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ABSTRACT Brain magnetic resonance imaging (MRI) offers intricate soft tissue contrasts that are essential
for diagnosing diseases and conducting neuroscience research. At 7 Tesla (7T) magnetic field intensity,
MRI enables increased resolution, enhanced tissue contrast, and improved SNR, compared to MRI collected
from the commonly employed 3 Tesla (3T) MRI scanners. However, the exorbitant expenses associated
with 7T MRI scanners hinder their broad use in research and clinical facilities. Efforts are underway
to develop algorithms that can generate 7T MRI from 3T MRI to achieve better image quality without
the need for 7T MRI machines. In this study, we have adopted a cycle consistent generative adversarial
network (CycleGAN)-based approach for 3T MRI to 7T MRI translation, and vice versa, using a recently
published dataset of paired T1-weighted MR images collected at 3T and 7T from a total of ten subjects.
Various CycleGAN architectures were experimented with and compared on this dataset. The best performing
CycleGAN architecture successfully produced the reconstructed images with a high level of accuracy based
on different quantitative and qualitative evaluation criteria. Utilizing a post-processing technique, the best
performing model generated 7T MRI from 3T MRI with a structural similarity index measure (SSIM) of
83.80%, peak SNR (PSNR) of 26.25, normalized mean squared error (NMSE) of 0.0088 and normalized
mean absolute error (NMAE) of 0.0630. Utilizing CycleGAN to convert images from 3T to 7T MRI has
shown a substantial improvement in MRI resolution, setting the stage for advancements in more informative
and precise diagnostic imaging.

INDEX TERMS Cycle consistent generative adversarial network, image-to-image translation, magnetic
resonance imaging, paired dataset, T1-weighted MRI.

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Giannelli .

I. INTRODUCTION
Medical imaging is essential for diagnosing and treating var-
ious illnesses. Multiple imaging modalities are typically used
in clinical decision-making as they can offer complementary
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insights. For instance, computed tomography (CT) provides
essential physical density and electron density information of
tissues for precise dosage planning in radiotherapy for cancer
patients. However, CT has the drawback of poor contrast
especially in soft tissues [1], [2]. Radiation exposure at the
time of imaging can elevate the likelihood of subsequent
malignancy, particularly in young individuals [1], [2]. On the
contrary, as a non-invasive technique, magnetic resonance
imaging (MRI) provides excellent contrast for soft tissues.
Three-dimensionalMRI of the human brain provide extensive
information on its structure, essential for assessing brain
morphology, investigating brain development, and identify-
ing neurodevelopmental and neurodegenerative problems [3].
MRI is safer than CT because it does not entail radiation,
however, it is more expensive and lacks the density informa-
tion required for positron emission tomography (PET) image
reconstruction or radiation therapy planning [4]. These obser-
vations indicate a common dilemmawhen a specificmodality
is necessary but not possible to obtain in reality. A sys-
tem, therefore, capable of synthesizing images of interest
from several sources, such as different acquisition techniques,
and diverse image modalities might be highly advantageous.
It can offer the much-needed imaging modality or data for
specific clinical purposes without the added expense or risk
of conducting an actual acquisition. However, these types of
cross-modality medical image-based translation or synthesis
is much difficult to directly solve due to the ill-posed and high
dimensionality nature of the mapping between the source
image and the target image [5], [6], [7], [8].

The quality of images produced by an MRI scanner is
mostly determined by the intensity of its magnetic field.
MR images in clinical settings are usually obtained with field
strengths varying from 0.2T to 3T [3], [9]. However, 7T MRI
scanners are increasingly being used in clinical settings fol-
lowing approval from regulatory agencies. A 7TMRI scanner
provides superior signal-to-noise ratio (SNR) and spatial res-
olution compared to a 3TMRI scanner, resulting in enhanced
contrast and better anatomical visibility between white matter
(WM) and gray matter (GM) tissues, as shown in Figure 2 (a).
This enables a more detailed description of cortical folds with
subcortical areas, which aids in MRI data analysis processes,
such as, anatomical partitioning, tissue segmentation, and
reconstructing cortical/subcortical surfaces. It is noted that
3T MR images are inadequate for accurately representing
intricate features of anatomical structures and abnormalities.
Delineating tiny brain structures like the hippocampus in
3T MRI is challenging due to the restricted spatial reso-
lution [10], [11], [12]. On the other hand, 7T MRI offers
superior image quality compared to 3T MRI by exposing
specific textural details in the hippocampus. This enhances
the ability to observe anatomical structures and improves the
application of imaging data. Additionally, 7TMRI has shown
clinical effectiveness in detecting minor anomalies caused
by pathological diseases [13], [14], [15] that are difficult to
identify in low-field MRI. Although beneficial for clinical

studies and research, 7T MRI scanners are not commonly
used because of their high cost, complexmaintenance, and the
expertise needed for image gathering and interpretation [16].
There are approximately 100 7T MRI scanners globally,
in contrast to 20,000 3T MRI scanners [17]. Therefore,
7TMRI is costly and not readily available to the general pub-
lic worldwide. Moreover, this powerful imaging equipment
is usually not available to countries with low to moderate
income levels. To increase the quality of low-cost MRI,
7T MR images can be generated from the corresponding
3TMRI in order to enhance anatomical details and tissue con-
trasts, leading to better downstream analysis and processing.
However, MRI with low field strength, such as, 0.5T MRI
is beneficial for evaluating brain trauma because it reduces
susceptibility artifacts and geometric distortions [18], [19].
Thus, 3TMRI might have reduced susceptibility artifacts and
geometric distortions compared to 7T MRI, but still 7T MRI
is the future of MRI technology. Similar to CT-MRI, transla-
tion between 3T MRI and 7T MRI falls under cross-domain
image translation as it entails transforming images from one
MRI domain (3TMRI) to another (7TMRI), each possessing
unique image attributes and quality standards.

The field of MRI has shown substantial progress through-
out time, namely in improving the clarity and detail of the
images produced. Extensive research and implementation
efforts have been dedicated to super-resolution technologies
in order to enhance the quality of MRI images. Commonly
used techniques encompass interpolation-based methods,
learning-based methods, and hybrid methods that integrate
several approaches. Nevertheless, recent progress in deep
learning, namely in the utilization of Generative Adversarial
Networks (GANs), has yielded more resilient solutions.

Previously, multiple studies have made significant contri-
butions to the domain of super-resolution in medical imaging,
specifically focusing on endoscopic pictures. The study con-
ducted by Hayat et al. [20] presents a new approach that
integrates channel and spatial attention strategies to improve
the stereo endoscopic image quality. Another study [21]
introduces a network that combines segmentation tasks, and
super-resolution, enhancing the usefulness and overall quality
of the pictures. The importance of edge guidance in improv-
ing video super-resolution, which has potential advantages
for real-time applications, has also been highlighted in a
recent study [22].

Table 1 presents a concise summary of the benefits, draw-
backs, andmethodologies used in the current body of research
on super-resolution approaches, aiming to offer a thorough
understanding of the subject.

