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ABSTRACT The images captured under water are typically deteriorated due to non uniform attenuation
of traversing light in underwater medium. The studies on underwater environment mainly depends on the
techniques for the enhancement of underwater images. Many state-of-the-arts compensate the losses due to
scattering of light in underwater images but still it is a challenging task to compensate the color distortion
due to absorption of light. A new approach is introduced in this article for the enhancement of underwater
images by balancing the attenuation disparity between the color channels. This approach reduces the color
dominancy based on the prior that the non-uniform attenuation of RGB channels of light in water which
results in severely absorbed, moderately absorbed and informative color channels. The difference between
themaximum pixel intensity level of an image and its color channels is considered as the attenuation disparity
of color channels. So, this leads to the statistical classification of underwater images into five major types:
haze, bluish, greenish, greenish blue and bluish green images and two special types such as yellowish image
and dark image subjectively. The pixel intensity of severely and moderately absorbed color channels are
manipulated in accordance with the informative color channel by adding the value of concerned attenuation
disparity globally. It increases the pixel intensity level of weak color channels and restores the channel
information but does not improve the visual quality. The Gray World (GW) method or color equalization
(CE) method is applied to remove the color imbalance and the contrast is improved by saturating the high
level and low level pixel intensities. Finally, the conventional multiscale image fusion is employed to improve
the image quality. The experimental results show that the proposed method outperforms qualitatively and
quantitatively in terms of underwater color image quality evaluation (UCIQE) metrics and underwater image
quality measures (UIQM) compared to the existing image enhancement methods.

INDEX TERMS Attenuation disparity, attenuation of light, color equalization, Gray World assumption,
image enhancement, underwater image classification.

I. INTRODUCTION
The scene information of an underwater image plays a major
role in ocean related studies. The development of technol-
ogy advances the autonomous underwater vehicles to capture
images and videos without human intervention. However, the
poor visibility of scenes in the captured underwater images
is the main problem. The water medium absorbs the light
energy, increases scattering and introduces noise which have
direct negative impact on the quality of underwater images.

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Giannelli .

Therefore, the images captured in underwater medium are
deteriorated due to the attenuation of information carrying
light by scattering and absorption i.e., nonuniform illumi-
nation. This results in color casts, low contrast, poor edges
and corners and reduced visibility of underwater scene and
other consequences are bright artefacts, over darkness, poor
visibility of distant and background objects, blurriness and
color distortions. These drawbacks limit the applications of
computer vision in marine archaeology, ecology and rescue
operations. The physics of attenuation of light in the water
medium was studied experimentally by Ramaseshan [1],
Duntley [2], Chilton et al. [3], and Wells [4]. Specifically, the
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scattering leads to poor visibility whereas absorption causes
color distortion and loss of information as per the depth
of the water medium [5]. In accordance with optical theory,
the light with longer wavelength has less energy. Hence
the wavelength of the visible spectrum is a factor for the
disappearance of colors of light in the underwater medium.
Therefore, the red spectrum disappears first since it has the
longest wavelength (650-750 nm) and then the green color
(550-650 nm) and finally the blue (450-550 nm). But this
order of disappearance may vary depending upon the concen-
tration of pollutants present in the underwater medium [3].
In the first case, the image appears in bluish green color
or cyan color depending on the presence of concentration
of pollutants. In the second case, almost the red disappears
completely and the green color starts to disappear and hence
the image looks blue or greenish blue color. In the third
case, the blue color starts to disappear whereas the red
and the green colors almost disappeared and hence the
image appears in saturated blue color with black background
regions. Sometimes, the underwater images captured near the
coastal regions may appear in green color even in low depth
due to the presence of heavy pollutants which make enfeeble-
ment and early absorption of the blue spectrum. If the camera
is placed just above the water surface in the air medium and
focused on the shallow depth scenes in clear water during
clear sky, then the image looks hazy since the water acts like
haze between the target object and the camera. As per the
above discussion, we can infer that the absorption of light in
the underwater medium is non-uniform with irregular pattern
of attenuation. Therefore, only the light which is not fully
absorbed gets scattered in the underwater medium.

This article mainly focuses on the solution to the prob-
lem of color casts occurred in underwater images due to
absorption of light in addition to the compensation of losses
due to scattering of light. Most of the existing methods
focused to compensate either the scattering loss or absorption
loss occurred in underwater images. Although some meth-
ods focused on compensating both the losses, the enhanced
images are affected by unwanted color shades or red color
artefacts. Further, our previous work [91] restores the weak
color channel in underwater images based only on two types
of images and hence the existing methods are not applicable
for all the degraded underwater images. This is because, the
color of appearance of underwater images varies in accor-
dance with the loss of color channel information. This article
introduces a novel color correction method based on a new
statistical approach for classification of underwater images.
Since the proposed method compensates the color casts with
reduced color artefacts, it is considered as the best method
for the enhancement of underwater images. However, it does
not perform well to enhance the images captured in dark
underwater scenes with less artificial lighting.

This article has been framed as: literature review in
Section II, statistical analysis of underwater images in
Section III, classification of underwater Images in Section IV,
Proposed color correction in Section V, Results and

Discussion in Section VI and finally the paper is concluded
in Section VII.

II. LITERATURE REVIEW
The previous studies on the underwater image enhancement
are reviewed under three categories: a) Model Based Image
Restoration, b) Image enhancement by pixel manipulation
and c) Deep Learning (DL) based image enhancement.

