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ABSTRACT The precise generation of train control curves for the on-board Automatic Train Protection
(ATP) of the Chinese Train Control System Level 2 (CTCS-2) relies significantly on accurate train control
engineering data, which serves as a critical element in ensuring the safe operation of trains. However, the
traditional verification methods of train control engineering data depend on manual validation, which lacks
timeliness and completeness and makes it easy to overlook potential errors. On the other hand, traditional
verification rules are derived from railway technical specifications and standards, expressed in textual
language that is often ambiguous, which leads to insufficient completeness in data verification. To address
these challenges, this paper proposes a formal verification method for train control engineering data based on
a Reduced Ordered Binary Decision Diagram (ROBDD). First, the attribute constraints of the train control
data and the implicit constraint relations between different data objects are mined using existing railway
technical specifications and expert knowledge of railway signals. These constraints are then converted
into Boolean function models. Second, we formulate the ROBDD generation algorithm and the evaluation
decision algorithm of the Boolean function using the equivalent canonical data structure ROBDD of the
Boolean function. Finally, based on the train control engineering data from actual passenger-dedicated lines,
the automatic verification method is developed by constructing four types of ‘‘mutation’’ data, including
mutate, swap, add, and remove. The test cases indicate that our proposed formal verification method is
feasible and capable of achieving high efficiency and completeness in the verification of CTCS-2 level train
control engineering data.

INDEX TERMS Formal verification, train control engineering data, rule extraction, ROBDD, mutation
testing, rule rating, rule optimization.

I. INTRODUCTION
The CTCS-2 level train control system is a typical data-
driven system consisting of three components: data, software,
and hardware [1]. It effectively realizes the separation of
generic control logic and train control configuration data [2].
Configuration data serves as foundational data for train
movement authorization, balise telegram compilation, track

The associate editor coordinating the review of this manuscript and

approving it for publication was Ton Duc Do .

circuit coding, and other functions. Consequently, even if
the predefined control logic is accurate, errors in the train
control configuration data can result in abnormal braking,
overspeed, tailgating, and derailment and overturning of
the train during operation [3]. A poignant illustration of
the impact of configuration data errors is exemplified by the
4.28 Jiaoji Railway major accident, where the omission of
temporary speed restriction data played a decisive role [4].

However, the traditional validation method of CTCS-2
level train control engineering data relies mainly on manual
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validation, which has the following problems. First, due to
the diversity of data types and the large number of complex
descriptive objects involved, manual validation is extremely
inefficient. Moreover, this manual validation process often
focuses on identifying fundamental errors, such as data
format, unit of measurement, and data overrun. Second, the
transformation of the station yard on existing lines of the
universal speed railway, coupled with reconnaissance survey
error correction and changes in line environment, necessitate
modifications to train control engineering data. Frequent
alterations in the entire line production cycle impose tight
timelines and a substantial workload on the validation of train
control engineering data. This leads to an inability to conduct
comprehensive testing, making it prone to overlook potential
errors in the train control engineering data [5]. Therefore, it is
imperative to explore an efficient and complete automated
verification method for train control engineering data.

The completeness of automated verification for train
control engineering data primarily depends on the complete
extraction of association rules among train control data and
the construction of the general mathematical models of those
rules. However, the conventional verification rules of train
control data are typically derived from railway technical
specifications and standards, employing textual language as
a guiding principle. This language introduces ambiguity,
and fails to explicitly delineate the association relationships
among train control data. Consequently, verification tools
developed based on these rules can only identify data type,
format and other errors, lacking the capability to discern
implicit relationships between train control data. For exam-
ple, there is insufficient verification of mutation types, such
as spurious data coincidences. To overcome this limitation,
this study integrates the expertise of railway signaling
professionals with existing railway technical specifications
and the requirements of train control engineering data tables
to delve deeper into the implicit association rules within
train control engineering data. Subsequently, formal Boolean
function models are adopted to represent the verification
rules, thereby mitigating the ambiguity inherent in natural
languages. On this basis, the equivalent canonical data
structure of the Boolean function is utilized to construct
the algorithm, and then the automated verification tool is
developed to achieve the efficient and complete verification
of train control engineering data.

The primary contributions of this study are threefold.
Firstly, we are rooted in the integration of existing railway
technical specifications, the requirements of train control
engineering data tables, and the expertise of railway signal-
ing professionals. Through this collaborative approach,
a comprehensive exploration of the attribute constraint
relationships within the train control data itself and the
implicit association rules between different data objects
was conducted. This exploration lays the rule foundation
necess-ary for achieving efficient and complete verification
of train control engineering data. Secondly, we transformed
the extracted verification rules of train control data into

Boolean function models, which not only enhance the scal-
ability of the models but also eliminate the natural language
ambiguity that usually takes railway technical specifications
as the guiding principle of the verification rules. Furthermore,
the Reduced Ordered Binary Decision Diagram (ROBDD),
an equivalent canonical data structure of the Boolean function
model, is used to verify the satisfiability of the train control
data. Compared with the traditional B method, it drastically
reduces the state explosion faced by verifying big data sets
of train control. Finally, we carried out verification sensitiv-
ity analysis by constructing four types of ‘‘mutated’’ data
samples: mutate, swap, add and remove. We then mapped the
sensitivity into user-friendly rule ratings to identify missing
verification rules, thus achieving the purpose of bottom-
up closed-loop feedback to complement verification rules.
Different from conventional formal verification, we achieved
the combination of formal model checking and statistical
verification of ‘‘mutation testing’’ and introduced a user-
friendly rule rating system to assist in the construction of
verification rules.

The remainder of this paper is organized as follows.
Section II conducts a literature review related to the
verification of train control data. Section III introduces
the train control engineering data and then extracts the
verification rules implicit in this data. Section IV proposes
an ROBDD-based satisfiability verification method for train
control enginee-ring data. The Boolean function models of
verification rules are constructed and converted into the
canonical data structure ROBDD. A case study is presented
in Section V. Section VI provides the discussion. Section VII
presents the conclusions of this study.

II. LITERATURE REVIEW
In recent years, both academic and industrial circles have
increasingly recognized the paramount importance of ensur-
ing accurate train control data in contemporary train control
systems. Many efforts have been directed towards validating
the correctness of data. Nash et al. proposed a comprehensive
XML-based RailML railway data interaction format [6] to
address the problem of data interaction between different
applications. An illustrative study involves security validation
using the RailML database for the interlocking system at
Santpoort Nord station in the Netherlands [7]. Based on
RailML, the International Union of Railways (UIC) proposed
RailTopoModel [8], a tool for logically defining the data
object model related to railway infrastruc-ture, which enables
the construction of topological models of railway networks
with different levels of detail [9], [10]. In literature [11],
RailTopoModel was used to construct a high-speed railway
turnout data model. Based on the RailTopoModel standard,
Stefan Bischof et al. developed a Rail Topology Ontol-
ogy model to enable the integration of disconnected data
from different subsystems of the railway in a knowledge
graph [12]. In addition, Menéndez et al. developed a Railway
Network Analyzer (RNA) using Python, which automates
the generation of rail yard signals containing interlocking
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tables based on the railway layout stored in RailML [13].
However, these studies focused on railway simulation and
planning data, with insufficient validation of the correctness
of the train-control data, not to mention the lack of exploring
the attribute constraint relationships between different train
control data objects.

