21]: Proposed an innovative
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approach - MLRaft employs multiple logs with distinct
leaders to process commands in parallel, thereby
increasing throughput. The study introduces a dynamic
leader transfer mechanism to maintain balance within
the cluster, effectively distributing workload across
multiple leaders.

• Research on Optimization of an Efficient and scalable
Multi-Raft Consensus Algorithm for Supply Chain
Finance [30]: Addressing scalability and performance
in supply chain finance, this paper develops a multi-
raft consensus algorithm that leverages contractor nodes,
selected via a machine learning-based KNN algorithm,
to expedite consensus, thus enhancing scalability and
efficiency.

• An Improved Raft Consensus Algorithm Based on
Asynchronous Batch Processing [31]: This study aims
to augment Raft’s throughput by introducing a pre-
proposal phase for batch log processing. By facilitating
multiple leaders within a Raft cluster, the proposed
methodology seeks to alleviate bottlenecks associated
with a singular leader, significantly increasing workload
management and efficiency.

• Raft Consensus Algorithm Based on the Reputation
Mechanism [32]: Tailored for consortium blockchains,
this research adapts Raft to Byzantine environments by
integrating a reputation mechanism. By evaluating node
honesty and excluding potentially malicious nodes, the
study aims to enhance Raft’s security and reliability in
diverse network conditions.

• Rethink the Linearizability Constraints of Raft for
Distributed Key-Value Stores [33]: This paper presents
KV-Raft, an improved algorithm that accelerates oper-
ations in distributed key-value storage by optimizing
write and read processes. By challenging and relaxing
certain Raft constraints, the study reports significant
throughput improvements and latency reductions.

• vRaft: Accelerating the distributed consensus in vir-
tualized environments [34]: vRaft, a variant of Raft
optimized for virtualized settings, introduces fast fol-
lowers to improve performance. The study focuses
on optimizing log replication and management pro-
cesses to improve performance in distributed consensus
environments.

These research initiatives collectively underscore the
ongoing efforts to refine Raft and related consensus mech-
anisms, addressing the critical balance between throughput
enhancement and latency reduction. As distributed systems
continue to evolve, the insights derived from these studies
contribute significantly to the development of more efficient,
scalable, and robust consensus algorithms.

III. BACKGROUND
The Raft consensus algorithm, similar to Paxos [2], operates
on the assumption of an asynchronous network environment,
where messages/packets might encounter drop, reordering,
or delay. Furthermore, it assumes a non-Byzantine network,

where the nodes in the cluster do not engage in malicious
behavior. Like the Paxos consensus algorithm, Raft does
not require clock synchronization. The configuration of a
Raft cluster is fixed, and clients exclusively communicate
through the leader, even for read requests. Furthermore, Raft
assumes a one-to-one direct connection between all nodes in
the cluster, regardless of the underlying network topography.

A. RAFT ALGORITHM
In this section, we discuss the components of the Raft
Algorithm and how it operates, in general. The following
description establishes the background necessary to under-
stand how the algorithm works.

1) LEADER ELECTION
The Raft consensus algorithm [35] operates under the
paradigm of State Machine Replication (SMR), using a
leadership-based model in which a leader is elected for each
term through an election mechanism. In instances where a
leader is absent, a server will time out in a randomized
fashion and initiate an election by soliciting votes from its
peers. Votes are granted on a first-come-first-served basis,
underscoring the algorithm’s design focus on fault tolerance.
This design principle allows the cluster to remain operational
as long as amajority of nodes (more than half) are functioning
and can communicate with the leader, ensuring resilience
against node failures. Specifically, a Raft cluster can tolerate
failures of ‘f’ if it includes nodes ‘2f + 1’.
Raft’s architecture is segmented into three principal states

or roles: (1) Follower, (2) Candidate, and (3) Leader. These
roles facilitate a structured transition of responsibilities
within the cluster, ensuring seamless operations even in the
face of server breakdowns. The state transition between the
states mentioned above is illustrated in Figure 1. Should a
leader server fail or stop, a follower, after a certain amount
of time, will escalate to a candidate status, launching a new
election to elect a successor. This flexibility enables Raft
to effectively manage network partitions, maintaining oper-
ational continuity and swiftly recovering after reconnection.
This capability ensures that the Raft algorithm not only
prioritizes consistency and availability but also remains alive
and serves in diverse network conditions.