A. PHYSICAL MODEL BASED IMAGE RESTORATION
Many researchers worked on the physical model of haze
image formation [6], [7], [8] in air medium. The haze
image (I ) with pixel location (x, y) in air medium is math-
ematically represented with two components: the intensity of
light reflected by the target object and received by the camera
(J ) and the scattered ambient light (L) in the line of sight:

I = J .t + L(1 − t) (1)

where t is the transmission stated by the Lambert-Beer law
which is a decaying exponential of the product of attenuation
coefficient (ρ) and the distance d (x) between the target scene
and the image plane (scene depth):

t = exp(−ρd (x)) (2)

The restoration of degraded haze images has been pro-
posed by accounting of surface shading [9] with refinement
of (1), Dark Channel Prior (DCP) [10] and enhancement
of (1) with absorption coefficient [11]. The white balancing
technique was used instead of physical model for dehazing
purposes [12]. The physical model for terrestrial images has
been extended to the underwater images with some modifi-
cations such as Dehazing with refined transmission followed
by color correction [13], refined depth map from pixel blurri-
ness [14], selective channel compensation [15], refinement of
transmission [16], combination of DCP and soft matting [17],
predominant channel transmission estimation [18] and adap-
tive dehazing [19] to estimate the transmission for image
restoration. The color compensation followed by multi scale
retinex restoration was proposed in [20]. The variants of DCP
have also been proposed for restoration of underwater images
by researchers including red channel prior [21] to estimate
the image depth particularly for the enhancement of artifi-
cially illuminated regions, image statistics based hierarchical
estimation of veiling light [22] to avoid bright objects in the
scene, adaptive fusion of two different transmission maps
derived from optical model based method and pixel based
method [23].
In context to the underwater medium,McGlamery [24] and

Jaffe [25] formulated the computer modelling of underwa-
ter imaging systems. They have shown, the total radiance
received by the camera is a linear combination of the
direct part (IDC ), forward scattering part (IFC ) and backward
scattering part (IBC ). Further, the linear combination is repre-
sented as

I = J .t + J .t ∗ H + L − L.t (3)
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The first term on right hand side of (3) is IDC , the second
term is IFC and the third term is IBC . But these methods
are complex to underwater images since the details such as
the irradiance received by the image plane, the background
ambient light and the transmissivity of the medium are to
be estimated. The equation (3) was simplified by ignoring
IBC [26] to design a restoring filter for enhancing shallow
water images. Underwater-DCP [27] is the concept of apply-
ing DCP only to green and blue channels instead of red to
restore the scene radiance. The fusion of two derived inputs
from a restored underwater image have been proposed [28]
for effective improvement of the visual quality. The color
channels have been improved using Affine transformation
and pixel saturation with improved DCP by ignoring IFC [86]
using (3) for UIE. The method of color transfer followed by
DCP was proposed to remove the artefacts [29] wherein the
color channel characteristics of reference images are trans-
ferred to the test images to manipulate the image statistics to
improve the quality of images captured in challengeable con-
ditions such as night time, sandstorm, underwater, etc. The
concept introduced in [29] was implemented for underwater
images [30] along with the DCP however the over darkness
appeared in the results.

B. IMAGE ENHANCEMENT BY PIXEL MANIPULATION
The physical model-free method of enhancement has been
introduced based on mixing of colors by Kumar and Bhan-
dari [31], Ancuti et al. [32], [33] and Tao et al. [34]. Enhanced
image was obtained from twelve derived images [31] by
adding of a portion of dominant color channel to the atten-
uated color channels. The information of green channel was
fractionally added to weak red channel to restore the infor-
mation [32] but it results in yellow shades of appearance. The
white balancing of [32] was extended in [33] with gaussian
filtered version of the same weak color channel to avoid
yellow appearance. However, these methods were used as a
preprocessing step for enhancement of weakly illuminated
images as a color channel compensation (3C) to improve
color constancy methods. Because of prime attenuations of
the red color component in underwater images, the extraction
of pixels having the same reflectance (Gray information)
and discriminating the image noise becomes intricate. So,
the color correction methods [37] based on gray informa-
tion such as average scene reflectance is gray [35], average
of differences of scene reflectance is shades of gray [36],
average edge difference is achromatic [38] and eliminating
nonuniform illumination by taking average of two adjacent
points (edges) [39] are inadequate for effective color com-
pensation. Although some researchers attempted the color
correction [30] and [31], the color distortion was not com-
pletely reduced. The technique of capturing multiple images
in different exposure interval is called exposure bracket-
ing imaging and this technique has also been utilized for
color correction [40]. The color has been compensated using
pixel-wise estimated attenuation matrices [60]. The fusion of

color transferred image, maximum attenuation map and local
color balanced image have been performed for color com-
pensation [61]. A multi stage enhancement method including
color compensation, color correction, detail sharpening and
contrast enhancement was proposed to improve the image
quality [62]. The optimized transmission map-based image
restoration followed by color correction [63] was proposed
with the help of newDCP andmodified white balancing tech-
niques. A multi-step image enhancement technique [64] was
proposed in which dehazing, color correction, image sharpen-
ing, multiscale fusion of gamma corrected image and contrast
limited adaptive histogram equalized image (CLAHE [57]).