Currently, the verification of train control data relies
primarily on formal verification tools based on B-method.
This involves converting the security requirements, initially
described in natural language, into security attributes defined
by a formal language. Subsequently, model checking or
theorem proving is employed to verify whether the train
control data satisfy the safety properties [14], [15]. For
example, Badeau et al. used the B-method to create a formal
model of metro CBTC system configuration data and their
properties, and determined whether the data satisfy specific
properties by theorem proving [16]. Hansen et al. verified
the railway topological relationships using the B-method and
constructed a ProB model checker based on the B-method
to verify the data [17]. Lecomte et al. demonstrated how to
validate large datasets against safety attributes in the railway
domain using the ProB model checker, and verified close
to 5000 pieces of data from the L12 line in Mexico [18].
Falampim et al. formally verified the Zone Controller (ZC)
data of the CBTC system using the ProB tool, which is
more efficient than Atelier B [19]. Hadad et al. built an
AADL model for the movement authority (MA) of the
Chinese Train Control System (CTCS) and mapped it to
Event-B. The RODIN platform's ProB tools are then used to
formalize the verification of the safety and liveness properties
of safety-critical systems [20]. In addition, on the basis
of the B-method, the OVADO validation tool has been
formed. OVADO is a dual-channel data validationmechanism
designed in the pre-development stage of the data, using the
B-assertion mechanism to check the reasonableness of the
data specification on the one hand, and carrying out detailed
mathematical verification of the data on the other hand at the
same time [21]. The literature [22] utilized the OVADO tool
to transform the data validation of railway systems into the
generation of configuration data. The theoretical foundation
of the B-method is first-order logic and set theory, which
transform strongly constrained relations between data into
set-mapping relations of formalized predicates. However,
it has weaker capabilities in data representation and data
processing, which can easily lead to an explosion of the state
space in the verification process for big data sets. Secondly,
formal models based on the B-method are too resistant to
changes necessary to accommodate missing requirements;
and the logical notation of the B method is relatively poor
in legibility, which is not convenient for communicating
and convincing stakeholders (railway signal engineers and
formal method experts) in the adequacy of the rule elicitation
exercise.

Furthermore, in terms of verifying railway data using
formal logic and set theory, other formal verification methods
have been proposed in addition to the mainstream B-method.

For example, Haxthausen et al. introduced the utilization
of the Linear Temporal Logic (LTL) language to articulate
graphical interlocking routing data and data verification
rules. They employed the Bounded Model Checking (BMC)
method to verify whether the data aligned with the specified
rules [23] and developed it as a static data verification
tool. Along this line, Peleska et al. used a subset of LTL
to describe the data and configuration rules of distributed
geographical interlocking systems (IXLs), and converted the
LTL model checking into a Computation Tree Logic (CTL)
model checking problem through an over-approximation
method. Moreover, the DVL-Checker tool was developed to
check whether violations of the configuration rules exist.
CTL is more efficient than LTL verification due to the
existence of an efficient algorithm for global model checking,
which was successfully applied to the data validation of
geographical IXLs by the Siemens Mobile Company [24].
Although Bounded Model Checking and Computation Tree
Logic can effectively mitigate the state explosion faced by
model checking, extracting complete verification rules and
formally describing them often takes years for experts in
the field of railway signaling. Moreover, there is a lack of a
method to quantitatively prove that the set of verification rules
may have omissions, in order to assist in the construction of
more complete verification rules. Luteberget et al. utilized
a variant of the data query language, Datalog, to construct
a verification rule model for interlocking system data and
used RailML as the data interaction format. On this basis,
a tool that can be integrated into CAD software for verifying
railway yard data was developed [25]. Iliasov et al. developed
SafeCap, a modern toolkit for railway network modeling,
simulation, and formal verification. They applied SafeCap to
conduct formal analysis and automated scalable safety verifi-
cation of Solid State Interlocking (SSI) programs [26], [27].
However, the aforementioned research primarily focuses on
graphical interlocking route data, formally describing the
interlocking constraint relationships among turnouts, signals
and track sections of interlocking routes in railway yards.
This study centers on the formal verification of data from
tables such as the balise position table, main line signal data
table, line gradient table, line velocity table, and other tables
within the CTCS-2 train control engineering data.

III. EXTRACTION OF VERIFICATION RULES FOR TRAIN
CONTROL ENGINEERING DATA
A. TRAIN CONTROL ENGINEERING DATA
The CTCS-2 level train control data are the core data source
for generating on-board ATP target distance continuous
speed control mode curve, which consists of three parts:
train control basic data, train control engineering data tables
and train control configuration data (including telegrams).
Among them, train control basic data are the basis for
compiling train control engineering data, which are divided
into the basic data of the track maintenance category, the
basic data of the signal and communication categories, and
the basic data of the traction power supply category. The

VOLUME 12, 2024 106795



H. Zhang et al.: Formal Verification Method of CTCS-2 Level Train Control Engineering Data

FIGURE 1. The generation source and specific composition of CTCS-2 level train control engineering data.

basic data of track maintenance include the name of the
line, the beginning and ending mileage of the main line,
the allowable velocity of the line, the gradient of the line, the
information about special bridges and tunnels, the mileage of
switches, etc. The basic data of signal and communication
include the position and type of train signals, the length
and carrier frequency of the track circuit, the kilometer post
of the insulated joint and the divisional point of the track
circuit, and the position of the balise. The basic data of
traction power supply mainly consist of the kilometer post
of the power outage signboards in the neutral section. The
basic data of the three types of train control are compiled
by the construction personnel of the Engineering Bureau
in cooperation with the signal and communication, track
maintenance, and power supply operation and maintenance

units of the Railway Bureau according to the CAD drawings
provided by the survey and design units, such as the railway
line signal layout plans, through preliminary measurements,
final measurements, and reviews. On this basis, Railway
Engineering Design Institute compiles train control engi-
neering data table according to the train control basic data
and interim measures for the management of train control
data. The train control system integrator compiles the train
control configuration data according to the train control
engineering data table, which is used to finally generate the
on-board ATP accurate train control curve. Figure 1 shows
the source and specific composition of CTCS-2 level train
control engineering data. Figure 2 shows the signal layout
plan of the railway down line, where vi and lvi (i = 1, · · · , 4)
represent the value of the line restrictive velocity and length
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FIGURE 2. Signal layout plan of the railway down line.

of the restrictive velocity section, ai and lai (i = 1, · · · , 8)
denote the gradient value and length of the gradient.

The CTCS-2 level train control engineering data are
primarily categorized into trackside infrastructure data and
line parameters, which include the line velocity table, line
gradient table, line broken chain detail table, balise position
table, main line signal data table, and so on. Each type of
data contains corresponding data objects, and each type of
data object has its own set of data attributes. Therefore, the
CTCS-2 level train control engineering data tree structure can
be constructed to provide a clear division of data categories
for the verification of train control engineering data. The tree
structure of CTCS-2 train control engineering data is shown
in Figure 3.

FIGURE 3. CTCS-2 level train control engineering data tree structure.