Every Replicated State Machine algorithm maintains a
sequential log of commands, including Raft. The operational
phases of a Raft cluster, shown in the sequence diagram 2,
unfold in two main stages. At the outset, in scenarios where a
leader is absent or a leader’s failure occurs, the process kicks
off with a follower timing out, leading to the initiation of an
election. This step involves incrementing the term number
and the follower transitioning into a candidate status. The
candidate then seeks votes from its followers in clusters.
Achieving a majority of votes enables the candidate to
become the leader.

Once at power, the new leader sends an initial empty
AppendEntries message across the cluster to announce the
start of a new term and to establish itself as the leader. These
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FIGURE 1. State transition diagram of raft consensus algorithm.

FIGURE 2. Sequence diagram for leader election in raft.

empty AppendEntries messages are also periodically sent to
reinforce the leader’s status to the followers, ensuring that
they are reminded of who is currently leading. The reception
of this empty or loaded AppendEntries prompts followers to
reset their election timeouts, thus preventing the occurrence
of unnecessary elections. This process is represented in the
activity diagram in Figure 3.

2) LOG REPLICATION
Figure 4 shows the structure of a log within a Raft
node, which consists of a series of entries. Each entry
in this log includes a term number and a single client’s
command. This log operates on an append-only basis,
meaning it continuously adds new entries without altering
or removing existing ones. This leader’s log is replicated
among the follower nodes as is. It is common for followers
to lag behind the leader; however, the leader persistently
issues ’AppendEntries’ commands to ensure the followers
eventually synchronize with the leader’s log as can be seen

FIGURE 3. Activity diagram for log replication.

FIGURE 4. Entities and log of a raft node.

in Figure 3. An entry is considered ‘committed’ once it has
been duplicated on the majority of nodes within the cluster.
Following a majority commit, the leader then communicates
the ‘success’ message back to the originating client.

Figure 5 elucidates the operational dynamics of a repli-
cated state machine within a Raft cluster, highlighting the
interaction process with clients. In this scenario, a client
sends a command, such as set(x,2), directly to the Raft
Leader, reflecting the system’s design where only the Leader
is authorized to process client requests. This mechanism
ensures consistency and simplifies the command routing
logic; should a Follower receive a request, it redirects
the client to the Leader, providing the Leader’s address if
available. This setup presupposes that the clients are aware
of the IP addresses for all nodes within the Raft cluster.

The architecture of a Raft server integrates three core
components: (1) the consensus module, (2) the replicated
log, and (3) the state machine, with their interactions shown
in Figure 5. Upon receiving a command, the Leader stores
it in its log as a new entry, which includes the command
itself and the term number of the current leader. This
entry is then propagated to the rest of the cluster through
the consensus module’s AppendEntries command, ensuring
that all Followers replicate the entry in their local logs.
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The AppendEntries message is comprehensive, containing
information such as the term number, leader ID, previous log
index, and term, among others. For efficient log replication,
the Leader keeps track of two indices for each Follower:
nextIndex, indicating the next entry to send, and matchIndex,
reflecting the highest log entry confirmed to be replicated on
the Follower. This structured approach facilitates precise and
reliable log synchronization across the cluster.

The AppendEntries command is crucial to ensuring the
integrity of each follower’s log. When discrepancies arise,
be it from server lags or packet losses on the network, the
leader, tasked with monitoring the nextIndex and matchIndex
for each follower, initiates the process of sending missing
entries. This ensures that the follower’s log is brought into
alignment with the leader’s log.

Followers, upon receiving these entries from the leader,
integrate them into their local logs and acknowledge the
leader. They then sequentially apply these new entries to
their state machines from the log. Once the leader has
received affirmative responses from the majority for the
AppendEntries command, it sets the commitIndex, indicating
which entries are reliably stored in the majority of nodes
and can be considered committed. The leader then informs
the client about the successful operation and applies the
committed entry to its state machine.

This methodical replication and application of log entries
ensure that all node state machines are synchronized.
Consequently, even in the event of a leader’s failure and
the subsequent election of a new leader, the state machine’s
continuity and integrity are preserved, maintaining the
cluster’s overall stability and reliability.

IV. ALIVENESS IN RAFT CLUSTER
The Raft consensus algorithm operates under a set of
predefined assumptions [36] about the environment in which
it functions:

1) It is predicated on the assumption of a Byzantine fault-
free context, offering support solely for tolerance to
crash faults.

2) The system does not rely on synchronized global clocks,
instead operating within an inherently asynchronous
distributed environment.

3) Considerations for network-related issues such as
delays, packet loss, and duplication, and network
partitions are integral to the protocol’s design.

4) Client communications are handled exclusively by the
leader. Requests made to followers are redirected to the
leader to ensure centralized processing.