C. DEEP LEARNING (DL) BASED IMAGE ENHANCEMENT
The DL based enhancement has been proposed by
many researchers such as CycleGAN with Underwater
ResNet (UResNet) [41], CNN with Dense-Residual [43],
UWGAN [44], feature concatenation of nine dense resid-
ual network [45], joint network for adaptive dehazing by
luminance reconstruction network and color correction by
chrominance network [46], four level fusion of heterogeneous
features [47], DenseNet [48] and restoration of horizontal
distortion [49]. The advantages of GANs in terms of visual
quality and physical model based enhancement methods were
inherited by a network called PUGAN [68]. The conjunction
of dense channel attention module and position attention
module was introduced in Underwater Attention-GAN [69]
respectively for suppressing low profile feature map and
avoiding over enhancement. The multi exposure images
were synthesized from single image by a network called
DPIENet [70] and used for image restoration. The optical
properties of [24] and [25] were incorporated with the neural
network HybrUR [71] for restoration of underwater images.
A network called TOPAL [72] was proposed to improve
the contrast by a multiscale deep module and to correct the
color deviations by an aesthetic render module. Multiscale
Dense GAN [44] with stabilized discriminator using spectral
normalization was proposed for recovering the image details.
A new comparative framework with supervised learning
mode named CLUIE-Net [73] and a large underwater image
dataset RQSD-UI was proposed for the UIE. The effect of
uneven illumination due to artificial light in the underwater
images was corrected by combing the retinex theory with self
guidance network (UIALN) [74].

The texture details of the underwater image were restored
precisely by contrastive learning in which the U-Net archi-
tecture was modified with the proposed deformable convolu-
tional residual block [75]. Multidimensional feature fusion
and suppressing the unimportant features by an adaptive
network [76] in which dewater pooling was used for high-
lighting the salient features. The GAN was employed to
generate multi degradation model using models proposed
in [24] and [25] to generate paired images [77] for restoration
of underwater images. The CycleGAN was employed for
generating underwater images using underwater degradation
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model (UW-CycleGAN) [78]. A U-shape transformer [79]
was proposed in which channel wise feature fusion and global
feature fusion modules were specially designed for underwa-
ter image enhancement. A super lightweight three level neural
network called Boths [80] was proposed for UIE.
A semantic attention guided network named SGUIE-

Net [81] to restore degradations for the enhancement of
underwater images. The removal of domain gap occurred
between synthetic training images and underwater images
by adaptive learning domain framework [42]. The atten-
tion based network named SCAUIE-Net [82] for extracting
channel and spatial information from white balanced version
of underwater images obtained from [32] for UIE. UIE-
GAN [83] was proposed with two attention modules for
extracting the spatial and channel features to enhance the
degraded underwater images. UIE-FSMC [84] frame work
was proposed by implementing the supervised learning using
features corresponding datasets and the unsupervised learn-
ing using features from non-corresponding datasets followed
by the color balance and contrast enhancement for the UIE.
Adaptive feature fusion-based network named UIESC [85]
with self-attention and contrastive learning for the UIE.

In the previous related works, the researchers worked with
an assumption of equal rate of attenuation of both green
and blue color components in underwater medium. So, they
followed the same assumption for color correction to com-
pensate the weak red color channel in accordance with the
green color channel. But the color corrections based on the
green color is not effective to overcome color dominancy
because the results are affected by color artefacts. Further, the
image quality improvement techniques based on the physical
model are also not effective. We confide in the fact that
possessing a longerwavelength, the red color losses its energy
quickly due to absorption only in normal water. In polluted
water, the green and or the blue colors get absorbed quickly
compared to red. Hence, we infer that the image color dis-
tortion depends on the position of the camera, the depth
of the underwater medium, the properties of the water and
lighting conditions. The physical model based enhancement
works even with color correction have the limitations of color
casts. The model free works have the limitation of color
artefacts. Due to lack of sufficient datasets of underwater
images with real underwater scene and corresponding ground
truth for different water types, the DL based image quality
enhancement techniques are not effective to overcome the
vision problems. Also, the DL based works are affected with
color shades. Hence, a new enhancement technique is needed
for improving the quality of degraded images captured in
underwater medium. The main contributions of this work are:
(i) This work classifies the underwater images subjec-

tively (based on visual perception) into fivemajor types
such as hazy, blue, green, bluish green and greenish
blue color images and two special types such as yellow
and dark underwater images.

(ii) It provides a comprehensive statistical analysis
of benchmark underwater image datasets such as

UIEB [50], RUIE [51] and SQUID [52] constituting
more than 1000 images. The statistical conditions for
the objective classification of fivemajor types of under-
water images are framed.

(iii) This work introduces a new color correction method
based on the estimated value of the attenuation dispar-
ity between color channels.

III. STATISTICAL ANALYSIS OF UNDERWATER IMAGES
In the literature, some researchers attempted to enhance the
underwater images based on image statistics [22], [29], [32],
[33], [34], [86]. However, suchmethods used the image statis-
tics only for obtaining mean pixel intensity, maximum and
minimum values of pixel intensity for the color constancy.
But in this work, the image statistics is used for classification
of underwater images and correction of attenuation disparity
occurred between color channels to preprocess theweak color
channels to compensate the color imbalance. Let I (x) be
the captured underwater RGB image of size m×n where
x represents the spatial coordinates (r, s) in 2-dimensional
space. The image can be represented as [53]:

I (x) =(IR (x) , IG (x) , IB (x)) (4)

where IR (x), IG (x) and IB (x) represent the three channels of
RGB image respectively red, green and blue. The mean pixel
intensity values of the color channels are estimated by

IRa =
1

m× n
×

∑m

r=1

∑n

s=1
IR (r, s)

IGa =
1

m×n
×

∑m

r=1

∑n

s=1
IG (r, s)

IBa =
1

m×n
×

∑m

r=1

∑n

s=1
IB (r, s) (5)

where IRa , I
G
a and IBa are the mean pixel intensity of RGB

color channels respectively. Based on the visual perception,
ten images from each class of underwater images fromUIEB,
RUIE and SQUID datasets and haze images captured in
air medium [10] are shown in Fig. 1 for presentation. The
values of statistical analysis of images in Fig. 1 are shown
in Table 1. Based on the mean pixel intensity of each color
channels (RGB) and color of appearance without considering
any conditions, the underwater images are classified roughly
into five major types: 1) underwater haze image, 2) underwa-
ter greenish color image 3) underwater bluish color image,
4) underwater bluish-green color image and 5) underwater
greenish-blue color image and two special types 1) yellowish
image and 2) dark image. If there is no significant difference
in the mean pixel intensity of any two color channels, then the
image may be a haze image. The underwater images having
similar pattern of attenuation of color channels like atmo-
spheric haze images (i.e., all the color channels are attenuated
almost equally) are categorized as underwater haze images.
If the significant difference occurs in the mean pixel intensity
between green color channel and both red and blue, then the
green channel is the predominant one. In the same way, the
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FIGURE 1. Images from UIEB Dataset and air-hazy images for statistical analysis.