The train control engineering data are all stored in the
form of Excel tables, which record the respective attribute
values of different train control data objects. For example,
the balise position table includes the balise name, number,
type, mileage, and usage. Similarly, the line gradient table
contains the gradient, gradient length, gradient end mileage,
and broken chain point marker. As illustrated in Table 1, the
balise position table is used as an example to display specific
data.

TABLE 1. Example of balise position table.

B. EXTRACTION OF TRAIN CONTROL ENGINEERING DATA
VERIFICATION RULES
The verification rules of train control engineering data
typically derive from the ‘‘The balise application principle
for the CTCS-2 level train control system’’ and ‘‘Interim
measures for the management of train control data.’’ Build-
ing on these foundations, the expertise of railway signal
professionals is integrated to delve further into the attribute
constraints of train control data and the associative relations-
hips between distinct data objects. Through this collabor-
ative effort, this study aims to extract implicit verification
rules for train control engineering data.
Definition 1: In conjunction with the balise position

table, the attributes of balise data can be represented
by a 4-tuple, Ba = (B_name,B_number ,B_kilompost ,B_type),
denoting the balise name, number, kilometer post, and type,
respectively.

Rule 1: The categorization of balise types is defined as
either active or passive, expressed as B_type = {1, 2} .

Rule 2: According to the principle of balise setting, there
exists a set of constants, denoted by S, that represent the
installation distances between different types of balise groups
and adjacent signals. If the distance between adjacent balises
in a group is a constant C = 5m, the absolute value of
the difference between balise group link distance B_link and
intergroup distanceB_classpace is 10m,which indicates that the
balises installed on the line are continuous.∣∣B_kilomposti − S_kilomposti

∣∣ ∈ S (1)∣∣B_linkj − B_classpacej
∣∣ = 10

⇔
∣∣B_kilomposti+1 − B_kilomposti

∣∣ = C (2)
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Definition 2: Interruption in the continuity of line mileage
stake marks resulting from local rerouting or segmental
surveying is termed a broken chain. If mileage stake marks
overlap, it is called long chain, whereas interrupted mileage
stake marks are called short chain. Combined with the
line broken chain detail table, the attributes of the line
broken chain data can be expressed as a 3-tuple, Dc =

(D_type, D_kilompost , D_length).
Rule 1: D_type = {1, 2} denotes line long chain and short

chain, respectively.
Rule 2: The length of a broken chain is equal to the

difference between the end mileage and starting mileage of
the line broken chain [28], which can be expressed as:∣∣D_kilomposti+1 − D_kilomposti

∣∣ = D_lengthi (3)

Definition 3: In conjunction with the line gradient table,
the attributes of the line gradient can be defined as a 3-tuple,
Gp = (G_value,G_length, G_termileage), representing the
line gradient, gradient length, and gradient end mileage,
respectively.

Rule 1: The line gradient should not exceed the maximum
allowable line gradient value. For example, if a successive
route is not provided at the end of the receiving route, the
descending grade gradient within the braking distance out
from the home signal must not exceed the 6h.{

G_value1 ,G_value2 , · · · ,G_valuen
}

≤ G_valueMAX (4)

Rule 2: The difference between the kilometer posts of
two adjacent gradient points minus the corresponding actual
section length equals 0, indicating that the two adjacent
gradient points are continuous. Conversely, if the difference
between the kilometer posts of two adjacent gradient points is
greater than the corresponding actual section length, there is
a short chain; if it is less than the actual section length, a long
chain exists.∣∣G_termileagei+1 − G_termileagei

∣∣ − G_lengthi = ±Dlengthi (5)

Definition 4: In conjunction with the line velocity table,
the attributes of line velocity data can be represented as
a 3-tuple, denoted as Vs = (V_value,V_length,V_termileage),
representing the value of the line restrictive velocity, the
length of the restrictive velocity section, and the terminal
mileages of the line restrictive velocity, respectively.

Rule 1: The fixed velocity limit of a line cannot exceed the
maximum velocity allowed on the line, which can be defined
as follows:{

V_value1 , V_value2 , · · · , V_valuen
}

⩽ V_valueMAX (6)

Rule 2: The difference between the kilometer posts of
two adjacent velocity points minus the corresponding actual
section length is equal to zero, indicating that the two adjacent
velocity points are continuous. Conversely, if the difference
between the kilometer posts of two adjacent velocity points is
greater than the corresponding actual section length, there is

a short chain; if it is less than the actual section length, a long
chain exists [28].∣∣V_termileagei+1 − V_termileagei

∣∣ − V_lengthi = ±D_lengthi (7)

Definition 5: In conjunction with the main line signal
data table, the attributes of line signal data can be defined
as a 7-tuple. Sd = (S_name, S_type, S_kilompost , S_insuljoitype,
S_Trackname, S_Frequency, S_Tracklen) denotes the signal point
name, type, kilometer post, insulated joint type, track section
name, carrier frequency, and length, respectively.

Rule 1: The signal point type S_type =
{
1, 2, 3, 4, 5,

6, 7
}
is defined to denote the home signal, starting signal,

block signal, route signal, shouting signal, station exit, and
no signal, respectively.

Rule 2: Define the carrier frequency type S_Frequency =

{1, 2, 3, 4, 5}, indicating that the track section carrier
frequencies are 1700 HZ,2000 HZ,2300 HZ,2600 HZ and no
carrier frequency. Among them, the carrier frequencies of the
adjacent sections of the up-line and down-line are configured
alternately,S_Frequencyi ̸= S_Frequencyi+1 . The selection of
carrier frequencies -1 and -2 for the front and rear sections
adjacent to this section is also staggered. For example, the
block section carrier frequencies of the down line are alter-
nately configured according to 1700−1, 2300 − 1, 1700−2 ,

2300 − 2, 1700 − 1, and so on. The block section carrier
frequencies of the up line are configured alternately accord-
ing to 2000−1, 2600−1, 2000−2, 2600 − 2, 2000−1,
and so forth.{

S_Frequencyi−1 − 1
}

̸=
{
S_Frequencyi+1 − 2

}
(8)

Rule 3: Define the insulated joint-type S_insuljoitype =

{1, 2}, representing the electrical and mechanical insulated
joints respectively. There must be an insulated joint near the
location of the signal, that is, for ∀ S_name, ∃ S_insuljoitype.
However, the converse is not necessarily true. For example,
if the signal point type is a station exit S_type = 6, then it
corresponds to a mechanical insulated joint S_insuljoitype = 2.
Secondly, there must be an electrical insulated joint near the
block signal location, S_insuljoitype = 1 ⇒ S_type ∈ {3, 7} .

Rule 4: The difference between the mileages of two
adjacent signal points minus the length of the corresponding
actual track section is equal to zero, indicating that the two
adjacent signal points are continuous. In contrast, if the
difference between the mileages of two adjacent signal points
is greater than the corresponding actual track section length,
there is a short chain; if it is less than the actual track section
length, there is a long chain.∣∣S_kilomposti+1 − S_kilomposti

∣∣ − S_Trackleni = ±D_lengthi (9)

Definition 6: The switch data attribute can be defined as
a 4-tuple,Pt = (P id ,P_kilompost ,P_position,P_offset ), denoting
the switch number, kilometer post, position, and offset,
respectively.
Rule 1: The switch status is categorized into normal and

reverse positions, which can be described as P_position =

{1, 2}.
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Rule 2: If the link offsets of both the switch main line and
side-track are not zero, then the link offsets of the switch
junction line must be 0. Otherwise, if the link offsets of both
the switch main line and sidetrack are 0, then the link offsets
of the switch junction line must not be 0.