5) Designed as a Replicated State Machine, the algorithm
requires that all node state machines begin from an
identical initial state, with client interactions processed
in a deterministic manner.

6) The architecture assumes that nodes have unlimited
access to secondary storage, which is presumed to be
reliable and secure against corruption.

7) Initially, the configuration of a Raft node cluster is
static, without support for dynamic changes. However,
subsequent enhancements, as discussed in extended
literature, have introduced a degree of flexibility to it’s
configuration for the Raft algorithm.

A. ISSUES WITH RAFT ALIVENESS
Numerous cloud services leverage the Raft consensus
algorithm for distributed systems such as key-value stores,
with ‘etcd’ being a prominent example of an open source
distributed store that uses Raft to synchronize all cluster
nodes with the leader. An incident in Cloudflare [37],
attributed to a malfunction in a network device, illustrates
the unique challenge facing Raft in maintaining cluster
coherence. This malfunction allowed unidirectional com-
munication, effectively isolating a node by preventing it
from receiving any packets, including the leader’s heartbeat
messages.
Examination of the Symmetric Reachability problem in

Figure 6 and the Transitive Reachability Problem Figure 7
reveals significant insight into the challenges faced by the
Raft cluster. In Figure 6, a node located on the top right
does not receive incoming messages, leading to a timeout,
an increase in its term to 4, and the initiation of an
election by seeking votes from other nodes. However, due
to a malfunctioning network device, this candidate does not
receive the votes cast. Subsequently, another node, having not
received heartbeat messages from the assumed new leader,
times out, raises its term to 5, and initiates its election. Secures
the majority of votes, assuming leadership, yet the cycle
of elections continues due to the continuing communication
failure of the node on the other side of the faulty network
device, rendering the cluster perpetually stuck in election
mode and incapable of serving client requests.
Similarly, the transitive reachability issue shown in

Figure 7 shows the ease with which a leader can be replaced
by simply initiating an election with a higher term, suggesting
that the mechanism to call elections could be a contributing
factor to cluster instability. In this scenario, two nodes are
disconnected, with one being the leader of term 3. The
disconnected node, unable to receive heartbeats, times out,
and seeks leadership through a new election. The rest of
the cluster, receiving this new vote request with a higher
term number, responds positively, leading to a leadership
change. The original leader, upon recognizing the new term
and the leader, relinquishes its role because of the higher term.
After the old leader relinquishes control, it awaits the new
leader’s heartbeat, but since there is no direct link between
the two nodes, the old leader, now a follower, starts its own
election with an incremented term number. This oscillation in
leadership is driven by network issues.
The PreVote mechanism, as described in the Foundational

thesis [35], aims to stabilize cluster operations by requiring
partitioned nodes to obtain preliminary consensus before
escalating their term numbers for election reentry. This proto-
col adjustment is specifically designed to address disruptions
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FIGURE 5. Component Diagram - Replicated State Machine Architecture of Raft Consensus.

FIGURE 6. Issue of asymmetric rechability.

associated with a node’s reintegration postpartition, ensuring
that it does not unilaterally trigger an election or disrupt
ongoing cluster activities with an outdated high term.

Upon reintegration, a node must issue a PreVote request
to gauge cluster readiness for its potential leadership. The
mechanism effectively prevents the node from advancing
its term and participating in the election process without
the approval of the majority. Nodes with PreVote enabled
prioritize the continuity of the existing leadership, denying
PreVote requests if they detect heartbeats from the current
leader within the election timeout window.

FIGURE 7. Issue of non-transitive rechability.

Although PreVote improves cluster resilience against
specific reachability issues (nontransitive and asymmetric),
it is not a panacea. In complex scenarios, such as in a five-
node configuration, PreVote may inadvertently exacerbate
availability concerns, underscoring the need for a nuanced
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FIGURE 8. State transition diagram for the new improved algorithm.

application of this protocol extension in diverse operational
contexts. This is explored in the blog post [28]

B. RAFTOPTIMA - CHANGES TO LEADER ELECTION
Adjustments to distributed algorithms can inadvertently lead
to unforeseen problems that affect liveness or throughput.
In search of a more straightforward and elegant solution that
mitigates liveness challenges without introducing new com-
plications, we propose an approach centered on simplicity.