TABLE 1. Average values of pixel intensity of color channels of images as in Fig.1.

difference occurs between blue and both red and green, then
the blue color is the predominant channel.

If the difference happens only between green and red, then
the image appears in bluish green color. If the difference
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TABLE 2. Inferences on statistics of underwater images and air haze
images.

occurs only between blue and red then the image looks in
greenish blue color. The values depicted in Table 1 con-
firm the nonuniform attenuation of light in the underwater
medium i.e., all the underwater images do not have similar
attenuation pattern and hence the image formation model
of terrestrial haze image is not effective for dehazing the
underwater images. Further, the level of attenuation of all
the color channels based on mean pixel intensity values is
depicted in Table 2. Fig. 2 shows different appearances of
underwater images and air haze image with the concerned
monochromatic color channel (Red, Green and Blue) images.
Based on the visual perception of the images shown in Fig. 2
along with values in Table 1, it is inferred that the color of
appearance of underwater images depends on the mean pixel
intensity of color channels.

Hence the underwater images can be objectively classified
based on image statistics by considering the following facts:

1.The statistical analysis of terrestrial haze images shows
that the maximum and minimum values of pixel intensity of
all planes in RGB space do not undergo the intensity jumps.
Also, such haze images occurred due to the presence of haze,
smoke and fog with different concentrations of tiny particles
present in the lower atmosphere. Typically, haze causes the
obscuration of the scene, subject to the density of haze. But in
the context of underwater images, such statistics are entirely
different since the intensity jump occurs in the pixel intensity
of color channels due to the absorption of light. This indicates
the loss of energy followed by wavelength shifting from long
to short and thus the red color light shifts either to green or
blue or in the range of blue-green. The jump in pixel inten-
sity is due also to the two degrading factors of underwater
medium – i) depth of the target scene from the surface of
water and ii) properties of water medium (saline or pure or
turbid) which may have transparency but contains dissolved
components with suspended particles.

2. We rely on the fact that in underwater medium, the
predominant color of the traversing light (almost blue and
sometimes green) attenuates only due to scattering whereas
the highly degraded color component (almost red in the case
of the bluish color image and sometimes blue in case of
greenish image) attenuates only due to absorption. The red
color component in the case of a greenish color image or the

FIGURE 2. Color channel (monochromatic) images of underwater images.
a) original image, b) red channel image c) green channel image and
d) blue channel image.

green component in the case of a bluish color image degrades
moderately due to both scattering and absorption.

3. Further, the GW [53] assumption method removes the
color tone that causes the appearance of the image in bluish
color. But in selective absorption, the mean pixel intensity
of the red color channel is very low for blue, bluish green
and greenish blue images and hence the GW grieves from
red artefacts severely. In greenish images, the mean pixel
intensity for both red and blue color images is low. In these
two cases, there is a significant difference between the mean
pixel intensity of color channels. The results of the conven-
tional color constancy [37] methods such as GW theory [54],
shades of Grey [36], Gray Edge [38], max-RGB [35], [39]
and color equalization [55] suffer from unwanted red arte-
facts at pixel locations where green and blue color channels
have significant pixel intensity whereas the red does not.
Hence, it is impossible to enhance all the underwater images
by a color correction algorithm. But it may be possible
for image classification based color correction in a single
method. As discussed earlier, the classification of underwater
images is introduced using image statistics based on the
pattern of attenuation of color channels (as shown in Fig. 2)
and the rate of attenuation due to absorption of light. The
in-depth analysis of Table 2 shows that the color channels of
underwater images are degraded in five types of attenuation
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patterns which help to classify the images into five types as
in Table 3. The intensity of pixels of an image captured in a
medium is directly proportional to the energy of traversing
light in that medium [36]. The absorption may be selective
or conditional depending upon the depth of the target scene
from the surface of the water and the biological conditions of
the water medium.

IV. CLASSIFICATION OF UNDERWATER IMAGES
A. ESTIMATION OF RATE OF ATTENUATION OF COLOR
CHANNELS OF UNDERWATER IMAGES
With respect to the predominant color component of an
underwater image, the total attenuation, rate of loss of infor-
mation and rate of information carried out by each color
component for the five classes of underwater images are
estimated from the statistical observations. The total rate
of attenuation of light (ρT ) is defined as the ratio of the
average of mean pixel intensity of the three color channels
(RGB) to the maximum pixel intensity of the type of image
representation in bits and it is given by

ρT =

∑
c
∑

y
∑

x f
c(x, y)