P_offset_m ̸= 0 ∩ P_offset_s ̸= 0 ↔ P_offset_J = 0 (10)

IV. SATISFIABILITY VERIFICATION OF TRAIN CONTROL
ENGINEERING DATA BASED ON ROBDD
We formulated Boolean function models based on the
extracted logical verification rules from the train control
engineering data. Subsequently, by utilizing the equivalent
canonical data structure of the Boolean function, namely
ROBDD [29], [30], the satisfiability determination of the
Boolean function under the given input mode is transformed
into the depth-first search process within the ROBDD.
To achieve this, the ROBDD construction algorithm and the
Boolean function evaluation and determination algorithm are
designed separately to realize the automated verification of
train control engineering data.

A. CONSTRUCTING BOOLEAN FUNCTION MODELS OF
VERIFICATION RULES
Model 1: Constructing a Boolean function model of intra-
group balise position continuity for line settings

Let the Boolean variable ai(i = 1, 2, · · · , k) denote that
the difference between balise group link distance and balise
group spacing is equal to 10m,

∣∣B_linkj − B_classpacej
∣∣ =

10m. The Boolean variable bi(i = 1, 2, · · · ,k) denotes that
the spacing between adjacent balise in the group is equal
to the constants 5m,

∣∣B_kilompost i+1 − B_kilompost i
∣∣ = 5m.

Combined with Rule 2 of the balise position table, the logical
relationship between ai and bi can be described as:

fB= (a1 ↔ b1) ∧ (a2 ↔ b2) ∧ · · · ∧ (ak ↔ bk ) ⇔ (a1 + b′
1)

(a′
1 + b1) · · · (ak + b′

k )(a′
k + bk ) (11)

where↔ denotes if and only if. Let xj(j = 1, 3, 5, · · · , 2k−

1) and xj(j = 2, 4, 6, · · · , 2k) denote ai and bi respectively,
then the corresponding Boolean function model prototype of
the above equation (11) is shown in equation (12), where n =

2k.

f (x1, x2, · · · , xj, · · · , xn)

= (x1 + x ′
2)(x ′

1 + x2) · · · (xj−1 + x ′
j)

(x ′
j−1 + xj) · · · (xn−1 + x ′

n)(x ′
n−1 + xn) (12)

Model 2: Constructing the Boolean functions models for
the continuity judgment of adjacent velocity, signal, and
gradient points.

Assume that the algebraic variable ai(i = 1 , 2 , · · · , k)
denotes the absolute value of the difference between the
kilometer posts of the adjacent velocity points, signal points
and gradient points, and the algebraic variable b i (i =

1, 2, · · · , k) denotes the length of the corresponding actual
section, so that the Boolean function fi denotes a i = b i.

The algebraic variable ci(i = 1, 2, · · · , k) denotes
D_length i . Assume that the Boolean funct-ion gi denotes
ci = 0, and the Boolean function hi denotes ci ̸= 0.
Then fi, gi, hi under the same variable order π satisfy the
if fi then gi else hi,ITE(fi, gi, hi) = (fi ∧ gi) ∨ (¬fi ∧ hi)
paradigm [31], namely:

fB = ITE(f1, g1, h1) ∧ ITE(f2, g2, h2) ∧ · · · ∧ ITE(fk , gk ,

hk ) ⇔ (f1g1 + f ′
1 h1)(f2g2 + f ′

2 h2) · · · (fkgk + f ′
k hk )
(13)

Let xj(j = 1, 4, 7, · · · , 3k−2), xj(j = 2, 5, 8, · · · , 3k−1)
and xj(i = 3, 6, 9, · · · , 3k) denote fi, gi and hi respectively,
then the above equation (13) corresponds to the prototype of
the Boolean function model as shown in equation (14), where
n = 3k.

f (x1, x2, · · · , xj, · · · , xn)

= (x1x2 + x ′
1x3)(x4x5 + x ′

4x6)

· · · (xj−2xj−1 + x ′
j−2xj) · · · (xn−2xn−1 + x ′

n−2xn) (14)

If there are broken chains or spurious data coincidence
at the points of the broken chain, the Boolean logical
operator ‘‘same or’’ can be used to further determine whether
the length of the calculated broken chain is consistent
with the broken chain table. Assuming that the algebraic
variable ci(i = 1, 2, · · · , k) denotes the difference between
the absolute value of the kilometer post difference of
adjacent velocity points, signal points, gradient points and the
corresponding length of the actual section, and the algebraic
variable di(i = 1, 2, · · · , k) denotes the corresponding
length of broken chain in the broken chain detail table
±D_length i , then the logical relationship between ci and di can
be described as:

fB = (c1 ⊙ d1) ∧ (c2 ⊙ d2) ∧ · · · ∧ (ck ⊙ dk )

⇔ (c1d1 + c′1d
′

1)(c2d2 + c′2d
′

2) · · · (ckdk + c′kd
′
k ) (15)

Let xj(j = 1, 3, · · · , 2k − 1) and xj(j = 2, 4, · · · , 2k)
denote ci and di respectively, then the corresponding Boolean
function model prototype of the above equation (15) is shown
in equation (16), where n = 2k.

f (x1, x2, · · · , xj, · · · , xn)

= (x1x2 + x ′

1x
′

2)(x3x4 + x ′

3x
′
4)

· · · (xj−1xj + x ′
j−1x ′

j) · · · (xn−1xn + x ′
n−1x ′

n) (16)

Model 3: Boolean function model of signal point data
attributes.

Suppose that the Boolean variable a1 denotes that the
signal point type satisfies S_type = {1, 2, 3, 4, 5, 6, 7} ;

Boolean variable b1 denotes that carrier frequencies of
the adjacent sections of the up and down lines satisfy
the configuration alternately S_Frequencyi ̸= S_Frequencyi+1;

Boolean variable c1 denotes that the carrier frequency -1, -2
selection of the front and rear sections adjacent to this section
is also staggered configuration, that is,

{
S_Frequencyi−1 − 1

}
̸={

S_Frequencyi+1 − 2
}
; Boolean variable d1 denotes that the
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insulated joint type satisfies S_insuljoitype = 1 ⇒ S_type ∈

{3, 7} ; Boolean variable ei(i = 1 , · · · , n) denotes that
the adjacent signal points of the section are continuous,
then a1 and b1, c1, d1 are the necessary condition for the
continuity of the adjacent signal points of the section. Then
the conditional logic relationship between a1, b1, c1, d1 and
ei(i = 1, · · · , n) can be described as:

fB = (a1b1c1d1)→ (e1e2e3 · · · en)⇔ (a1b1c1d1)′+(e1e2e3
· · · en) = a′

1 + b′

1 + c′1 + d ′

1 + (e1e2e3 · · · en) (17)

The above equation corresponds to the Boolean function
prototype:

f (x1, x2, · · · , xn) = x ′

1 + x ′

2 + x ′

3 + x ′

4 + x5 · · · xn (18)