GAN models are becoming popular to be utilized for solv-
ing tasks such as medical image reconstruction, generation,
synthesis, and classification [23], [24]. GAN models, like
Deep Convolutional GAN, are mostly utilized to augment
datasets [25]. Translation GAN-based models, like cycle
consistent GAN (CycleGAN) [26], operate by employing
two GAN-based models to produce target images given a
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TABLE 1. Recent literatures in the domain of super-resolution methods.

source image. Generating realistic artificial medical images
provides a way to address privacy issues associated with
diagnostic imaging and the utilization of people’s medical
information. Recently, several deep learning techniques for
synthesizing images from 3T MRI to 7T MRI have been
suggested [1], [17], [27]. A convolutional neural network
(CNN) is commonly utilized to develop a non-linear mapping
from 3T MRI to 7T MRI, or vice versa, utilizing paired
images which must be obtained from the same anatomical
locations of the same subjects [28]. Deep learning-based
models utilizing adversarial training [1], image priors [27],
and cascaded regression [17] have shown the ability to create
realistic 7T MR images from the corresponding 3T MRI.
However, acquiring paired 3T and 7T MRI for training
can be very difficult and challenging in reality. Although
CycleGAN-based image translation or synthesis models [26],
[29] can be trained without having paired images in the train
set, paired data for the test set remain essential for accu-
rate model assessment quantitatively. Furthermore, training
CycleGAN with paired data also makes the model more
robust by synthesizing target images more accurately [28].
The proposed investigation involves input and output

images inside the same MRI domain, however, at differ-
ent magnetic field strengths, distinguishing it from previous
research. Past studies have mostly converted images between
different types, for instance, MRI to CT images, or vice
versa [1], [2], [28], but have not much focused on convert-
ing magnetic field strengths within the same type of paired
images. This translation seeks to display MRI at a different
anatomical scale. This work aims to assess the capability of
cycle consistent generative adversarial deep learning-based
methods to convert 3T T1-weighted MRI into a standard-
ized 7T-like MR image quality in order to achieve deep

image harmonization. Deep learning techniques usually need
a large number of examples to acquire features that can be
applied broadly. However, research on synthesizing images
from 3T to 7T is hindered by the limited availability of
biomedical imaging data from 7T MRI scanners in clinical
sectors. We utilized a trained CycleGAN model to capitalize
on a paired 3T-7T MRI dataset. As described earlier, paired
3T – 7T MRI data are mostly unavailable, and very dif-
ficult to collect. In the year 2023, Chen et al. [3] pub-
lished a novel dataset containing paired T1-weighted and
T2-weighted brain MRI scans obtained at both 3T and 7T.
They also offered a detailed account of the dataset’s design,
collection, and preparation. Image quality is evaluated utiliz-
ing different quality metrics incorporated in the MRI Quality
Control (MRIQC) tool [30]. The prime contributions of the
present study are delineated as follows.

• The present study is the first one to investigate this paired
3T to 7T and vice versa dataset utilizing CycleGAN
models.

• Several experiments have been conducted on the dataset
with different architectures of CycleGAN. Each crucial
component of CycleGAN has been investigated with the
dataset.

• The results of each experiment have been evaluated by
several quantitative and qualitative evaluation criteria.

• A post-processing technique has been demonstrated to
further increase the accuracy of image generation by
CycleGAN.

The present study is organized as follows. Section II demon-
strates the methodology of the entire study with discussing
all the employed methods, while Section III discusses key
findings of the study with critical discussion and comparison.
Finally, Section IV concludes the study with stating limita-
tions and future works.

II. METHODOLOGY
The flowchart of the entire study of 3T to 7TMRI conversion,
and vice versa using CycleGAN is delineated in Figure 1.

The study commences by preparing and pre-processing the
dataset, wherebyMRI scans obtained from 3T and 7T sources
are gathered, standardized, and supplemented to improve the
diversity and quantity of the training dataset. Throughout the
training and testing phase, the CycleGAN model undergoes
training with different setups of generators, discriminators,
and cycle consistency loss functions. The subsequent stage
involves analyzing the impact of subject-specific data split-
ting, which ensures that the data used for training and testing
are sourced from distinct subjects in order to assess the
model’s ability to generalize. Subsequently, we examine the
impact of data augmentation strategies on the training set by
implementing methods such as rotation, flipping, and scaling
to enhance the resilience of the model.

The study also included the goal of predicting 3T MRI
from 7T MRI, evaluating the model’s ability to translate in
both directions. A crucial stage involves the impact of post-
processing methods, including skull stripping, to improve
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FIGURE 1. The flowchart of the present study on CycleGAN-based MRI translation between 3T and 7T.

the quality of the generated MRIs and make them more
suitable for clinical use. In order to validate the suggested
method, we conduct a theoretical comparative analysis with
established super-resolutionmethods, emphasizing the differ-
ences and benefits of our approach. Subsequently, a thorough
examination is conducted to analyze the relative merits of
the suggested CycleGAN-based approach in relation to its
enhanced adaptability and performance enhancements. Ulti-
mately, a qualitative assessment is performed by expert
radiologists to visually evaluate the quality of the trans-
lated MRIs. This involves comparing them with ground truth
images and the images generated by existing approaches. The
displayed flowchart in Figure 1 outlines a comprehensive
methodology that guarantees a meticulous assessment and
verification of the CycleGAN-based method for translating
MRI images between 3T and 7T.

For 3T to 7T MRI translation and vice versa, we have
first collected the paired or aligned dataset of T1-weighted
3T and 7T MRI from ten different healthy subjects from a
recent publication in the Scientific Data journal [3]. Here, the
authors published a dataset containing paired T1-weighted
and T2-weightedMRI at 3T and 7T of ten healthy participants
to aid in the creation and assessment of 3T-to-7T MR image
translation methods. To the best of our knowledge, no pre-
vious study has yet experimented with this public dataset
for 3T to 7T MRI translation, and vice versa. In the present

study, we have only experimented with axial T1-weighted
MRI at 3T and 7T. However, not allMRI slices of each subject
in the published dataset possess anatomical information that
are beneficial for network training or knowledge extraction.
We therefore removed the null slices and kept just the ones
with full brainMRI, resulting in around 130 slices per subject.
We also excluded the data which are not aligned or paired
properly. The selected dataset contains a total of 1297 pairs
of slices from 10 subjects (paired 3T and 7T MRI).

Different data preprocessing techniques, such as color
space conversion, crop, resize, normalization and others,
were employed. All images are standardized to a size of
256 × 256 pixels. Standardization is essential to maintain
constant input size for all images, which helps in batch
processing and removes the necessity for dynamic resizing
during model training and evaluation. The images’ pixel
values are normalized by applying a mean and standard
deviation of 0.5 to each of the three red, green, and blue
(RGB) channels. Normalizing the pixel values to the range of
[−1, 1] is a standard procedure for preparing inputs to neural
networks. It aids in stabilizing the training procedure by
maintaining consistent input magnitude, which can accelerate
convergence and enhance the model’s generalization capabil-
ities. Consistent with the original article of CycleGAN [26],
we have divided the dataset into train and test (external
validation) sets.
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FIGURE 2. Paired T1-weighted (T1w) and T2-weighted (T2w) MRI at
3T and 7T collected from a subject, demonstrated for (a) multiple views,
and (b) multiple modalities [3].

FIGURE 3. Processing of Data: Linear registration of 3T T1-weighted,
3T T2-weighted, and 7T T2-weighted images to 7T T1-weighted image [3].

A. DATASET
Figure 2 delineates few samples from the published article,
whereas Figure 3 describes the processing techniques for
aligning the MR images to develop a paired dataset of 3T
and 7T MRI [3]. Each subject’s 3T T1-weighted and 7T
T2-weighted images were aligned with the 7T T1-weighted
image using linear registration. The 3T T2-weighted image
was aligned with the registered 3T T1-weighted image
(Figure 3). More details about data collection and processing
techniques can be found in [3].