(3 × m× n× (L − 1))
(6)

and 0 ≤ f (x, y) ≥ L − 1 and L = 2n. Where f is the
captured image having a dimension of m rows and n columns
with pixel location x and y, c ∈ {red, green, blue} is the
concerned color channel, n is the number of bits for image
representation (usually n =8 i.e., L = 256) and 0 ≤ρT ≤ 1.
If ρT = 0 then it implies that the light losses its energy
completely due to attenuation and the received pixel intensity
is zero. If ρT = 1 then it represents that there is no loss of
energy and the pixel intensity is L−1. Through this, it is clear
that the light does not attenuate whenever the pixel intensity is
L−1 and the light attenuates completely if the pixel intensity
is zero. If the pixel intensity is greater than zero and less
than L − 1, then the received light ray is attenuated but not
completely while traversing through the medium. Also, it is
easy to estimate the rate of attenuation of individual light
color from the pixel intensity of the captured image. The rate
of attenuation of light color (ρc) is given by

ρc =

∑
y
∑

x f
c(x, y)

(m× n× (L − 1))
(7)

To compensate the attenuation, it is necessary to estimate
the rate of attenuation of the degraded color channel(s) with
respect to the predominant color channel. The rate of attenu-
ation of red color with respect to blue can be estimated from
the ratio of the total attenuation of the red channel to the total
attenuation of the blue channel (ρrb) =

(
ρR

ρB

)
. Similarly for

other color channels, ρrg =

(
ρR

ρG

)
, ρgb =

(
ρG

ρB

)
, ρgr =

(
ρG

ρR

)
,

ρbr =

(
ρB

ρR

)
and ρbg =

(
ρB

ρG

)
. For, approximation, the

rate of attenuation due to absorption (α) in terms of pixel
intensity is considered as the ratio of the mean of average
pixel intensity (µ) of highly degraded color channel image

TABLE 3. Estimated attenuation values of underwater images and air
haze images.

to the µ of predominant color channel image of any dataset
contains more than 1000 images as provided in Table 1.
Then the optical model, equation (1) is modified using the
estimated values to represent the underwater image since the
camera system is same but only the medium is different.

B. STATISTICAL CONDITIONS FOR CLASSIFICATION OF
UNDERWATER IMAGES
Based on the mean pixel intensity of the color channels of
RGB images, the brightest pixels spotted in the color channel
and the rate of attenuation the underwater images are classi-
fied with the following statistical conditions.

1. Underwater haze image

IBa > IGa > IRa and I
R
a ≥ 0.7

(
IGa

)
≥ 0.7

(
IBa

)
min(IB(x)) > min(IG(x)) > min(IR(x))

max(IB (x)) = max(IG(x)) = max(IR (x))

where (L−1) ≤ max(I c(x)) ≥ min(I c(x)) ≥ 0 in the dynamic
range of pixel intensity of color channels.
2. Underwater bluish color image

IBa > IGa and 0.2IGa ≥IRa ≤ 0.4(IBa )

min(IB(x)) > min (IG(x)) > min (IR (x))

max(IB(x)) > max (IG(x)) > max (IR (x))

3. Underwater greenish color image

IGa > IRa and IBa ≤ 0.4(IGa )

min(IG(x)) > min (IR (x)) > min(IB(x))

max(IG(x)) > max (IR (x)) > max (IB(x))

4. Underwater greenish-blue color

IBa > IGa > IRa and IGa ≥ 0.5(IBa )

min(IB(x)) > min (IG(x)) > min (IR (x))

max (IB(x)) = max (IG(x)) = max (IR (x))

5. Underwater bluish-green color

IGa > IBa > IRa and IBa ≥ 0.5(IGa )

min(IB(x)) > min (IG(x)) > min (IR (x))

max(IG(x)) = max(IB(x)) > max(IR (x))

VOLUME 12, 2024 107065



M. Kanagavel, V. Thanikaiselvan: Balancing of Attenuation Disparity

FIGURE 3. Flow chart of proposed method.

Based on the rate of attenuation of light estimated from
the captured underwater images using image statistics and the
conditions for the classification underwater images, we can
modify the equation s (1) and (2) for restoring the underwater
images. But in this article, the statistical analysis of images
is used only for the confirmation of our assumption for the
proposed color correction.

V. PROPOSED METHODOLOGY
The proposed methodology involves two stages namely
a) Color Correction and b) Multiscale image fusion. The first
stage aims to compensate for the color distortion whereas the
second stage compensates the losses due to scattering.

A. COLOR CORRECTION
The overall procedures of the proposed method are depicted
in Fig. 3. The adjustment of attenuation disparity between
degraded color channels and the predominant color channel
can restore the information of the degraded color channel.
We observe that more than 40 percent of red pixels have
zero intensity value in bluish, greenish-blue and bluish-green
color images. Also, the remaining 60 percent of pixels have
very less intensity compared to green and blue color chan-
nels. As the Gray-World assumption method is applicable
for homogeneous air medium, it is not suitable to enhance
the underwater images. So, we perform a global pointwise
pre-correction to the degraded color channels to increase the
very low pixel intensity of highly attenuated color channels.

For this, the following equations (8) to (10) are proposed as
a pre-color correction step before employing the Gray-World
assumption for underwater haze, blue and greenish blue color
images and color equalization technique for green and bluish
green color images.

I rc (x) = IR(x) + Dr (x) (8)

Igc (x) = IG(x) + Dg (x) (9)

Ibc (x) = IB(x) + Db (x) (10)

In the case of underwater haze images, we apply the
equation (8) or (9) for pre-correcting the red or green color
channel. Fig.4 depicts the results of the proposed color bal-
ancing. The proposed color correction increases the pixel
intensity of weak color channels from very low value to
high value and thus the appearance of the particular color
channel is turned from black color to gray with some scene
information. Thereafter, the GW or the color equalization is
employed to shift both the high pixel intensity value (white)
and low pixel intensity value (black) to themiddle pixel inten-
sity value (gray) and thus, the appearance of pre-corrected
weak color channel turns from white to gray with low scene
information. Then the conventional pixel saturation technique
is employed for saturating the 1% bottom pixels and 1%
top pixels to adjust the distribution of the pixel intensity
for recovering the scene information for the improvement of
image contrast. Fig. 4 (i) (a) is the original bluish underwater
image and Fig. 4 (i) (b) is the greenish underwater image with
corresponding RGB histogram.
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FIGURE 4. Results of the proposed method. i) original underwater image, ii) Results of Gray World Method, iii) Result of proposed
disparity correction, iv) result of DC+GW, v) result of GW+DC+IA. (a) Blue image with RGB-Histogram and (b) Green image with
RGB-Histogram.