Model 4: Boolean function model of switch data attributes
Suppose the algebraic variables ai(i = 1, 2, · · · , k) and

bi(i = 1, 2, · · · , k) denote the offsets P_offset_M and P_offset_S
of the main and side lines of the switch, respectively, and the
algebraic variable ci(i = 1, 2, · · · , k) represents the offset
P_offset_J of the junction lines of the switch. Assuming that
the Boolean function fi denotes P_offset_M ̸= 0 ∩ P_offset_S ̸=

0, the Boolean function gi denotes P_offset_J = 0, and the
Boolean function hi denotes P_offset_J ̸= 0. Then,fi, gi, hi
satisfy if fi then gi elseh i under the same order of variables
π , ITE(fi, gi, hi) = (fi ∧ gi) ∨ (¬fi ∧ hi) paradigm [31].

fB = ITE(f1, g1, h1) ∧ ITE(f2, g2, h2) ∧ · · · ∧ ITE(fk , gk ,

hk ) ⇔ (f1g1 + f ′

1h1)(f2g2 + f ′

2h2) · · · (fkgk + f ′
khk )

(19)

Let xj(j = 1, 4, · · · , 3k − 2), xj(j = 2, 5, · · · , 3k − 1)
and xj(j = 3, 6, · · · , 3k) denote fi, gi and hi respectively,
then the above equation (19) corresponds to the prototype of
the Boolean function model as shown in equation (20), where
n = 3k.

f (x1, x2, · · · , xj, · · · , xn)

= (x1x2 + x ′
1x3)(x4x5 + x ′

4x6)

· · · (xj−2xj−1 + x ′
j−2xj) · · · (xn−2xn−1 + x ′

n−2xn) (20)

B. EQUIVALENT CANONICAL FORM OF BOOLEAN
FUNCTIONS BASED ON ROBDD
Because the satisfiability problem of the Boolean function
is NP-complete, the state combination explosion problem
caused by it severely restricts the size of the problem to
be solved. Therefore, it is necessary to find an equivalent
paradigm for the representation and operation of the Boolean
function. ROBDD is obtained by adding variable order
and simplification rules on the basis of binary decision
diagram (BDD) [32], which reduces the time complexity
of the algorithm and makes it an equivalent canonical
data structure describing the Boolean function family
#π f (x1, x2, · · · , xn). In the given variable order π : x1 <

x2 < · · · < xn and input pattern, a path starting at the
root node v and ending at the final node is obtained via
depth-first search. If the value of the function at the final

node is 1, it indicates that the Boolean function can be
satisfied under this input mode, thus realizing the verification
of the train control engineering data; the time complexity
is O(n). Therefore, this paper transforms the evaluation
determination of Boolean function into depth-first search of
ROBDD.

For the Boolean function f (x1, x2, · · · , xn) from Bn =

{0, 1}n to B = {0, 1} , OBDD is obtained through
recursive construction based on Shannon's expansion the-
orem [33] f (x1, · · · , xi−1, xi, xi+1, · · · , xn) =

xi · f (x1, · · · , xi−1, 1, xi+1, · · · , xn) + x ′
i ·

f (x1, · · · , xi−1, 0, xi+1, · · · , xn) under a given variable
order π . Recursive expansion is expressed as follows:

f (x1, x2, · · · , xn)

= x ′

1 · f (0, x2, · · · , xn) + x1 · f (1, x2, · · · , xn)

= x ′

1 ·
[
x ′

2 · f (0, 0, x3, · · · , xn) + x2 · f (0, 1, x3, · · · , xn)
]

+ x1 ·
[
x ′

2 · f (1, 0, x3, · · · , xn) + x2 · f (1, 1, x3, · · · , xn)
]

= · · · = x ′
1 · x ′

2

· x ′
3 · · · x ′

n · f (0, 0, · · · , 0) + x ′
1 · x ′

2 · · · x ′
n−1 · xn

· f (0, 0, · · · , 0, 1)

+ · · · + x1 · x2 · · · xn · f (1, 1, · · · , 1) (21)

A noteworthy point is that each node u on the OBDD
represents a Boolean function fu from {0, 1}n−k (k ⩽ n) to
{0, 1} satisfying:
1) If u is a final node, then fu = u.val ∈ {0, 1} .

2) If u is not final node, then fu = u.var · f u.high +

(u.var)′ · f u. low = u.var · fu.var = 1 + (u.var)′ · fu.var = 0,

where f u.high and f u. low respectively denote the Bool-
ean functions obtained by taking values 1 and 0 of
the variables u.var in the Boolean function fu, that is,
the Boolean functions corresponding to the children
of node u, u. high and u. low [34]. On the basis of
OBDD, by applying simplification rules to stipulate the
OBDD and pruning the decision tree, the unique reduced
ordered binary decision diagram (ROBDD) denoting the
Boolean function family #π f (x1, x2, · · · , xn) can be
obtained. The main idea of the simplification rules is
to remove redundant nodes from the OBDD [34], [35],
as shown in Figure 4.

Rule 1: (S-deletion rule) for node u in OBDD, if u. low =

u. high, node u is deleted, and the parent node of
node u is directly connected to the corresponding
node of u. low.

Rule 2: (Merge rule) For nodes u and v in OBDD, if u.var =

v.var, u. low = v. low, u. high = v. high, then
node u is deleted and the parent of node u is
connected directly to node v.

Proof (mathematical Induction:) Generalize the number
of variables n for the Boolean function f (x1, x2, · · · , xn) and
set the variable order π as x1 < x2 < · · · < xn.

When n = 0, there are only two Boolean functions with
constants 0 and 1; that is, there are OBDDs representing
final nodes 0 and 1. It can be observed that for this OBDD,
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FIGURE 4. Deleting irrelevant nodes and merging child nodes.

simplification rules 1 and 2 are not satisfied. Any ROBDD
containing at least one nonfinal node necessarily corresponds
to a non-constant Boolean function. Therefore, the OBDDs
representing the final nodes 0 and 1 must be the ROBDDs.

Assuming n = k, by continuously applying the
simplification rules to the OBDD represented by the Boolean
function f (x1, x2, · · · , xk ) of the k variables, the OBDD
obtained is ROBDD when all nodes of the OBDD no longer
satisfy the simplification rules.

We now prove that the simplification rules are applied
continuously to the Boolean function f (x1, x2, · · · , xk+1)
with k + 1 variables when n = k + 1. When all nodes of
the OBDD do not satisfy the simplification rules, the OBDD
obtained is ROBDD. For the variable x1, the Boolean func-
tion f (x1, x2, · · · , xk+1) performs Shannon decomposition,
obtaining f (x1, x2, · · · , xk+1) = x1 · f (1, x2, · · · , xk+1) +

x ′

1 · f (0, x2, · · · , xk+1) = x1 · fx1 + x ′

1 · fx ′1 . Due to the fact
that both the fx1 and fx ′1 are Boolean functions of k varia-
bles, the ROBDDs representing fx1 and fx ′1 are obtained by
continuously applying simplification rules to the OBDDs that
they represent. Let fx1 and fx ′1 correspond to the nodes u1 and
u0, respectively; the corresponding ROBDDs are denoted as
Gu1 and Gu0 , and f u1 = fx1 , f

u0 = fx ′1 .
If u1 = u0 (namely f u1 = f u0 ), and thus f u1 = fx1 = f u0 =

fx ′1 , it follows that G
u1 = Gu0 is the unique ROBDD G of f .