Our strategy involves enabling a candidate node, persis-
tently initiating elections across a faulty network device,
to monitor its repeated term increments and vote solicitations.
Recognizing this pattern as indicative of a communication
issue, the node ceases further election participation, thus
curtailing continuous re-election cycles at the cost of
sidelining one backup node. This trade-off is preferable to the
entire cluster being ensnared in endless elections, rendering
it incapable of client service. Subsequent intervention by an
administrator to rectify the communication flaw and reboot
the node allows it to rejoin the cluster as a follower, restoring
its operational stance.

Distributed consensus algorithms, typically framed as
state machines, benefit from this paradigm because of the
precise modeling it provides. The life cycle of distributed
systems, from conception and design to implementation
and testing, is fraught with complexity and susceptibility to
errors. Employing state machines as a conceptual foundation
enhances understanding and intuition, while formal modeling
in languages such as TLA + [38] and Coq [39] facilitates
early detection and correction of potential error states.

However, the introduction of additional states can lead to
a combinatorial explosion in state space, making exhaustive
outcome evaluation both impractical and undesirable. With
this consideration, our solution eschews the addition of new
states, opting instead for a refined approach that leverages
existing states effectively.

We illustrate in Figure 8 our modified transition schema.
Our focus is on rectifying the issue of perpetual leader
elections triggered by partial network link failures, where
a candidate node, failing to receive vote confirmations or
leader notifications, persists indefinitely in its election efforts.
To counteract this, we suggest limiting the election initiation
to a predefined threshold ‘n’, set at server startup. Upon
reaching this limit, the candidate ceases to make election
attempts, reverting to a permanent follower state with its
term adjusted to reflect its status prior to the cyclic election
attempts.

Algorithm 1 RaftOptima

1 if RPC request or response contains term T >
currentTerm then

2 set currentTerm = T, convert to follower
3 end
4 if (currentTerm - lastCandidateTerm) => 1 then
5 increment repeatedElectionAttemp
6 else
7 set repeatedElectionAttemp to Zero
8 end
9 if repeatedElectionAttempt >= ‘n’ repeated attempts
then

10 Stop resetting election timer;
11 Set currentRole as Follower;
12 Set lastCandidateTerm to currentTerm;
13 Return;
14 end
15 if conversion to candidate then
16 start election;
17 Increment currentTerm;
18 Vote for self; Reset election timer ;
19 Send RequestVote RPCs to all other servers;
20 if votes received from majority of servers then
21 become leader
22 end
23 if AppendEntries RPC received from new leader

then
24 convert to follower ;
25 end
26 if election timeout elapses then
27 start new election;
28 end
29 end

1) PROPOSED ALGORITHM
In the revised algorithm, RaftOptima, we add the code
from lines 1 to 15 [1]. In our algorithm 1, we introduce
two variables to track the last term encountered by a
candidate and the count of its attempted elections. These
variables are instrumental in identifying patterns of repetitive
term escalations. The variable tracking repeated elections
is incremented with each successive term increase, closely
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monitored up to a predefined threshold ‘n’ (for example, 5).
Reaching this threshold signals the realization of the node’s
disruptive impact on cluster operations, likely due to a
network link failure.

Subsequently, the node transitions to a follower state,
abstaining from further attempts at starting the election. This
modification ensures that the node abstains from election
participation, reducing the pool of potential leaders but
mitigating the risk of continuous election cycles that could
destabilize the cluster. Although the reduction in eligible
leader nodes raises concerns, we argue that maintaining
cluster stability and preventing service disruptions outweigh
the drawbacks. This approach aims to circumvent the
extensive delays and misdiagnoses associated with incidents
such as the CloudFlare outage, where initial error attributions
to Byzantine faults diverted attention from actual connectivity
issues.

V. PERFORMANCE IN RAFT CLUSTER
The Raft consensus algorithm is acclaimed for its robust fault
tolerance, particularly effective when the number of faulty
nodes is less than half of the cluster, and its operational
efficiency with a limited number of backup replicas. The
leader election mechanism within Raft has undergone formal
verification using TLA+ [40], demonstrating its reliability.
In the proposed change to log-replication part of the
algorithm, we introduce a refinement aimed at enhancing
Raft’s performance metrics, notably latency. We did not
change the leader election process deliberately as it might
introduce more bugs. Our preliminary work towards enhanc-
ing the performance of log replication is here [41]. Here,
we attempted to create a multilevel log propagation with one
main leader and one proxy leader. The leader delegates the
process of log propagation to the proxy leader, and the leader
keeps on accepting the client’s requests. However, here in
this paper, we have improved upon it and tested it thoroughly
with simulators. The following paragraphs describe how we
achieved performance enhancements.