The histogram component of red channel of blue image
lies at the left side (nearly zero) and blue channel at the right
side which indicates the deteriorated red and dominated blue.
In the histogram of greenish image, the green channel lies
right side and the red channel lies between zero to middle
level and the blue channel lies in the middle and this indicates
that the green dominancy. Fig. 4(ii) is the GW version of
original underwater image. The GW version of bluish image
has red artefacts whereas the GW version of greenish image
has red shades due to over compensation of red channel.
Fig. 4 (iii) is the proposed disparity corrected (DC) version
of original underwater image.

In the components of RGB histogram of DC version of
both bluish and greenish images, all the three channels are
equally distributed in the middle which represents no color
dominancy. However, the DC version looks hazy image and
over white balanced without color dominancy. Fig. 4(iv) is
the resultant image of combined DC and GW version of
bluish image and DC and CE version of greenish image.

The components of RGB histogram are evenly distributed
in the middle for both bluish and greenish images which
indicates the appropriate white balancing but images are still
hazy. Fig. 4(v) is the resultant image of DC, GW (for blue
image) or CE (for green image) and image adjustment (IA)
by saturation of top and bottom 1%-pixel intensity levels. The
RGB histogram components of all the three color channels
in Fig. 4(v) are distribute from lower to higher pixel inten-
sity levels evenly and this indicates the good image quality.
The GW always results with the red artefacts/shades for the
images captured in non-homogeneousmedium. The proposed
color channel attenuation correction method plays a vital role
in color constancy as a preprocessing to GWandCEmethods.

B. MULTISCALE IMAGE FUSION
To improve the quality of color manipulated images obtained
from the proposed color correction, themultiscale fusion used
by Ancuti et al. [32] and Wang et al. [92] is employed. The
too brightness in the color corrected version is balanced using
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Gamma Correction. The gamma corrected and the sharpened
images are blended using weighted image fusion technique.
The gamma correction of image luminance (L∗ plane of
L∗a∗b∗ model), Lδ (x) (power law version) is,

Lδ (x) = ϑ × LM (x)
γ
, 0 ≤ γ ≤ ∞ and 0 ≤ ϑ ≤ 1 (11)

where, ϑ is a constant which maps the input and the output
values of the transformation to lie in the range of 0 to 1 and
γ is a positive power factor. The contrast of the image is
improved by varying the values of γ and ϑ . For appropriate
correction, the best value of γ is 0.7 obtained and ϑ = 1.
If γ > 0.7, the image is bleached out whereas if γ < 0.7, the
image is dark.

Due to this intensity correction, there is a loss of infor-
mation occurs either at under exposed or over exposed parts.
Hence, a sharpened version of the color corrected is obtained
using unsharp masking (UM). The UM is employed to
sharpen the luminance of the image. The difference between
the original image and its smoothed version is the sharpened
version. First, the mask, Lmask (x) is obtained by estimating
the difference between the original luminance, LM (x) band
its blurred version, LM (x). Then the sharpened version of
the luminance, Lsharp (x) is obtained by adding the masked
luminance with the original luminance.

Lmask (x) = LM (x) − LM (x)

Lsharp (x) = LM (x) − Lmask (x)

In general, high values are assigned to texture and edges of
an image by Laplacian filter which provides global contrast.
The absolute value of the Laplacian filtered form of lumi-
nance of color corrected image is estimated and considered
it as edge map

(
L jlf

)
. The low pass filter provides local

contrast information and hence it is used to estimate the
concerned weight map for the image local contrast

(
L jlpf

)
.

It is estimated as the absolute value of the difference between
the luminance of original image and its low pass version.

L jlpf =

∥∥∥ijo − ijlp

∥∥∥ (12)

where ijo is the luminance of the jth input {j = 1, 2} and ijlp
is the low pass version of ijo. The filtering of ijo with a kernel
of

[
2−4, 2−2, 3×2−3, 2−2, 2−4

]
and cut off frequency of low

pass is 1.14182 provides the ijlp.
The weight of saliency map (Swm) is estimated as

L jsm =
(
L − Lµ

)2
+

(
a− aµ

)2
+

(
b− bµ

)2 (13)

where Lµ is the mean of luminance channel and aµ and bµ

are the mean value of color channels a∗ and b∗ channels
respectively. The degree of exposure of pixels (Lem) increases
the exactness of the blended image. The weight map of Lem
is given by

L jem (s, t) = exp


(
−

(
I j (s, t) −0.5

)2)
2×σ 2

 (14)

FIGURE 5. Comparative Analysis of images. a) and e) original image and
its red channel image, b) and f) Gray World (GW) and its red channel,
c) and g) attenuation adjustment and its red channel, d) and h)
Attenuation adjustment + GW and its red channel, i) and j) CLAHE and its
red channel, k) GW + CLAHE, l) final result of the proposed method of
attenuation adjustment + GW + CLAHE.

where I j (s, t) is the intensity of concerned jth derived input
image at the pixel location of (s, t) and σ = 0.25. The weights
are normalized to obtain normalized map

(
N j
wm

)
. With the

help of N j
wm, the consistent result is obtained such that the

overall sum of all weight maps is 1 at every pixel location.