Because, according to the variable order π requirement, if the
variable x1 appears in the ROBDD G of f , then it must be the
labeled variable of the root node of G. However, if f u1 =

fx1 = f u0 = fx ′1 , the root node of G has the same successor
0-branch child node as the 1-branch child node, thus
satisfying simplification rule 1 and resulting in the deletion
of the root node of G, x1 does not appear in the ROBDD
representation of the Boolean function f .
If u1 ̸= u0, then f u1 ̸= f u0 , such that the node u

satisfies f u = x1 · f u 1 + x ′

1 · f u 0 , u.var = x1, u. low =

u0, u.high = u1, thus f u = f . Assume that there exists
another node v, which satisfies f v = f . According to the
requirements of the variable order π, there must be v.var =

x1. Furthermore, from f v = f , it can be seen that f v. high =

fx1 , f
v. low

= fx ′1 . Hence, it necessarily follows that u.var =

v.var, u. low = v. low, u. high = v. high. Subsequently,
based on the merging rule, the node v can be deleted. The
proof is complete.
It can be proven by the above mathematical induction

method that, under the given variable order π , the S-delete
rule and merge rule are continually applied to the OBDD of
the Boolean function corresponding to the logic rule of any
train control engineering data. When all nodes of the OBDD

FIGURE 5. Recursive construction process of ROBDD for model 1.

do not satisfy the aforementioned two simplification rules,
the obtained OBDD must be a ROBDD.

Take the Boolean functionmodel one f (x1, x2, · · · , xn) =

(x1 + x ′

2)(x
′

1 + x2) · · · (xn−1 + x ′
n)(x

′

n−1 + xn) as an example,
we invoke the Reorder ( ) algorithm to construct its ROBDD,
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recursively constructing the ROBDD process as shown in
Figure 5. Among them, Fig. (a) illustrates the recursive
construction process of ROBDD based on Shannon's
expansion theorem, Fig. (b) represents the ROBDD formed
by invoking Reorder(0, · · · , 0, 0, xn), Fig. (c) depicts the
ROBDD formed by invoking Reorder(0, · · · , 0, 1, xn),
and Fig. (d) shows the ROBDD formed by invoking
Reorder(0, · · · , 0, xn−1, xn). By analogy, we obtain
Fig. (e) which is the ROBDD formed by invoking
Reorder(0, · · · , 0, xj, · · · , xn), and Fig. (f) represents the
ROBDD formed throughReorder(0, x2, · · · , xj, · · · , xn).
Ultimately, we arrive at Fig. (g), which is the final ROBDD
representing the Boolean function f (x1, x2, · · · , xj, · · · , xn).

C. ALGORITHM DESIGN
The time complexity of operations based on ROBDD
depends on the size of the ROBDD. According to Shannon's
expansion theorem, the size of ROBDD heavily depends on
the variable order π , and the fu obtained from the decompos-
ition differs according to different variable orders. The choice
of variable order determines whether the number of non-final
nodes of ROBDD grows linearly or exponentially. Therefore,
this study adopts the ROBDD reordering algorithm, whose
time complexity isO(Ninp ·Nout ), where Ninp and Nout are the
numbers of input OBDD nodes and output ROBDD nodes,
respectively.

1) CONSTRUCTING ROBDD FOR BOOLEAN FUNCTION
The algorithm generates OBDD nodes from top to bottom
according to the variable order π in a breadth-first manner,
placing nodes with the same labeled variables at the same
level. The OBDD node v representing the Boolean function
f (x1, x2, · · · , xn), namely the root node of the OBDD,
is first generated, where the marker variable of node v is
π [0]. Then, OBDDs with labeled variables π [j] are generated
sequentially according to the variable order π . Two tables
with the same structure, current_table and working_table,
are introduced in the implementation.current_table is used
to store the nodes of the current processed layer, storing
table items of the form < f , u >, denoting the node u
of the Boolean function f . the table working_table is used
to store the next layer nodes generated from the previous
layer nodes. Before generating < g, v >, the algorithm
first uses g and v as keywords to search whether < g, v >

exists in working_table. If the table item exists, the result
is returned directly; otherwise, a new node v is generated
and inserted into working_table. When the algorithm is
executed until the node in the working_table is the final
node, an OBDD that satisfies the required variable order π

has been generated. Finally, the Reduce() simplification rules
algorithm is invoked to simplify OBDD into ROBDD.

2) EVALUATION DECISION OF BOOLEAN FUNCTION
The evaluation decision of the Boolean function is determin-
ed by performing a depth-first search for ROBDD denoting
f under the input mode x = (x1, x2, · · · , xj, · · · , xn), xj ∈

Algorithm 1 Constructing the ROBDD of Boolean Function
Input: Boolean function f (x1, . . . , xn) and variable order π

Output: ROBDD of Boolean function f (x1, . . . , xn)
1: function Reorder(char *f , char π [n])
2: vertex ∗ u, ∗v; char *g
3: Initialize working_table, current_table to { }

4: if (!(v = (vertex∗)malloc(sizeof (vertex)))) then
5: exit(OVERFLOW );
6: else
7: v−> index = π [0]
8: Insert table item < f , v > in current_table
9: for (j = 1; j < n; j++;) do

10: for For each node u in the current_table do
11: g = fxj=0;
12: if (exist table item < g, v > in

working_table) then
13: u−> type.kids.low = v
14: else
15: if (!(v = (vertex∗)malloc(sizeof

(vertex)))) then
16: exit(OVERFLOW );
17: else
18: v−> index = π [j]
19: u−> type.kids.low = v
20: Insert table item < g, v > in

working_table
21: end if
22: end if
23: g = fxj=1;
24: if (exist table item < g, v > in

working_table) then
25: u−> type.kids.high = v
26: else
27: if (!(v = (vertex∗)malloc(sizeof

(vertex)))) then
28: exit(OVERFLOW );
29: else
30: v−> index = π [j]
31: u−> type.kids.high = v
32: Insert table item < g, v > in

working_table
33: end if
34: end if
35: Delete node u from current_table
36: end for
37: current_table = working_table
38: if all table items in working_table are

< 0, u > or < 1, v > then
39: break;

40: end if
41: Set working_table to {}

42: end for
43: Reduce(v)
44: end if
45: end function
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Algorithm 2 Evaluation Decision of Boolean Function
Input: The root node v of the ROBDD representing the

Boolean function f , input mode x
Output: Value of f (x). If f (x) = 1, return true; otherwise,

return false
1: function Bool Evaluation(vertex ∗ v, bool x[n])
2: Construct a dictionary (hash table) with keys as (x1,

x2, . . . , xn, leaf node) and values as (0,1,2,. . . ,n)
3: int j = 1;
4: vertex ∗ u;
5: u = v;
6: while (j <= n+ 1) do
7: if (u− > var == 0) then
8: return(false)
9: else if (u− > var == 1) then

10: return(true)
11: else
12: if (x[j− 1] == 0) then
13: u = u− > type.kids.low
14: if (hashtable[u− > var] != j) then
15: j = hashtable[u− > var] + 1
16: else
17: j = j+ 1
18: end if
19: else
20: u = u− > type.kids.high
21: if (hashtable[u− > var] != j) then
22: j = hashtable[u− > var] + 1
23: else
24: j = j+ 1
25: end if
26: end if
27: end if
28: end while
29: end function

{0, 1}, and obtaining a path starting from the root node v
to a certain leaf node, where the value of f (x) is the value
of the leaf node. If the output is true, this indicates that the
Boolean function can be satisfied under the current input
mode, thus achieving the automatic verification that the train
control engineering data satisfy the logic rules, and the time
complexity of the algorithm is O(n).