After election, a leader appoints several proxy leaders
tasked with disseminating the ‘‘AppendEntries’’ command
and gathering responses. This modification facilitates a
scenario where, upon receiving a write request from a client,
the leader forwards this request to the proxy leaders.

These proxy leaders then relay the command to their
designated followers and collect their responses. This strategy
allows the proxy leader to act as an intermediary, ensuring
the rapid dissemination of log updates from the leader to
the followers. The allocation of followers to specific proxy
leaders by the leader is a strategic move designed to optimize
response times, particularly beneficial for followers that are
geographically dispersed.

Proxy leaders consolidate the responses from their follow-
ers and relay this information back to the leader, who then
aggregates these responses to determine the success of the
write operation before notifying the client. This process is
illustrated in the diagram in Figure 9. While this modification

redistributes the communication load, the ultimate authority
to confirm the success of the write r to the client remains with
the leader, preserving the integrity and centralized decision-
making characteristic of the Raft protocol.

Unlike the hierarchical model of [42], which employs
nested Raft clusters to manage a larger ecosystem, our
changes maintain the original quorum structure while
introducing proxy leaders to share the load of message
broadcasting and response collection. Similar work is done
by [43] with multiple optimizations of two of the Paxos
derivatives, but this work makes changes directly to the
Raft algorithm. The paper [44] proposes a method to collect
blockchain transactions by dividing those transactions into
cells.

This choice minimizes the need for significant alterations
or complete rewrites of the existing algorithm, addressing the
common issue of bugs that arise from the complex nature and
often insufficient testing of distributed systems. The inherent
unpredictability in distributed system behaviors underscores
the limitations of unit testing and highlights the necessity
for deterministic simulation to accurately validate system
performance and reliability.

Our adaptation of the Raft algorithm aims to improve
its operational efficiency without diluting its fundamental
principles. After the leader chooses the proxy leaders,
the leader itself chooses the followers for each of these
proxies. In our implementation, we distributed the followers
equally to each of the proxy leaders. But administrators
can implement in such a way that proxy leaders and their
associated followers can be assigned as suited. This allows
for a targeted approach to optimize network performance
based on geographic considerations and latency metrics. This
flexible configuration not only distributes the communication
workload more evenly, but also aims to reduce overall
network latencies by optimizing interactions within strate-
gically defined subgroups of the cluster. This modification
leverages the spatial distribution of the nodes to improve
the responsiveness and throughput of the Raft-based system.
Here, we have to mention that the proxy leaders too have the
right to vote on the log replication RPC from the leader. It’s
response - AppendEntriesReponse - is also included when the
response is sent back to the Leader. The proxy leader is also a
follower of the leader. As such, the core function of the leader
election mechanism is also applicable to proxy leaders. If a
proxy leader did not receive a heartbeat from the leader, it can
be the first to timeout and start a new election seeking votes
from the followers and become a leader.

This architecture introduces additional message types -
ProxyAppendEntries and ProxyAppendEntriesResponse -
and appears to add an additional communication layer.
However, this structure significantly offloads the leader’s
broadcasting and consensus duties by incorporating paral-
lelism in these operations. It is important to note that Raft
mandates persistence of both server logs and state machines
on disk, a process that inherently delays operations. Our
model preserves the original server roles without altering
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FIGURE 9. Interaction diagram for raftoptima with 2 proxy leaders.

Algorithm 2 Followers

1 Respond to RPCs from candidates to leaders if the
election timeout elapses without AppendEntries then

2 RPC from current leader or granting vote to
candidate ;

3 convert to candidate
4 end
5 if selected by the leader then
6 convert to proxy leader ;
7 get the list of followers from the leader for broadcast
8 end

the core rules, but adds a ‘‘Proxy Leader’’ state to the
existing Follower, Candidate, and Leader states, simplifying
algorithm development.

After the election of the leader and the initial heartbeat
signal establishing the leadership of the cluster, the proxy
leaders are chosen, typically based on the latency of the fol-
lower, a task managed by the cluster administrator to enhance
the efficiency of the configuration. Proxy leaders are tasked
with disseminating the leader’s AppendEntries commands
and gathering follower responses. This mechanism, designed
exclusively for log replication, does not modify the leader-
election process. In the event of leader failure, any follower
can assume candidacy and initiate an election, and the new
leader replicating the delegation process outlined above.