After selecting the best performing CycleGAN model,
we have evaluated the performance of the best model using
five different splits of the dataset. For this purpose, we have
developed the following five different splits of data (train set
and test set) shown in Table 2 based on the selected 1297 pairs
of MR images.

TABLE 2. Different train and test datasets used in this study.

B. CycleGAN ARCHITECTURE
The CycleGAN architecture is our proposed approach to
deal with the image translation problem of the present study.
We have performed a series of experiments to come up with
the best CycleGAN architecture for 3T to 7T MRI con-
version, and vice versa, with the highest possible accuracy.

Figure 4 represents the architecture of CycleGAN utilized in
this study.

The CycleGAN framework, illustrated in Figure 4, com-
prises of two primary elements: two generators and two
discriminators. The generators are responsible for convert-
ing images between the 3T MRI domain and the 7T MRI
domain. More precisely, one generator converts 3T MRIs to
7T MRIs, while the second generator carries out the oppo-
site conversion. Both generators employ residual blocks to
collect complex characteristics and guarantee precise image
reconstruction. The two discriminators have the objective
of differentiating between authentic and synthesized images
within their individual areas. One discriminator examines
the verisimilitude of images in the 3T domain, while the
second discriminator appraises the 7T domain. Moreover,
the cycle consistency loss guarantees that an image that has
been translated from 3T to 7T and then back to 3T (or vice
versa) will revert to its original state. This loss is essential
for preserving the structural integrity during the translation
process. The CycleGAN utilizes adversarial loss and cycle
consistency loss to successfully acquire the ability to produce
high-quality 7TMRIs from 3TMRIs, while maintaining both
intricate details and accuracy.

1) GENERATORS
We have experimented with different architectures of the
generator function utilized inside the CycleGAN architecture,
which is specifically a Residual Network (ResNet)-based
generator. We varied the number of residual layers or blocks
employed in the network. The ‘resnet_gen_9’ architecture
indicates the ResNet generator consisting of 9 residual
blocks which is more complex with higher number of
trainable parameters compared to other generators such as,
‘resnet_gen_7’ (ResNet Generator which consists of 7 resid-
ual blocks) and ‘resnet_gen_3’ (ResNet Generator which
consists of 3 residual blocks). ‘resnet_gen_9’ might be more
efficient for more intricate image translation problems when
the ability to capture important and significant characteristics
is essential. However, it requires more training time and data
to avoid convergence and overfitting.

The architecture ‘resnet_gen_7’ is a suitable option for
many image translation problems because of its moder-
ate complexity and a potentially lower number of trainable
parameters compared to ‘resnet_gen_9’, while still having
more parameters than ‘resnet_gen_3’. Therefore, it is antici-
pated to have a faster speed and necessitates a smaller amount
of training data in comparison to ‘resnet_gen_9’.

‘resnet_gen_3’ is the least complex architecture among the
three ResNet architectures, while having the fewest trainable
parameters. Therefore, it might be suitable for simpler image
translation problems where we have limited data. Another
advantage is that it is the quickest model in terms of time
complexity for model training among the three models, and
also less susceptible to overfitting when data is limited.

The ResnetBlock specifies the residual block consisting
of two convolution layers. The quantity of these blocks
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FIGURE 4. The architecture of CycleGAN for the translation between 3T MRI and 7T MRI.

directly affects the model’s ability to comprehend intricate
relationships between the input and output domains. A greater
number of blocks have the potential to capture more intricate
transformations, but this comes at the expense of greater
computational complexity.

Each generator variant (‘resnet_gen_9’, ‘resnet_gen_7’,
and ‘resnet_gen_3’) adheres to a comparable architec-
tural pattern, mostly varying in the quantity of remaining
blocks:
i. The initial convolution block consists of a solitary

convolution layer that utilizes reflection padding and
instance normalization.

ii. The downsampling blocks comprise of a convolution
layer, instance normalization, and then rectified linear
unit (ReLU) activation, with two such blocks in total.
They incrementally increase the number of channels by
a factor of two.

iii. A sequence of residual blocks, with the number of
blocks changing (3, 7, or 9) depending on the model
variant.

iv. The upsampling blocks comprise of a transposed con-
volution layer, instance normalization, and then ReLU
activation function. These blocks gradually reduce the
number of channels by half.

v. The final convolution block consists of a solitary convo-
lution layer that utilizes reflection padding, then follows
a tan hyperbolic activation function.

2) DISCRIMINATORS
We have further defined two types of discriminator archi-
tectures within a CycleGAN model, that are patchGAN and
pixelGAN (1×1 patchGAN). Both components play a crucial
role in the discrimination process of the GAN, distinguishing
between actual and generated images. However, they function
based on distinct ideas and scales.

The patchGAN discriminator functions by analyzing
patches of the input image. The model employs a sequence of
convolutional layers with different strides (kernel size = 4).
This architectural design enables the system to concentrate
on the texture and style of certain regions within the image,
rather than processing the entire image as a whole. The
patchGANmodel we employ initially consists of 64 channels
and progressively augments the number of channels with each
subsequent layer (64, 128, 256, 512). The growing intricacy
enables it to capture more intricate characteristics at each
layer. All convolutional blocks, excluding the first block,
incorporate instance normalization technique that normalizes
the features for each unique image. The final layer is a
convolutional layer that decreases the output to a solitary
channel. The resulting dimensions are not limited to 1×1, but
instead provide a compact 2D representation where each cell
provides a discrimination score for a corresponding section
of the input image.

On the contrary, the pixelGAN discriminator functions
at the pixel level by employing 1 × 1 convolutions. This
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implies that it evaluates each individual pixel separately,
resulting in a reduced ability to comprehend broader patterns
or textures but a heightened emphasis on details at the pixel
level. Its architecture consists of a total of three convolutional
layers having 1 × 1 kernels which is much shallower and
simpler compared to patchGAN. Instance normalization is
only employed in the middle layer. The last layer produces a
solitary channel, however, in contrast to patchGAN, its output
signifies a discriminating score for every pixel in the image
rather than patches.

3) CYCLE CONSISTENCY LOSS FUNCTION
Besides experimenting with different generators and discrim-
inators, we have also experimentedwith the cycle consistency
loss function of the CycleGAN architecture. In the develop-
ment of the CycleGAN architecture, we utilize both Mean
Absolute Error (MAE) and Mean Squared Error (MSE) as
metrics for the cycle consistency loss function of the Cycle-
GAN model. These metrics are crucial for ensuring that
the generated images accurately reflect the original images,
hence maintaining the integrity of the input data throughout
the transformation process. The cycle consistency loss is
essential for ensuring the model learns bidirectional map-
pings between domains A (3T MRI) and B (7T MRI). This
means that an image translated from domain A to domain
B should be able to be translated back to domain A with
minimum distortion, and vice versa.

The Mean Absolute Error (MAE) loss (L1 loss) is formu-
lated in Equation (1).

MAE (G,F) =
1
N

∑N

i=1
|xi − G (F (xi))|

+ |yi − F (G (yi))| (1)

In Equation (1), G and F are the generator functions for the
translations from domain A (3T MRI) to domain B (7T MRI)
and domain B (7T MRI) to domain A (3T MRI), respectively.
xi and yi represent the images: domain A (3T MRI) and
domainB (7TMRI), respectively, withN being the total num-
ber of images. This lossmetric calculates the average absolute
errors between the original images and the corresponding
generated images, offering a reliable measure that is resistant
to outliers.

On the contrary, the Mean Squared Error (MSE) loss
(L2 loss) is formulated in Equation (2).