N 1
wm =

L1lf + L1lpf + L1sm + L1em∑
j (L

j
lf + L jlpf + L jsm + L jem)

N 2
wm =

L2gwm + L2lwm + L2sm + L2em∑
j (L

j
lf + L jlpf + L jsm + L jem)

(15)

Finally, 3-level Gaussian and Laplacian operators are
employed for convolving the two derived images using the
kernel of

[
2−4, 2−2, 3×2−3, 2−2, 2−4

]
. The final enhanced

image, J (s, t) is obtained by summing of output of 3-level
pyramidal convolutions of the two derived images by

J (s, t) =

∑2

j=1

∑3

k=1
gk

{
N j
wm

}
×lk

{
GM (x)

}
(16)

where k = 3 represents the pyramidal levels, j = 2 represents
the derived images, l{.} represents the Laplacian operator
and g{.} represents the Gaussian operator.

VI. RESULTS AND DISCUSSION
The proposed method is implemented using MATLAB
R2020a version installed in a personal computer with config-
uration of i3 Intel 11th Generation Processor with 8GBRAM.
The resultant image and its red component of GW, attenu-
ation adjustment, Attenuation adjustment followed by GW,
contrast limited adaptive histogram equalization (CLAHE)
[38], GW followed by CLAHE and the proposed Attenua-
tion Adjustment followed by GW and CLAHE are depicted
in Fig. 4. The histogram representation of three (RGB)
monochromatic images of five classes of original underwater
images, the results of Ancuti et al and the proposed method
are plotted in Fig. 5. Fig. 5(a) represents the histogram of
three monochromatic color channels of original underwater

107068 VOLUME 12, 2024



M. Kanagavel, V. Thanikaiselvan: Balancing of Attenuation Disparity

FIGURE 6. Results of Haze images. a) original image, b) TOPAL, c) PCDE, d) ACCE, e) MLLE, f) VCSE, g) TEBCF, h) SGUIE-Net, i) Color Mixing and
j) Proposed Method.

images. The first row to the fifth row of Fig.5 respectively
represents the combined histogram of red, green and blue
color planes of underwater haze, green, blue, greenish blue
and bluish green color images. In underwater haze images, the
components of red, green and blue channels are all concen-
trated at the middle of the intensity scale and hence they have
almost equal image information. But the histogram of the
blue tone of the haze image is narrow compared to red which
represents the low contrast. In the case of an underwater
green image, the components of the histogram of red and blue
channels are concentrated towards the dark (low intensity)
side and the green channel is concentrated towards the light
(high intensity) side and it represents the predominance of
green color. The histogram of red and blue color is narrow
compared to green and hence the red and blue channels do
not carry significant information. In case of the blue color
image, the components of red are concentrated towards the
leftmost side (very dark) with a very narrow histogram which
represents the channel least or no information whereas the
components of blue and green have occupied the entire range
of intensity scale. But the number of pixels of both green and
blue with high intensity is very less and hence the image has
less information even in the blue color channel.

For, the greenish blue image, the red components are
concentrated towards the leftmost side with a very narrow
histogram and the components of blue and green occupy
the entire range with a green peak. In the case of bluish
green image, all the red components are concentrated within
the middle and the green and blue components are concen-
trated in the entire range. But the green component which
is extended to high intensity values compared with the blue.
In some cases, the red histogrammay concentrate towards the
leftmost side in the case of the bluish green image. Finally,
it can be inferred that the pixels of all three color Finally, it can

be inferred that the pixels of all three color channels do not
occupy the entire range of intensity levels with non-uniform
distribution of pixels. But for a high contrast image, the
pixels lean towards occupying the entire range of intensity
levels with uniform distribution of pixels. So, it is required to
advance a function which transforms the low quality image
into a high quality image based only on the information
present in the histogram of the original underwater image.

The histogram of the enhanced images of Kumar and
Bhandari [31] and the proposed method are shown in
Fig. 5(b) and 5(c) respectively. Though the components of
the histogram of the three color channels of Fig. 6(b) are
distributed uniformly and exhibit a variety of gray tones,
the image is suffered from a yellow shade due to the equal
distribution of red and blue color components. On the other
hand, it is required to convert the narrow histogram to wide,
a wide histogram to nominal and non-uniform distribution of
pixels to uniform distribution, in order to get a high quality
image from a low quality image. The results of the proposed
method in Fig. 6(c), shows that the pixels are distributed
uniformly and the pixels also occupy the entire range of
possible intensity levels without a narrow histogram. Also,
the number of pixels whose intensity values are high have
increased in all the color channels for all types of underwater
images except green color images. In a green color image, the
proposed method reduces the number of pixels in the green
color channel whose intensity values are high and increased
the number of pixels in red and blue color channels whose
intensity is low. In case of a haze image, the histogram of all
the color channels is wide with uniform distribution in the
results of the proposed method. In case of blue and greenish
blue images, the narrow red histogram is converted to a wide
histogram in the proposed method. Hence, the results of the
proposed method, the distribution of histogram components
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FIGURE 7. Results of Green images. a) original image, b) TOPAL, c) PCDE, d) ACCE, e) MLLE, f) VCSE, g) TEBCF, h) SGUIE-Net, i) Color Mixing and
j) Proposed Method.

FIGURE 8. Results of blue images. a) original image, b) TOPAL, c) PCDE, d) ACCE, e) MLLE, f) VCSE, g) TEBCF, h) SGUIE-Net, i) Color mixing and j) Proposed
method.

is uniform in the entire range of possible intensity levels and
a minimum of gray tones and the net result is the enhanced
image without any color shades.