We have divided the raft algorithm into follower part in
algorithm 2, proxy leader part in algorithm 3, and leader part
in algorithm 4. We have followed the style and pseudocode
of the original raft algorithm from [1]. In this modified Raft
framework in parts of algorithms, RaftOptima, the leader
replicates logs exclusively to its designated proxy leaders
using the AppendEntries command. The proxy leaders are
responsible for further broadcasting these commands to their
followers and compiling the responses. These responses,
including the count of ‘‘success’’ messages and the ‘‘term
number,’’ are then relayed back to the leader. Should the
leader encounter a returned term number exceeding its own,

Algorithm 3 Proxy Leader

1 Upon Leader selecting Follower, convert to Proxy
Leader if AppendEntries received from Leader then

2 append entry to local log first ;
3 respond after entry applied to state machine ;
4 end
5 if last log index >= nextIndex for a Follower in the
group then

6 send AppendEntries with log entries starting at
nextIndex;

7 if successful then
8 update nextIndex and matchIndex for that

Follower
9 end
10 if AppendEntries fails because of log inconsistency

then
11 decrement nextIndex and retry;
12 end
13 end
14 if there exists an N such that N > commitIndex,
a majority of matchIndex[i] >= N and log[N]. term ==
currentTerm then

15 Set commitIndex = N
16 end
17 if empty AppendEntries from a new leader emerge with
higher term number then

18 convert to Follower
19 end

it concedes its position, acknowledging the presence of a
new leader. This mechanism is aligned with the original Raft
design, ensuring that the fundamental safety properties of the
protocol remain intact. This preservation of the integrity of
the original protocol is crucial to maintaining the reliability
and fault tolerance of the algorithmwithout compromising its
core safety features.

However, there are some corner cases that should be
mentioned for the purpose of completeness, especially when
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there is a failure of the proxy leader. We describe below
how failure of a proxy leader in our modified RaftOptima is
handled in a point-by-point manner.

• The leader sends log replication commands (AppendEn-
tries RPC) or heartbeats to all proxy leaders

• The leader receives acknowledgements from the proxy
leaders

• If a proxy leader doesn’t respond after several retries, the
leader assumes it has failed

• The leader chooses a follower from the failed proxy
leader’s sub-group

• The leader elevates this follower to be the new proxy
leader

• The new proxy leader sends heartbeats to its sub-group
• This informs the followers of the change in proxy
leadership

• If the old proxy leader comes back online, it starts as a
follower

• After receiving a heartbeat or ProxyAppendEntries,
it continues as a follower

Algorithm 4 Leader

1 Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts ;

2 if command received from client then
3 append entry to local log, respond after the entry

applied to state machine ;
4 end
5 if last log index >= nextIndex for a Proxy Leader then
6 send AppendEntries RPC with log entries starting at

nextIndex ;
7 if successful then
8 update nextindex and matchIndex for Follower
9 end
10 if AppendEnries fails because of log inconsistency

then
11 decrement nextIndex and retry
12 end
13 end
14 if there exists an N such that N > commitIndex,
a majority of matchIndex[i] >= N and log[N] then

15 term == currentTerm ;
16 set commitIndex = N
17 end

VI. EVALUATION
The choice of Java over higher-performance languages like
C or Rust was motivated by its widespread familiarity among
students and developers, along with robust multithreading
support, despite Java’s relative performance disadvantages.
Our multithreaded Raft model was meticulously synchro-
nized to make it configurable, enabling simulations with

TABLE 1. Simulation environment.

FIGURE 10. Result of tla+ model checking.

varying counts of Raft servers and clients. This design flex-
ibility allows for extensive scalability in testing, supporting
simulations with up to 100 Raft servers and thousands of
clients. More details are provided in Table 1

For communication, we employed sockets, conducting
numerous trials with hundreds of clients and multiple Raft
servers. Although our implementation was executed on a
single system for simplicity, it is adaptable for distributed
setups across multiple machines. Our tests ranged between
different Raft server configurations, from 5 to 25, with
outcomes recorded in a CSV file and visualized through
graphs. The primary focuswas on comparing the original Raft
algorithm’s throughput and latency against modified versions
incorporating two proxy leaders and assessing performance
impacts across various server scales.

A. ALIVENESS
1) FORMAL VERIFICATION
To validate the integrity and correctness of our modified
leader election algorithm, we adapted the TLA + code for
the leader election and used the TLA + model checker to
scrutinize it for potential undefined states. TLA+ provides a
mathematical framework for algorithmic modeling, enabling
a precise specification of state transitions within predefined
boundaries. This approach aligns with the State Machine
paradigm and has been widely adopted by major corporations
such as Amazon and Microsoft for verifying the reliability
of complex distributed systems’ algorithms, including Paxos
and Raft. Using TLA + to formally verify our algorithm,
we canmathematically assert its functionality in all scenarios,
ensuring that no unexpected states arise during execution.
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FIGURE 11. Repeated leader election.