MSE (G,F)=
1
N

∑N

i=1
(xi−G(F(xi)))2 + (yi − F(G(yi)))2

(2)

Equation (2) calculates the mean of the squared discrepancies
between the original images and the corresponding cycle
reconstructions. The MSE loss function gives greater weight
to larger errors compared to smaller errors, leading to a more
accurate convergence by reducing variance.

The CycleGAN model gains advantages by incorporating
both MAE and MSE losses for the cycle consistency loss
component, using MAE’s resistance to outliers and MSE’s

focus on penalizing significant residuals. This dual-loss tech-
nique improves the model’s capacity to produce high-quality
translations that nearly resemble the original data, guarantee-
ing that the cycle transformation maintains the integrity of
the content. By strategically utilizing these losses, our goal
is to enhance the performance of the proposed architecture
and get improved outcomes in image-to-image translation
challenges.

4) FINE-TUNING CycleGAN: OPTIMIZERS, LEARNING
DYNAMICS, AND IDENTITY LOSS CONFIGURATION
We have carefully customized the configuration settings in
our CycleGAN implementation to enhance the model’s per-
formance specifically for image-to-image translation prob-
lems. The model functions with a batch size of 1, which is
suitable for high-resolution image processing tasks and can
work within hardware limitations. Model training consists of
two phases: a starting phase of 100 epochs with a constant
or linear learning rate, followed by a subsequent 100 epochs
with a decaying learning rate (or decay phase), totaling a
training period of 200 epochs.

In the context of training a CycleGAN model, an epoch
signifies a single iteration over the whole train dataset.
Throughout an epoch, the model encounters each example
in the entire dataset once. An epoch denotes that the model
has tried to translate every unpaired image in the given
dataset from domain A (for instance, 3T MRI) to domain
B (7T MRI), and vice versa, one time. Epochs represent
the frequency at which the learning algorithm’s parameters
are adjusted using the complete training dataset. The epoch
count is a crucial hyperparameter that must be determined
before training starts, as it has a significant impact on the
model’s performance. Insufficient epochs may cause under-
fitting, whilst excessive epochs might result in overfitting.
On the contrary, a checkpoint refers to a preserved state of the
model at a specific moment in time while it is being trained.
Checkpoints save the precise values of all the parameters
(weights and biases) of the model, along with the optimizer
state, when saved. This feature enables the training process
to be halted and then restarted without any loss of progress.
It allows for assessing the model’s performance at various
points throughout training. Checkpoints are utilized to assess
the model’s performance at various training phases, aiding in
the selection of the most suitable model for a specific task.

The proposed CycleGANmodel utilizes MSE loss for both
the generator and discriminator, encouraging accurate error
reduction by imposing significant penalties for substantial
differences between the generated and target images. Another
loss function, which is known as the identity loss metric in
the CycleGAN model also plays an essential role in main-
taining the image content during translation between two
different domains. While the cycle consistency loss guaran-
tees minimal loss when translating an image between two
domains, the identity loss works on the scenario where an
image from domain A (3T MRI) is fed into the generator
function that translates the images from domain A (3T MRI)
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to A (3T MRI) itself or from domain B (7T MRI) to
B (7T MRI). If G : A → B and F : B → A are
the generator functions for the translation of images from
domainA (3TMRI) toB (7TMRI) and domainB (7TMRI) to
A (3T MRI) respectively, then the identity loss for the gen-
erator function, G is defined as the distinction between y
and G(y), where y is an image from domain B (7T MRI).
Similarly, for the generator function F , the identity loss is
formulated as the difference between x and F(x), where x is
an image from domain A (3T MRI). The identity loss can be
formulated in Equation (3).

Lidentity =
1
N

∑N

i=1
(|G (yi) − yi| + |F (xi) − xi|) (3)

The identity loss prompts the generator to act as an iden-
tity function when given an image from the target domain
as input, ensuring little alteration to the image. Integrating
identity loss into CycleGAN serves multiple purposes: main-
taining content, enhancing stability, and improving quality.
The identity loss of CycleGAN is configured as MAE loss
in our proposed architecture [26], which enhances resilience
to outliers and guarantees that the identity mapping reduces
absolute discrepancies.

Both the generator and discriminator are optimized uti-
lizing the Adaptive Moment Estimation (ADAM) optimizer
along with a learning rate of 2e-4 for each, to achieve an
efficient and balanced reduction of the utilized loss functions.
The design includes a model saving frequency after every
5 epochs, allowing for frequent checkpointing to evaluate
and recover the model. Our CycleGAN model is optimized
to produce high-quality image translations with strong and
coherent training dynamics.

C. DATA AUGMENTATION TECHNIQUES
We also utilized different data augmentation techniques to
examine the effect of data augmentation to further improve
the performance of image synthesis or reconstruction by the
CycleGAN model [31]. Typically, train data augmentation
approach mitigates the risk of overfitting by enhancing the
diversity of the train dataset. In particular, we have utilized
rotation (at 90, 180, and 270 degrees), horizontal flip and ver-
tical flip methods for image augmentation. After employing
these data augmentation techniques, the augmented train set
contains a total of 6468 pairs of paired 3T-7T MRI.

D. QUANTITATIVE AND QUALITATIVE EVALUATION
METRICS
We have utilized different quantitative evaluation metrics,
such as, structural similarity indexmeasure (SSIM) [32], peak
signal-to-noise ratio (PSNR) [33], normalized mean squared
error (NMSE) [34], and normalized mean absolute error
(NMAE) [35], which are the most widely used evaluation
criteria for most of the previous image-to-image translation-
based tasks. Furthermore, we relied on expert validation by
doctors and radiologists, which could be categorized as a
pure qualitative evaluation criterion [36], which is considered

even more important compared to the quantitative metrics
for these types of problems. These evaluation metrics are
typically utilized to assess the performance of various image
processing and signal processing tasks. The mathematical
equations for each metric utilized in this study are described
as follows.

SSIM mainly quantifies the resemblance between two
images. SSIM is defined in Equation (4).

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(4)

In Equation (4), x and y denote the two images to be
compared. µxand µy indicate the average intensities of
images x and y. σ 2

x and σ 2
y denote the variances of these

two images. σxy refers to the covariance between these two
images. c1 and c2 are constants used to stabilize the divi-
sion operation when the denominator is weak, the following
Equation (5) is typically considered.

c1 = (k1L)2andc2 = (k2L)2 (5)

In Equation (5), L represents the dynamic range of pixel
values, typically 255 for 8-bit pictures. By default, k1 is taken
as 0.01, whereas k2 is taken as 0.03.

PSNR is mostly utilized to assess the quality of recon-
struction in lossy compression codecs. PSNR is defined in
Equation (6).

PSNR = 10 log10 (
MAX2

I

MSE
) (6)

In Equation (6),MAX I indicates the maximum pixel value of
the image (for instance, 255 for 8-bit images). MSE refers to
the mean squared error between the original and compressed
or reconstructed image.

NMSE is a standardized form of the mean squared error
(MSE) commonly employed to assess the likeness between
two images. NMSE is defined in Equation (7).

NMSE =

∑N
i=1 (xi − yi)2∑N

i=1 x
2
i

(7)

In Equation (7), xi and yi refer to the pixel values of the
original and predicted images, respectively. N indicates the
total number of pixels in each image.

NMAE is an alternative way to normalize the mean abso-
lute error (MAE), offering a scale-independent metric for
error assessment. NMAE is defined in Equation (8).