V. CASE STUDY
Based on the Boolean function model and ROBDD algorithm
design, an automatic verification tool for train control
engineering data was developed and experimental analysis
was carried out using the train control data from the actual
Passenger Dedicated Lines. The linemileage reached 450 km,
while the number of data records reached 4600. As shown
in Table 2, taking the line gradient table as an example,
and drawing on mutation test idea of interlocking route
data in literature [36], the non-verification model designer
constructs four types of ‘‘mutation’’ data: mutate, swap, add,

and remove, then records the modification content. The type
of ‘‘mutate’’ includes spurious data coincidence, such as the
existence of a short chain at kilometer post K885+131, which
will lead to the continuity of adjacent gradient points if the
corresponding actual grade length is incorrectly modified to
400 m.

TABLE 2. Partial example of line gradient table.

The sensitivity β for identifying erroneous train control
engineering data and the time t required for data verification
were used as evaluation indexes. Where β = R/W , the R
is the number of identified ‘‘mutation’’ train control data,
and W is the amount of constructed ‘‘mutation’’ data. where
the limit value of sensitivity is 0, and close to 0 indicates
a complete lack of sensitivity of validation rules to data of
‘‘mutation’’ types. Conversely, a ratio of 1 or close to 1
indicates that the sensitivity has reached the expected value
of the verification rule. Usually, the statistically obtained
sensitivity is neither 0 nor 1, and there is no fixed explanation
for this. Therefore, based on the experience of experts in
the field of railway signaling, we define a simple mapping
from sensitivity to categorical values (rule ratings). The
sensitivity is detected until it converges. Specifically, we
compared the calculated mean and variance values of each set
of random subsamples containing 50 % of the sample data to
be validated with the overall sample and tested whether the
two normal distributions were equal.

A. RULE RATING
Rule rating is a user-friendly interpretation of sensitivity. The
purpose is to simply state the extent to which the verification
rules constrain random variations in certain types of data in
the train control engineering data tables. We use letter codes
ranging from dash marks(-), which indicate 0 or very low
sensitivity, to double-capital letters (e.g., XX), which indicate
high or complete sensitivity. The following Table 3 shows the
mapping between sensitivity and rule ratings. For different
types of train control engineering data tables, there may be
differences in the classification of rule rating categories for
sensitivity.

In practice, a rule rating is given to a column or a certain
concept. If a verification rule syntactically involves multiple
columns, a separate rule rating is provided for each column.

The verification sensitivity of the mutation data of the
line gradient table under a single rule is shown in Table 4,
which shows the sensitivity of the error gradient point data

VOLUME 12, 2024 106803



H. Zhang et al.: Formal Verification Method of CTCS-2 Level Train Control Engineering Data

TABLE 3. The mapping between sensitivity and rule ratings.

of different ‘‘mutation’’ types. The median values of the
sensitivities of the five groups of samples in Table 4 for
different ‘‘mutation’’ types are used to generate a visual radar
chart, as shown in Figure 6. The sensitivity for identifying the
error data of ‘‘mutate’’ type was the highest, with a median
of 97.9%, and its mapping rule rating was SS, which has
reached the expectation of the verification rule, indicating
that Boolean function model 2 can effectively identify the
mutation data of the ‘‘mutate’’ type, especially the continuity
of the adjacent gradient points caused by the coincidence of
spurious data. The ‘‘swap’’ and ‘‘remove’’ type mutation data
were misidentified as mutate-type mutation data, resulting in
significantly reduced sensitivity, with rule ratings of xx and tt,
respectively. The ‘‘add’’ mutation type data have the anomaly
that the data of increasing gradient points still maintain the
continuity of adjacent gradient points, thus its sensitivity is
the lowest, with a median of 28.1%, corresponding to a rule
rating of x. Obviously, in practical applications, a single rule
cannot address all mutation cases, and we usually need to
evaluate a collection of rules related by their intent. Taking
the line gradient table as an example, a conjunct of all rules
referencing a given column can deliver its strong sensitivity
measure to obtain a more relevant rule rating for a given
column. Second, for the same column, there are differences
in sensitivity under different verification rules; therefore, it is
impossible to judge whether the verification rules of a given
column have strong constraints on the type of mutation. For
example, if the sensitivity of column c under rule R1 is mm,
whereas the sensitivity of column c under rule R2 is M, it is
inferred that rule R1 may be contained in R2. Therefore,
a soundway to infer the overall rule rating from the individual
rule rating of a column is to use the max operator.

TABLE 4. Sensitivity of data for different ‘‘mutation’’ types.

B. MISSING RULES
The verification rule construction is based on railway techni-
cal specifications, requirements of train control engineering
data tables, and domain expert knowledge. However, the

FIGURE 6. Visualization of the medians of data sensitivity for different
‘‘mutation’’ types.

process is not completely systematic. Hence, it cannot
guarantee that all the necessary verification rules will be
provided. Therefore, it is crucial to establish whether any
verification rules were missing before the train control
engineering data verification method itself was SIL-qualified
[37].

By providing per-column ratings for a collection of rules
that constrain the column data, we can understand which rule
types have been defined and which rules are still missing that
fail to meet the constraints expected by the domain expert,
and then evaluate the number and content of the missing rules
to achieve a specific expected rating (e.g., MM, SS, etc.).
Table 5 shows each column rating of a collection of rules for
the constraint column data of the actual passenger dedicated
line gradient table.

TABLE 5. Rule ratings for line gradient table of actual passenger
dedicated lines.