The fundamental principles of the TLA+ model facilitate
this rigorous validation process, offering a robust tool
to ensure algorithmic correctness and system reliability.
We have modified the code from [45] and ran a model check
to ensure that our changes to the leader election do not
break the whole process. We have added two new variables
lastCandidateTerm and repeatedAttempts to the TLA+ code
and altered it by incorporating the above two variables. The
result of the model check in TLA + is shown in Figure10

2) RESULTS
The simulation results, depicted in Figure 12, illustrate the
effects of modifying the algorithm with a set value n, which
limits the allowed leader transitions (flip-flops) to enhance
the stability of the cluster. Figure11 illustrates the time taken
for the leader election and the operational time for each term
as a percentage. As can be seen in the graph, significant time
is being consumed by the leader election process, halting
serving clients. This is the reason for the severe performance
degradation reported by the Cloudflare incident [3]. Figure 12
shows the leader election times for each term when the
threshold is set to 3, 9, and 15 respectively. The green line
shows that after 3 flip-flops, that is, 6 leadership changes
(6 terms), it stops. So is the case with the n value set to
9 and 15. This illustrates that the whole cluster has stabilized.
Further tests with increased ‘n’ values, such as 9 and 15,
demonstrate that the cluster stabilizes after approximately the
same number of flip-flops as the ‘n’ value. Figure 13 shows
how the cluster came to operational mode after flip-flops 3,
9, and 15. The sudden and steep spike of the election time
shows that no more elections are started until the simulation
run is over.

Our RaftOptima modification effectively prevents a node
with a compromised communication link from participating
in the election process until the link is repaired and the node
is re-started. Given that a follower’s primary role within
the cluster is to serve as a standby during leader failures,
this adjustment ensures the cluster’s liveness property is
maintained, safeguarding overall system reliability and
operational continuity.

FIGURE 12. Stopping of flip-flopping of Leader election after ‘n’ attempts.

FIGURE 13. Election Time stopped and normal operations returned after
’3’, ’9’ and ’15’ flip-flops.

FIGURE 14. Average throughput vs number of nodes.

B. PERFORMANCE
To demonstrate the performance gains of our modified Raft
algorithm, we performed an initial test using the original Raft
setup as a benchmark to clearly underline the enhancements.
This involved deploying 100 Java client threads, each
dispatching 100 write requests to the Leader, accumulating
to a comprehensive 10,000 communication exchanges aimed
at evaluating throughput and latency. The results of these tests
are visually documented in Figures 14 and 15.

A notable decline in throughput was observed as the server
count increased from 5 to 10 to 15, highlighting a significant
variance in performance. Furthermore, latency exhibited a
nearly linear relationship with the increase in the number of
servers in Figure 15. For instance, operations with a single
Raft server interfacing with a key value data store yielded
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FIGURE 15. Average throughput vs number of nodes.

FIGURE 16. Comparison of original raft with modified raft with 2 proxy
leaders.

an average latency below 50ms, which markedly rose to over
400 ms when the server tally reached 25.

For a more focused analysis and to attain precise com-
parative insights between the original and improved Raft
algorithms, we scaled down to a single client issuing 10,000
commands, varying the server count from 5 to 25 across
both setups. This approach revealed a substantial difference in
latency, as depicted in Figure 10, underscoring the enhanced
efficiency of our modified RaftOptima design.

Integrating two proxy leaders into the Raft cluster and
performing multiple simulation runs revealed significant
performance enhancements, particularly in latency reduction,
as demonstrated in Figures 16 and 17. These graphs compare
the performance of the original Raft algorithm across a
range of server configurations (5 to 25) and illustrate
the performance degradation, notably in latency, with an
increasing number of servers. Inclusion of just two proxy
leaders results in a noticeable improvement in latency and
overall duration, a benefit that could be amplified by adding
more proxy leaders as the cluster size expands.

This improvement becomes significantly more evident in
clusters comprising more than 10 servers. As the follower
count rises, the leader’s responsibility to broadcast to all
followers and wait for their responses until a majority commit
is achieved becomes increasingly burdensome. This process,
coupled with the leader’s obligation to continually accept and
queue incoming client requests in serial order, contributes to
escalating latency within the Raft algorithm. Proxy leaders
alleviate the leader’s broadcasting and response collection
duties, allowing the leader to focus on log maintenance for

FIGURE 17. Comparison of original raft vs modified raft with duration
(ms) with the number of servers.