NMAE =

∑N
i=1 |xi − yi|∑N

i=1 |xi|
(8)

In Equation (8), xi and yi denote the pixel values of the
original and predicted images, respectively. N refers to the
total number of pixels in each image.

All these quantitative metrics offer different viewpoints on
the quality and precision of image reconstruction or synthesis
algorithms, considering factors such as structural integrity,
error magnitude and noise etc. However, qualitative assess-
ment is also crucial for synthesizing MR images between
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3T and 7T as it considers subjective elements like percep-
tual clarity and diagnostic utility, which are vital in medical
imaging but may not be completely measured by numerical
metrics. Human specialists can evaluate subtle differences
in image contrast, texture, and anatomical detail crucial for
precise diagnosis, which quantitative measurements may not
capture accurately in terms of clinical significance.

Therefore, we performed a detailed qualitative assessment
on the utility and fidelity of MR images translated between
magnetic field strength of 3T and 7T using CycleGAN. This
qualitative evaluation turns out to be essential for compre-
hending the technical capacities of the proposed CycleGAN
architecture as well as its possible use in therapeutic settings.
Three experienced radiologists from Hamad Medical Cor-
poration, Qatar, were included in a no-reference evaluation
process to guarantee the quality and relevance of our findings.
Each expert received a dataset of 20 3T MRI and 20 7T MRI
scans. The dataset wasmeticulously selected from an external
validation set with 219 slices from two different subjects
to ensure a varied representation of anatomical characteris-
tics and pathologies. These external validation images were
chosen based on particular criteria to provide a wide range
of challenges to the CycleGAN model, ensuring a thorough
evaluation of its performance in various settings.

The image selection approach was systematic, rigorous,
and randomized. The inclusion criteria were established to
guarantee that the chosen MR images included a wide vari-
ety of anatomical components, including both normal and
diseased appearances, in order to evaluate the model’s per-
formance in diverse clinical situations. Exclusion criteria
were used to eliminate MR images with severe motion arti-
facts or inadequate contrast that could unfairly impact the
qualitative rating. The selection technique entailed randomly
selecting 20 MR images from every modality (3T MRI and
7T MRI) out of a total of 219 images of each modality, with
each image having an equal probability of being selected. The
randomization was conducted by a straightforward random
sampling method to ensure an unbiased and representative
selection of images for assessment. Here, each image i in
the external validation dataset of N MR images was given
a distinct identifier. A random number generator was then
utilized to choose n images without repetition, with n being
equal to 20. Equation (9) delineates the formula for this
process.

S = {si |si ϵ N and |S| = n} (9)

In equation (9), S represents the set of chosen samples, si is
a chosen image, N is the entire set of images, and n is the
number of images to be chosen.

During the no-reference evaluation process, 20 authen-
tic or real images were intermingled with 20 fake or
CycleGAN-generated images in such a way that obscured
their actual origin from the assessors. Anonymized file-
names were used along with a random sequence generator
to establish the order of image presentation. This technique
prevented the evaluators from deducing if an image was real

or CycleGAN-generated depending on its location in the
sequence.

The evaluation criteria were meticulously selected to
mirror crucial features for the clinical usefulness and tech-
nological achievement of the utilized CycleGAN model.
The images were qualitatively evaluated on a Likert scale
from 1 to 10 based on three criteria: Image Quality (evalu-
ating contrast, sharpness, artifact presence and noise level),
Diagnostic Utility (assessing the usefulness of the images for
clinical diagnoses or recognizing pathologies), and Realism
(quantifying resemblance to authentic MR images in terms
of anatomical accuracy and texture). The Likert scale method
enabled a detailed evaluation of the MR images, which
allowed for a thorough examination of the actual performance
of the model.

Ethical issues and confidentiality were of utmost impor-
tance during this study. The evaluated images were obtained
from a recent publication in the ScientificData journal [3] and
adhered to all applicable ethical norms. Before usage, all the
images were de-identified to protect the confidentiality and
privacy of the subjects. This study is committed to upholding
the highest standards of integrity through adherence to ethical
norms.

E. HARDWARE, SOFTWARE AND TOOLS
We utilized a wide range of software libraries and tools based
on PyTorch and PyTorch Lightning, to aid in developing,
training, and testing our CycleGAN model in this study.
For the training of CycleGAN, we have utilized NVIDIA
GeForce RTX 4090 GPU with a video random access mem-
ory (VRAM) of 24GB. For skull stripping in MRI, we have
used the polygonal region of interest, roipoly function in
MATLAB R2022a software.

III. RESULTS AND DISCUSSION
To conduct a thorough and rigorous investigation, we have
performed a total of 40 experiments at different checkpoints
(spanning from epoch 5 to epoch 200, with an interval of
5 epochs) for each CycleGAN architecture. To find the best
model, we have used the first two subjects’ data for testing
(subject 1 and 2) and the remaining eight subjects’ data for
training (subject 3 – 10). Thus, the train set contains a total
of 1078 pairs of train MR images (paired 3T and 7T) from
8 different subjects, whereas the test set contains 219 pairs of
paired images from 2 subjects.

Based on all the stated quantitative and qualitative evalu-
ation criteria altogether, we have selected the best epoch for
each CycleGAN architecture and finally the best CycleGAN
architecture among all the architectures under investigation
for solving this task. Table 3 describes the summary of all
the results for 3T to 7T MRI translation among five different
CycleGAN architectures based on different generators, dis-
criminators, and cycle consistency loss functions.

Table 3 displays a comprehensive comparison of mul-
tiple CycleGAN-based models assessed for the 3T to 7T
MRI translation task, emphasizing their performance metrics
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TABLE 3. Summary of different CycleGAN-based results for 3T TO 7T MRI
translation.

under varied settings. The models are categorized according
to the generator type (resnetgen3, resnetgen7, resnetgen9),
discriminator type (patchGAN, pixelGAN), and the loss func-
tion used for cycle consistency (MAE, MSE). The table
presents the highest attained values of the SSIM, PSNR,
NMSE, and NMAE for each model, along with the num-
ber of training epochs associated with each value. The
resnetgen9_patchGAN_MSE model attained a peak SSIM of
70.88% during epoch 130, demonstrating its superior struc-
tural resemblance to the ground truth. The model achieved
the highest PSNR of 19.15 dB at epoch 175, indicating
outstanding image clarity and noise reduction. The resnet-
gen9_patchGAN_MSE model achieved the lowest NMSE of
0.0129 at epoch 175, indicating high reconstruction accuracy.
On the other hand, the resnetgen3_patchGAN_MSE model
achieved the best NMAE of 0.1916 at epoch 180.

Additionally, other models exhibited noteworthy per-
formance, albeit with minor discrepancies. The resnet-
gen9_patchGAN_MAE model demonstrated an SSIM of
69.22% at epoch 80 and a PSNR of 18.23 dB at epoch 65.
These results indicate a well-balanced performance, but not
as high as theMSE variant. The resnetgen7_patchGAN_MSE
model achieved an SSIM of 68.60% at epoch 200 and
a PSNR of 18.26 dB at epoch 45. These findings sug-
gest that the model performs well, but further modifica-
tion might be needed to get ideal outcomes. The resnet-
gen9_pixelGAN_MSE model, despite yielding an SSIM of
66.33% at epoch 5 and a PSNR of 16.50 dB at epoch 10,
offered useful insights into the influence of various discrimi-
nators.