Obviously, most of the rule ratings shown in Table 5
achieve moderate ratings, except for the broken chain
marker recognition column, which could be explained by
missing or incorrect verification rules. For this reason,
we statistically extracted all the undetected ‘‘mutation’’ data
from the five groups of samples, then arrived at the following
conclusions:

1) The rule ratings for both the gradient length and the ter-
minal mileage columns of the line gradient table shown
in Table 5 are up to F, combined with the data sensitivity
rule ratings for the ‘‘mutate’’ and ‘‘swap’’ mutation
types of the line grade table shown in Table 4 and
Figure 6. Evaluate the ‘‘swap’’ mutation type to satisfy
the expected rule ratingMM (or SS) missing verification
rule

∣∣G_termileage i+1 − G_termileage i

∣∣ = G_length i−1 ∩∣∣G_termileage i − G_termileage i−1

∣∣ = G_length i , which
can be described as an ITE paradigm solution. Let

106804 VOLUME 12, 2024



H. Zhang et al.: Formal Verification Method of CTCS-2 Level Train Control Engineering Data

the Boolean variables a i and b i respectively represent∣∣G_termileage i+1 − G_termileage i

∣∣ = G_length i−1 as well
as

∣∣G_termileage i − G_termileage i−1

∣∣ = G_length i , and the
Bo-olean function fi indicates that a i ∩ b i is established.
h i denotes that the gradient lengths of adjacent gradient
points in the line gradient table swap each other, while
gi indicates that they do not swap. Therefore, fi, gi, h i
satisfy if fi then gi else h i under the same variable
order π, namely ITE(fi, gi, hi) = (fi ∧ gi) ∨ (¬ fi ∧

h i). At the same time, all the kilometer markers of
the line gradient table either increase or decrease in
sequence, that is, (G_termileagei < G_termileagei+1) ∨

(G_termileagei > G_termileagei+1) (i = 1, · · · , n). Among
them, the kilometer markers in the upward direction
of the line decrease in sequence, while those in the
downward direction increase in sequence, in order to
verify the possibility of abnormal swapping of the
kilometer markers in the line gradient table.

2) Combine the sensitivity rule ratings xx and tt of the
‘‘remove’’ and ‘‘add’’ mutation type data for the line
gradient table presented in Table 4 and Figure 6.
Compare the different versions of the line gradient
tables and perform a consistency check to determine
whether there are ‘‘remove’’ and ‘‘add’’ gradient point
data.

3) In addition, by analyzing the error data of omission,
it was found that some types of continuous data can only
constrain the overrun data. For example, the descending
grade gradient out of the home signal is mutated from
to, or the gradient values within the same column are
swapped. These still meet the upper limit where the
maximum value does not exceed (Rule 1), but they
cannot be identified.

In addition, through the verification of ‘‘mutation’’ data of
the line velocity table, line broken chain detail table, balise
position table, main line signal data table, etc., it was found
that the missing data types, besides those mentioned in 3)
above, also include the following two types. First, the train
control engineering data such as balise usage and other textual
information belong to natural language, which has only basic
normative constraints and no clear quantitative constraint
relationship. For example, FQ was modified to Q. Second,
some of the isolated data were less constrained. Therefore, the
essential reason that the above types of erroneous train control
engineering data cannot be recognized is their own defects
and weak data correlation. In other words, the verification
method for the train control engineering data proposed in this
study is feasible.

C. QUANTITY PREDICTION
Rule rating realizes the reversed complement and optimi-
zation of bottom-up verification rules. Additionally, during
the project development phase, it is critical to predict and
plan the number of verification rules required to meet the
expectations of the rule rating. Specifically, this planning
manifests itself at three levels.

FIGURE 7. Extrapolation of the number of verification rules for different
project phases.

1) Evaluate the number of verification rules required to
reach the sensitivity threshold. For instance, at least
120 verification rules to constrain the train control
engineer-ing data can approach or reach a sensitivity
threshold of 0.8.

2) Evaluating the number of verification rules required for
a column to achieve the desired rule rating.

3) At the early stage of project development, determining
whether the train control data verification project is
feasible in principle. For example, if 30 verification rules
have been constructed but do not achieve the expected
coverage, their feasibility should be judged at this time.

By subsampling a set of constructed verification rules,
we can estimate the deviation and plot confidence intervals
to further predict the number of rules required to achieve the
desired rule rating. Figure 7 depicts the three extrapolations
constructed in different project phases. Phase 1 is the
extrapolation where the project has reached 35 verification
rules; Phase 2 is the extrapolation where the project has
reached 56 rules; and Phase 3 is the extrapolation where the
project has reached 89 rules. Each successive phase contains
all the verification rules from the previous phase, as well
as other rules. Combined with Figure 7, it is predicted that
160 verification rules will be required to achieve a sensitivity
of 90% (rule rating X).

Figure 8 shows a comparison, in terms of data validation
time, between the verification method for train control
engineering data proposed in this paper and those proposed
in the literature [18], [19], [21]. When verifying 4000 pieces
of actual passenger dedicated line train control engineering
data, themethod proposed in this paper only takes 32 seconds,
which is better than other formalized verification methods
based on the B language, among others.

VI. DISCUSSION
The construction of a user-friendly rule rating system aims
to assist in the improvement of the verification rules for
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FIGURE 8. Runtime comparison of different verification methods.

train control data. In practical applications, by combining
the column rating of the rule combination that constrains
the column data of the train control engineering data table
with the rule rating of the verification sensitivity for the
four specific types of ‘‘mutated’’ data—mutate, swap, add,
and remove—the missing rules are identified in reverse,
and the number of verification rules required to reach the
expected value of the rule rating is planned. Subsequently,
the verification rules are complemented and optimized in a
bottom-up manner. However, as sensitivity increases, it may
become increasingly difficult to find the missing ‘‘smaller
and smaller’’ verification rules. Nevertheless, the difficulty
in enhancing sensitivity and its mapping rule rating may
also indicate that the constructed set of verification rules
possesses high quality in terms of validity and completeness.
Additionally, the mapping interpretation between sensitivity
values and rule ratings requires adjustments based on
domain expert experience for different types of train control
engineering data tables.

Compared to the traditional manual review of verification
rules by domain experts, this study proposed a systematic
method for bottom-up closed-loop feedback optimization of
verification rules. This approach aims to identify potentially
weak or missing verification rules by developing automated
verification tools that ensure efficiency and completeness.
While formal techniques, such as model testing and theorem
proving, can prove the validity and completeness of rules,
they are often time-consuming and labor-intensive. The
method proposed in this paper serves as a compromise
between the two extremes, combining model checking and
statistical validation within the framework of ‘‘mutation
testing.’’

VII. CONCLUSION
In this paper, a formal verification method of CTCS-2
level train control engineering data based on ROBDD
was proposed. An automated verification tool for train
control engineering data was developed by transforming

the implicit logical association rules among the extracted
train control engineering data into Boolean function models
and their equivalent canonical ROBDD algorithms. This
tool solved the problem of insufficient timeliness and
completeness in traditional manual validation of train control
engineering data, and it can effectively identify spurious data
coincidences caused by mutations in the data. Furthermore,
taking the verification sensitivity of ‘‘mutated’’ train control
engineering data as a bridge, a user-friendly classification
rule rating system was introduced to guide domain experts
to make up for the missing verification rules. The case study
showed that, due to the rigorous formal description of the
logical relationships constraining train control data and the
construction of a reasonable and detailed rule rating system,
this method is feasible and complete in the enterprise's actual
train control data verification process.

The four types of ‘‘mutated’’ data proposed in this paper
were generated by non-model designers. In the future, genetic
algorithms (GA) can potentially be used to build fitness
functions based on the constraint relationships of train control
engineering data, and mutation data generators satisfying the
strong constraint relationships of train control engineering
data can be synthesized to automatically generate a large
amount of mutation data as verification samples.

In addition, we will attempt to use data mining techniques,
such as the data association rule algorithms FP-Growth
and Apriori, to mine the implicit association relationships
among train control data, which is to expand the avenues for
constructing verification rules. In the long run, developing a
method to automatically synthesizemissing rules is a new and
highly challenging goal.
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