TABLE 2. Comparison of average latencies between original raft and raft
with 2 proxy leaders up to 25 nodes.

TABLE 3. Comparison table of avg. throughput and avg. latencies for Raft
with varying number of proxy leaders.

the proxies and other critical tasks such as client request
handling.

Our analysis suggests that incorporating proxy leaders into
smaller clusters, with fewer than 10 servers, may not yield
substantial performance gains, given the added complexity
and negligible latency improvement. For instance, in an
8-node Raft cluster with one leader and seven followers,
introducing two proxy leaders redistributes the followers,
necessitating additional communication rounds that could
inadvertently increase latency. Therefore, we conclude that
clusters with fewer than 10 nodes are less suitable for a
proxy leader-enhanced Raft (RaftOptima) configuration due
to the disproportionate trade-off between added complexity
and performance benefits.

n clusters comprising 10, 15, 20, and 25 servers, our
enhanced Raft design with proxy leaders demonstrated
average latency improvements of 70%, 63%, 55%, and
51%, respectively. These data reveal that while the latency
of the original Raft algorithm significantly escalates with
each addition of 5 servers, the modified Raft with proxy
leaders exhibits a more subdued, nonlinear growth rate,
as can be inferred from the table 2. The marked latency
reduction in our modified algorithm mainly results from the
disproportionately higher latency increases observed in the
original Raft setup.

Further experimentation with an increased range of proxy
leaders (2 to 4) in a 25-server setup, along with a latency
benchmark against the unmodified Raft, is illustrated in
Figure 18. It emerges that a configuration with two proxy
leaders optimizes the latency reduction, halving the average
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FIGURE 18. Avg. latency vs raft with varying number of proxy servers.

FIGURE 19. Avg. throughput vs raft protocol with varying number of proxy
leaders.

latency compared to the standard Raft model. However, the
introduction of more than two proxy leaders leads to a
marginal increase in latency, likely due to the compounded
communication overhead of the added proxy leaders. The
average latencies are shown in table 3.Despite this, latency
figures with up to 4 proxy leaders remain superior to those of
the original Raft algorithm.

Furthermore, the deployment of two proxy leaders appears
to nearly double the average throughput, underscoring the
efficiency of this configuration. However, as the number of
proxy leaders increases beyond two, a decrease in throughput
is observed, as can be inferred from the figure 19 and
table 3. This trend suggests that while the introduction
of proxy leaders significantly improves both latency and
throughput, there exists an optimal number of proxy leaders
beyond which the benefits begin to diminish, highlighting
the importance of balancing proxy leader count to maximize
cluster performance.

VII. CONCLUSION
This study tackles the performance and scalability challenges
inherent to the Raft consensus algorithm, especially in
scenarios of (1) partial network partitions and (2) increasing
cluster sizes. Raft’s design, while straightforward and robust
under stable network conditions, encounters liveness issues
when network links among cluster nodes are unreliable or
partially partitioned, leading to unreachable nodes.

Our approach involves excluding nodes affected by partial
network partitions from election processes until full con-

nectivity is restored and the node is rebooted. Although not
without its weaknesses, this method avoids the complexities
and potential errors associated with significant modifications
to the Raft protocol. The effectiveness of our modifications
was validated through comprehensive simulations using
a custom-built discrete event simulator (DES), and the
correctness of our modifications was verified with TLA +

model verification.
By incorporating proxy leaders to manage log replication

broadcasting commands, we observed a notable enhancement
in the algorithm’s performance across clusters ranging
from 5 to 25 servers. Our results show a significant reduction
in average latency, up to 60% - highlighting the efficacy
of proxy leaders in reducing communication overhead and
improving throughput. This strategy is particularly effective
in larger clusters, where it prevents the linear increase in
latency that typically accompany cluster expansion.

The introduction of proxy leaders addresses the scalability
challenge head-on, ensuring that the Raft algorithm remains
scalable and fault-tolerant even as the cluster size grows.
This modification is crucial for distributed databases that are
increasingly deployed closer to client locations to optimize
performance. Our findings demonstrate that the strategic
addition of proxy leaders can maintain low latency levels,
thus enhancing the overall scalability of database systems
without a linear increase in latency as the number of replicas
grows. Thus, our study presents a scalable and fault-tolerant
solution to the challenges faced by the Raft consensus
algorithm, offering significant improvements for distributed
systems’ efficiency and reliability. The study can be further
extended by implementing a full distributed KV-data-store
and test for performance and fault-tolerance. This can also
be tested with a varying number of follower nodes.
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