Regarding ranking, the resnetgen9_patchGAN_MSE
model consistently beat other models, with the resnet-
gen3_patchGAN_MSE model following closely behind,
demonstrating strong performance and achieving the best
NMAE. The models resnetgen9_patchGAN_MAE and
resnetgen7_patchGAN_MSE exhibited balanced perfor-
mance metrics, albeit somewhat lower. On the other hand,

the resnetgen9_pixelGAN_MSE model yielded the least
favorable results, emphasizing the significance of selecting
an appropriate discriminator. The table presents information
on the trade-offs and performance variations among vari-
ous model settings, highlighting the resilience and efficacy
of the resnetgen9_patchGAN_MSE model in generating
high-quality MRI translations.

Among all the employed architectures shown in Table 3,
the resnetgen9_patchGAN_MSE model performed best
based on all the quantitative and qualitative evaluation cri-
teria altogether. Furthermore, according to the radiologists,
epoch 130 (having the best SSIM score) of the resnet-
gen9_patchGAN_MSE model turns out to produce the best
generated 7T MR images. In Table 3, the best architecture
is highlighted in boldface whereas the best epoch (according
to the radiologists) is highlighted in boldface green. Figure 5
illustrates the change in loss across epochs for the generator,
discriminator, and cycle consistency loss function of the top-
performing resnetgen9_patchGAN_MSE architecture.

FIGURE 5. Variation of loss over the progression of epochs for the
generator, discriminator, and cycle consistency loss function of the best
performing resnetgen9_patchGAN_MSE architecture.

The generator loss signifies the improvement of the gen-
erator in generating high-resolution images that are more
realistic as the training advances through many epochs. The
discriminator loss exhibits considerable fluctuations dur-
ing the first learning phase as it endeavors to differentiate
between authentic and synthesized images. Over time, the
discriminator loss reaches a state, indicating a balanced
adversarial training state where the generator and the discrim-
inator do not have an overwhelming advantage individually.
The cycle consistency loss exhibits a consistent decrease,
indicating the enhanced capability of the model to preserve
the structural integrity of the generated images. The decrease
in cycle consistency loss is essential as it guarantees that the
generated images maintain fidelity to the original 3T MRI
images while attaining the targeted 7T resolution.

A. ABLATION STUDY
An ablation study assesses the effectiveness of an artificial
intelligence (AI) system by methodically eliminating certain
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components. This method aids in comprehending the indi-
vidual impact of each component on the overall efficiency of
the AI system. In this subsection, we performed an ablation
study based on different generators, discriminators, and cycle
consistency loss functions of CycleGAN model for 3T to 7T
MRI translation based on the results derived from Table 2.

1) COMPARISON AMONG GENERATORS (RESNETGEN3 VS
RESNETGEN7 VS RESNETGEN9)
Comparing different CycleGANmodels using distinct gener-
ators (resnetgen3, resnetgen7, and resnetgen9) for translating
MRI images from 3T to 7T shows notable differences in
performance based on SSIM, PSNR, NMSE, and NMAE
metrics. The CycleGAN models based on resnetgen9 gen-
erator, utilizing MAE and MSE loss functions as the cycle
consistency loss, exhibit higher SSIM and PSNR values
than the resnetgen3 and resnetgen7-based CycleGAN mod-
els, suggesting improved signal-to-noise ratio and structural
similarity which are important for maintaining fidelity in
medical imaging. The resnetgen9 model, trained using Mean
Squared Error (MSE) cycle consistency loss function, partic-
ularly excels with an SSIM of 70.88% and a PSNR of around
19.15, indicating its superior capacity to capture and pro-
cess intricate structures in MR images. On the contrary, the
resnetgen3-based model demonstrates a competitive SSIM
of 70.73%, almost similar to the resnetgen9-MSE model,
however, with a slightly larger NMSE and the least NMAE.
This suggests a delicate balance between preserving detailed
structure and minimizing overall error. The resnetgen7-based
model demonstrates balanced performance across various
metrics, indicating that while the more complex resnetgen9-
based model has its benefits, the efficiency of resnetgen3 in
specific metrics underscores the significance of selecting a
model depending on specific performance objectives.

2) COMPARISON AMONG DISCRIMINATORS (patchGAN VS
pixelGAN)
The function of the discriminator in CycleGAN frameworks,
when comparing patchGAN with pixelGAN, emphasizes
how the granularity of the discriminator affects the quality
of translating 3T to 7T MR images. The patchGAN dis-
criminators, when combined with resnetgen3, resnetgen7,
and resnetgen9-based generators, consistently outperform the
pixelGAN-based discriminator in terms of PSNR and SSIM
across all architectures. The patchGANdiscriminators help to
improve structural similarities and image quality, as shown by
their better SSIM and PSNR metrics. The pixelGAN model’s
emphasis on pixel-level differences, as indicated by its SSIM
of 66.33% and PSNR of 16.50, which is significantly lower
compared to the performance of the other models, may be
advantageous for capturing intricate details but might not be
as successful in maintaining the overall structure and reduc-
ing noise inMRI translation. This comparative study signifies
the necessity of selecting a discriminator that agrees with the
important characteristics of image quality related to the task.

3) COMPARISON AMONG CYCLE CONSISTENCY LOSS
FUNCTIONS (MAE VS MSE)
The selection of the cycle consistency loss function, particu-
larly betweenMAE andMSE losses, significantly impacts the
performance of CycleGANmodels forMR image conversion.
The resnetgen9-based model with MSE cycle consistency
loss performs better compared to its MAE counterpart in
the SSIM metric with scores of 70.88% and 69.22% respec-
tively, suggesting somewhat superior structural preservation.
MSE’s sensitivity to greater errors may be more beneficial
for capturing intricate structural information in MR images,
which is crucial for medical diagnosis and assessment. The
MAE loss, albeit somewhat behind in SSIM, demonstrates
similar performance in metrics like PSNR and NMSE, sug-
gesting its overall strength in preserving image quality. The
decision to use either MAE or MSE cycle consistency loss
functions depends on the particular needs of the translation
problem. MSE may be slightly more beneficial for tasks that
prioritize structural accuracy, while MAE is better suited for
general image translation problems that aim for balanced
performance across different quality metrics.

B. EFFECT OF SUBJECT – SPECIFIC DATA SPLITTING INTO
TRAIN AND TEST SETS
We further analyzed the performance of the best perform-
ing resnetgen9_patchGAN_MSE-based CycleGAN model
by testing it on different test splits of the dataset. Table 4
reports the performance of the model based on each quan-
titative evaluation criterion on five different test (external
validation) datasets, each containing data from distinct sub-
jects. Analyzing the model’s performance on these datasets
shows important patterns and fluctuations in SSIM, PSNR,
NMSE, and NMAE, which are essential for evaluating 3T to
7T MRI conversion quality.

TABLE 4. Performance of the resnetgen9_patchGAN_MSE model on
different test sets.

The average SSIM for each test set is 69.54% (stan-
dard deviation: 0.95), suggesting a consistent capability of
the model to maintain structural features among various
subjects. The PSNR metric has an average value of 18.61
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(standard deviation: 0.61), indicating a minor variation in
the model’s capacity to reduce noise while preserving signal
quality. The NMSE and NMAE metrics have mean values of
0.0149 and 0.2345, respectively. NMSE has a standard devia-
tion of 0.00239, indicating slightlymore variability compared
to NMAE, which has a standard deviation of 0.03905. This
suggests variations in themodel’s accuracy in predicting pixel
values among different subjects.

The variance in these metrics, particularly the higher vari-
ance in SSIM and NMAE metrics, highlights the model’s
varying sensitivity to the distinct physiological and anatom-
ical features presented in the MRI data of each subject. The
model performed best in terms of SSIM on the test sets of
Subject 1, 2 and Subject 9, 10, indicating its effectiveness in
the translation of MR images with similar structural proper-
ties. Conversely, the test dataset with subject 7 and 8 exhibits
the greatest PSNR, showcasing outstanding noise reduction
ability in this specific test set. The subjects with the lowest
NMSE are 7 and 8, while the subjects with the lowest NMAE
are 9 and 10. This highlights the varying effectiveness of the
model among different participants.

This detailed assessment demonstrates the intricate perfor-
mance of the resnetgen9_patchGAN_MSE model in the task
of translating MR images from 3T to 7T. The results indicate
that the model’s accuracy and quality are generally excellent
but can vary slightly based on the individual properties of
the MRI data being converted. The insights enhance our
comprehension of the model’s capacities and emphasize the
significance of taking subject variability into account when
developing and evaluating CycleGAN-based medical image
synthesis systems.

Figure 6 shows few results generated by the best per-
forming model (resnetgen9_patchGAN_MSE: Epoch 130)
on each test (external validation) set along with the corre-
sponding ground truth and input images.

C. EFFECT OF DATA AUGMENTATION TECHNIQUES ON
TRAIN SET
We further experimented with the resnetgen9_patchGAN_
MSE model to examine its performance after training it with
the augmented train dataset consisting of a total of 6468 pairs
of paired 3T – 7TMR images. In other words, we assessed the
effect of train data augmentation techniques on the best per-
formingmodel using subject 1 and 2 as the external validation
dataset. Table 5 delineates the quantitative results before and
after applying train data augmentation techniques.

As can be observed from Table 5, train data augmentation
raised SSIM by a little margin. However, the PSNR decreased
while we noticed almost no difference in NMSE. Lastly,
applying train data augmentation techniques significantly
lowered the NMAE on the test set. Figure 7 shows few results
generated by the CycleGAN model both before and after
augmentation along with the corresponding ground truth and
input images.

FIGURE 6. 7T MRI generated from 3T MRI on each test set by the
resnetgen9_patchGAN_MSE model.
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FIGURE 6. (Continued.) 7T MRI generated from 3T MRI on each test set by
the resnetgen9_patchGAN_MSE model.

According to the qualitative comments given by all the
three experts, the predicted MR images (especially the white
region of the brain) turn out to be better with the model before
applying any train data augmentation techniques, whereas
the predicted MR images appear to contain dark artifacts
after exploiting the train data augmentation processes. Thus,
3T MRI to 7T MRI prediction turns out to be better when
we did not augment the train dataset for CycleGAN training
as per the qualitative validation conducted by all the experts,
although quantitatively, augmentation techniques performed
better in terms of SSIM and NMAE (Table 5).

TABLE 5. Effect of train data augmentation ON 3T MRI TO 7T MRI
conversion by the resnetgen9_patchGAN_MSE model.

D. 3T MRI PREDICTION FROM 7T MRI
We have utilized the resnetgen9_patchGAN_ MSE-based
CycleGAN model for the task of 7T to 3T MRI translation
and the results are demonstrated in Table 6.

Unlike 3T to 7T MRI translation, the model with the best
NMSE metric (highlighted in boldface in Table 6) generated
more realistic images with respect to the ground truth images
compared to the model with the best SSIM metric for 3T
MRI prediction from 7T MRI, according to the qualitative
evaluation conducted by all the experts. Figure 8 shows few
results of 7T to 3T MRI conversion by the best model with
the least NMSE metric (Epoch 175).

The main objective of this study is to use CycleGAN to
convert 3T MRI to 7T MRI. This direction is of great clinical
importance and has the potential to enhance diagnostic imag-
ing. Although CycleGAN naturally allows for bidirectional
translation, our main focus was not on the 7T to 3T conver-
sion. Therefore, we only included a brief mention of it. The

TABLE 6. Summary of results of the resnetgen9_patchGAN_MSE model
for 7T TO 3T MRI conversion.

versatility of CycleGAN’s architecture enables it to effec-
tively process diverse image kinds, including color images.
CycleGAN has demonstrated excellent applications in vari-
ous fields, particularly in challenges related to color picture
translation. For instance, it has been used effectively to con-
vert photographs into different artistic styles or to improve
the resolution of natural images [26]. These applications
showcase the model’s versatility and resilience across several
picture categories, highlighting the potential of CycleGAN
for addressing a wide range of imaging challenges beyond
grayscale MRI.

E. EFFECT OF POST-PROCESSING TECHNIQUE: SKULL
STRIPPING
It is also noted that we have performed a post processing tech-
nique, skull stripping in MRI [37], to achieve better results
on image translation. Skull stripping is a technique employed
in medical imaging to segregate the brain tissue from the
other components of the image, such as the scalp, skull, and
other non-brain structures. It is a crucial procedure in the pro-
cessing of brain MRI, which allows for a more targeted and
precise study of brain tissue. This method is essential for var-
ious brain analyses and diagnostics. Through the elimination
of non-brain components, doctors can enhance their emphasis
on brain tissue with more precision, which is a crucial aspect
in automated analyses and deep learning applications. Skull
stripping is a crucial first step to achieve optimal results in
different neuroimaging tasks [37].
Table 7 delineates the effect of skull stripping on 3T MRI

to 7T MRI conversion, and vice versa.
Skull stripping as a post-processing strategy significantly

improves image quality metrics when converting 3T MRI
to 7T MRI using a CycleGAN architecture with the resnet-
gen9_patchGAN_MSEmodel. Table 7 shows that using skull
stripping as a post-processing method improves the SSIM
from 70.88% to 83.80% and PSNR from 18.83 to 26.25.
Additionally, there is a significant decrease in the NMSE
from 0.0139 to 0.0088, and the NMAE drops from 0.2906 to
0.0630. These findings suggest that excluding irrelevant
anatomical components like the skull considerably improves
the model’s capacity to effectively convert 3T MR images to
higher resolution 7T MR images, enhancing both structural
accuracy and overall image quality.

Conversely, the effect of skull stripping on converting 7T
MRI to 3TMRI, as shown in Table 7, again demonstrates sig-
nificant enhancements in the quality of the generated images.
Pre-skull stripping, the SSIM and PSNR metric values
are 73.64% and 21.02, respectively. However, post-skull
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FIGURE 7. Effect of train data augmentation techniques on the
resnetgen9_patchGAN_MSE model.

stripping, these values improve to 85.81% and 25.07,
respectively. Furthermore, the NMSE and NMAE measures
have significantly improved, with NMSE decreasing from
0.0080 to 0.0036, and NMAE dropping from 0.2883 to
0.1076. These improvements highlight the importance of
skull stripping in enhancing the image quality and translation
accuracy while translating from 7T MRI to 3T MRI. The
decrease in residuals and improvement in similarity measures
after skull stripping demonstrate its effectiveness in isolating

TABLE 7. Effect of skull stripping as a post-processing technique on 3T
MRI to 7T MRI conversion (EPOCH 130) and 7T MRI TO 3T MRI conversion
(EPOCH 175).

FIGURE 8. 7T MRI to 3T MRI translation using the best performing
CycleGAN model.

the essential diagnostic features required for precise MRI
interpretation, thus confirming the importance of skull strip-
ping as a beneficial post-processing stage in improving the
efficiency of CycleGAN-based MRI synthesis models.

Figure 9 shows few results generated by the best model,
resnetgen9_patchGAN_MSE (Epoch 130) for 3T to 7T MRI
translation, both before and after skull stripping.

Figure 10 shows few results generated by the best model,
resnetgen9_patchGAN_MSE (Epoch 175) for 7T to 3T MRI
translation, both before and after skull stripping.

F. COMPARATIVE ANALYSIS WITH EXISTING
SUPER-RESOLUTION METHODS
In order to evaluate the potential efficacy of our strategy,
which is based on CycleGAN model, for translating 3T to
7T MRI images, we conducted a theoretical comparison with
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FIGURE 9. Predicted results by the best CycleGAN model for 3T to 7T MRI
translation (before and after skull stripping).

FIGURE 10. Predicted results by the best CycleGAN model for 7T to 3T
MRI translation (before and after skull stripping).

established super-resolution techniques. Conventional inter-
polation techniques, such as, bicubic and nearest-neighbor
interpolation, are frequently criticized for their failure to
maintain fine details and their vulnerability to artifacts.
Learning-based approaches, such as deep CNNs, show sub-
stantial advancements but present difficulties such as the
requirement for abundant training data and substantial com-
puter resources.

The approach we propose involves using a CycleGAN
model with varying generators (resnetgen3, resnetgen7, and
resnetgen9), discriminators (patchGAN and pixelGAN), and
cycle consistency loss functions (MAE and MSE). This

approach is designed and proposed to potentially surpass the
traditional and conventional methods by maintaining struc-
tural details and reducing artifacts. The intrinsic cycle con-
sistency of CycleGANs guarantees that the generated images
preserve the original content, resulting in high-resolution
images that are more accurate and realistic.

Although we did not directly compare our CycleGAN-
based technique with super-resolution approaches in an
experiment, the theoretical advantages of our approach indi-
cate that it has the potential to provide better outcomes in
MRI translation. Future study will involve doing empirical
validation to confirm the theoretical advantages stated here,
in comparison to these conventional methods.

G. COMPARATIVE CONTRIBUTIONS OF THE PROPOSED
CYCLEGAN-BASED METHOD
Our suggested CycleGAN-based technique offers substantial
contributions in comparison to other relevant technologies.
Conventional GAN-based methods have achieved success in
many image translation tasks, but they frequently necessi-
tate a substantial quantity of paired training data. Obtaining
such data might be difficult in the field of medical imaging.
Our approach overcomes this restriction by even utilizing
unpaired training data, facilitated by the cycle consistency
loss.

Utilizing several generator topologies, such as resnetgen3,
resnetgen7, and resnetgen9, provides the ability to adjust the
balance between computing efficiency and image quality.
The selection of discriminators (patchGAN and pixelGAN)
ensures the ability to accurately differentiate between authen-
tic and synthesized images across various levels of detail.
In addition, by testing several cycle consistency loss func-
tions, such as, MAE and MSE, we can refine the model to
achieve optimal performance and ensure the translation of
high-quality images.

To summarize, our CycleGAN-based method for translat-
ing 3T to 7T MRI has clear benefits compared to current
super-resolution techniques. These advantages include the
capacity to handle unpaired data, versatility in architectural
design, and enhanced image quality. Our method’s contribu-
tions greatly enhance the MRI image resolution for clinical
applications, making it a vital addition to the medical image
super-resolution domain.

H. QUALITATIVE EVALUATION
Figure 11 represents the average qualitative ratings on a Lik-
ert Scale from 1 to 10 (with 1 being the worst and 10 being the
best) given by the expert radiologists during the no-reference
qualitative evaluation process for the systematically selected
twenty fake 3T and 7T MR images generated by the best
performing CycleGAN model.

1) AVERAGE QUALITATIVE RATINGS FOR FAKE 3T MR
IMAGES
The generated 3TMR images are rated an average of 7.10 out
of 10 for image quality. These generated images exhibit
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FIGURE 11. Qualitative evaluation conducted by the experts on the
generated or fake images based on three different evaluation criteria.

a high level of detail and clarity that can be deemed sat-
isfactory in terms of contrast, sharpness, and noise level.
Also, the generated images turn out to have a somewhat
greater diagnostic utility, with an average qualitative rating of
7.43 out of 10. The images were found to be highly beneficial
for clinical diagnostics and pathology identification, despite
being artificial. Furthermore, the realism or authenticity of
the simulated 3T MR images receive an average qualitative
rating of 7.10 out of 10, indicating a strong resemblance
to actual MRI scans in terms of anatomical precision and
texture.

2) AVERAGE QUALITATIVE RATINGS FOR FAKE 7T MR
IMAGES
The fake or generated 7T MRI scans receive a consistent
assessment across all three categories, averaging 7.47 out of
10. The consistent rating indicates that the generated images
perform at a high level in terms of quality, diagnostic utility,
and realistic appearance or realism, slightly surpassing the
generated 3T MR images according to the radiologists.

These findings highlight the efficacy of the CycleGAN
model in producing synthetic MR images that closely resem-
ble authentic MR images in both 3T and 7T. The qualitative
ratings demonstrate a notable advancement in the authen-
ticity and diagnostic effectiveness of the produced images,
showcasing the potential of CycleGAN models in improv-
ing medical imaging technologies, especially medical image
synthesis-based technologies.

I. LIMITATION AND FUTURE DIRECTIONS
This study was limited to T1-weighted MRI only. We wish
to extend the present study to also work on T2-weighted
MRI at 3T and 7T using CycleGAN. Future investigations
should incorporate lesion detection into image translation
for these types of image synthesis-based problems. Also,
in future, we intend to implement novel loss functions, such
as, dual contrast loss function [39], to further enhance the
accuracy of the CycleGAN-generated images. Incorporating
structural similarity index and cross-entropy into the dual
contrast CycleGAN model could be advantageous as it takes
into account both the brightness and structure of samples
during picture synthesis [39]. These improvements have the

potential to greatly boost the quality and precision of the
generated images.

In this work, we conducted experiments using just axial
T1-weighted MRI scans at 3T and 7T. Our objective is to
assist in the development and evaluation of techniques for
translating MR images from 3T to 7T. Nevertheless, the
CycleGAN models that were suggested were not trained to
convert MR images into other planes, such as coronal and
sagittal. Subsequent research could concentrate on extend-
ing the model to incorporate these planes, so offering a
more all-encompassing method for translating MR images.
In addition, we did not include any T2-weighted MRI scans.
Subsequent research endeavors would strive to not only con-
vert pictures between 3T and 7T, but also between T1 and
T2-weighted images. This augmentation would enable the
model to effectively process a broader range of MR imaging
modalities, hence increasing its usefulness in clinical settings.

By acknowledging and overcoming these limits and inves-
tigating these potential areas of development, our aim is
to make substantial progress in the skills and uses of
CycleGAN-basedMR image translation. Ultimately, this will
contribute to enhancing the accuracy of diagnoses and effec-
tiveness of treatments in medical imaging.

IV. CONCLUSION
Deep image synthesis is still in its infancy despite the fact
that there have already been a number of studies on the
subject, as it has many exciting new applications to explore
over the next five to ten years [38]. Deep image synthesis
techniques may also make it possible to develop innovative
imaging modalities based on previously untapped physical
processes [38].
This work aimed to assess the feasibility of using the

CycleGAN model to convert MRI between two different
field strengths. The study shows that the model has potential
to generate realistic images for both domains according to
several quantitative and qualitative evaluation criteria. Also,
the performances of various architectures of CycleGAN have
been investigated in detail on a novel dataset published
recently. We have further shown that skull stripping post
processing technique greatly boosted the performance of
CycleGAN model to generate the target images.
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