A. QUALITATIVE ANALYSIS
The performance of the proposed method has been com-
pared with the existing methods both quantitatively and
qualitatively. The publicly available non-commercial code
is used to obtain the results of the existing methods. The
performance of the proposed method is compared with the
results of Color Mixing [32], SGUIE-Net [49], MMLE [66],
TOPAL [72], VCSE [87], TEBCF [88], PCDE [89] and
ACCE [90]. Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11
depict the results of Color Mixing [32], SGUIE-Net [49],
MMLE [66], TOPAL [72], VCSE [87], TEBCF [88],
PCDE [89] and ACCE [90] for the haze images, greenish

images, bluish images, bluish green images, greenish blue
images and yellow images respectively. The dark under-
water images are not focused in this article. For under-
water haze images, haze is not removed completely by
TOPAL [72],MLLE [66], SGUIE-net [49]. Further, themeth-
ods TOPAL [72], TEBCF [88] and Color Mixing [32] result
with dark background dark and thus the distant objects are not
clearly visible. The methods such as ACCE [90], VCSE [87]
and SGUIE-Net [49] remove the haze well but the red channel
is over compensated. The method PCDE [89] results with
over white balancing. The performance of TEBCF [88] is
poor since the resultant images are severely affected by noise
and the object identification is difficult due to over darkness.
The proposed method removes the haze well and the image
quality is improved substantially. In case of greenish images
as in Fig. 7, TOPAL [72] and SGUIE-Net [49] do not remove
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FIGURE 9. Results of bluish green images. a) original image, b) TOPAL, c) PCDE, d) ACCE, e) MLLE, f) VCSE, g) TEBCF, h) SGUIE-Net, i) Color Mixing and
j) Proposed method.

FIGURE 10. Results of greenish blue images. a) original image, b) TOPAL, c) PCDE, d) ACCE, e) MLLE, f) VCSE, g) TEBCF, h) SGUIE-Net, i) Color Mixing
and j) Proposed Method.

FIGURE 11. Results of Yellow images. a) original image, b) TOPAL, c) PCDE, d) ACCE, e) MLLE, f) VCSE, g) TEBCF, h) SGUIE-Net, i) Color Mixing and
j) Proposed Method.
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color dominancy. ACCE [90], MLLE [66] and VCSE [87]
remove green color dominancy well but the red color is over
compensated and hence the resultant images are affected with
red artefacts or red shades. PCDE [89] results with over
brightness in the foreground and darkness in the background.

The result of Color Mixing [32] for greenish images is
quality improved version of original images but the drawback
is the presence of yellow shades due to equal compensation
of red with green. The performance of TEBCF [88] is poor
since the results are affected with darkness. The proposed
method achieves good color compensation in reducing the
green dominancy but in some images where mean value of
red is less than blue, the images are affected with some red
shades.

For the bluish images as in Fig. 8. In the scenario of bluish
underwater images, the methods TOPAL [72], TEBCF [88]
and SGUIE-Net [49] do not remove the color dominancy in
bluish images but the mean value of red color has increased.
The overall performance of [49], [72], and [88] are poor.
PCDE [89] removes the blue color dominancy but it results
with image darkness. Although VCSE [87] reduces the blue
dominancy, the red color is over compensated. When com-
pared to existing methods, the proposed method reduces
color dominancy in bluish images but in some cases where
the red color has mean value of below ten, the results are
affected with red artefacts. Color Mixing [32] removes blue
dominancy in the foreground region only and the blue color
dominancy is not removed in the background region in bluish
images. ACCE [90] removes blue dominancy but the green
color is over compensated.

From Fig. 9, TOPAL [72] and SGUIE-Net [49] do not
remove the color dominancy completely for the bluish green
images. However, the image quality is improved. Although
the color dominancy has been removed by ACCE [90] and
VCSE [87], the resultant images have red artefacts due to
over compensation of red channel. PCDE [89] removes the
color dominancy substantially but the resultant images are
severely affected by image darkness. The resultant images
of Color Mixing [32] do not have color dominancy but the
background images are not clearly visible. MLLE [66] shows
good performances in removing color dominancy as well
as the image quality is also improved. TEBCF [88] shows
poor performances in removing the color dominancy. The
results of the proposed method reveal that it outperforms than
existingmethods in terms of color dominancy removal as well
as contrast enhancement. Fig. 10 shows that TOPAL [72],
TEBCF [88] and SGUIE-Net [49] are poorly performed for
color removal of color dominancy in greenish blue images.
ACCE [90] has the drawback of red artefacts. PCDE [89] is
affected by over darkness. MLLE [66] shows good perfor-
mances in removing color dominancy as well as the image
quality is also improved. TEBCF [88] shows poor perfor-
mances in removing the color dominancy.

In case of yellowish images as in Fig. 11, TOPAL and the
proposed method improve the image quality but the result
of TOPAL has the limitation of over brightness. The yellow

shade is not completely removed by MLLE, SGUIE-Net and
Color Mixing. The blue color is over compensated in ACCE
and VCSE. TEBCF underperforms than other methods.

The results of the proposed method reveal that it outper-
forms than existing methods in terms of color dominancy
removal as well as contrast enhancement. The contrast of
the VCSE [87] is low but color dominancy has removed.
MLLE [66] and Color Mixing [32] show better performance
but they do not show the foreground regions such as shadows
of divers clearly. The proposed method improves the image
quality substantially when compared to existing methods.

B. QUANTITATIVE ANALYSIS
In the literature, the performances of the underwater image
enhancement methods were measured by underwater color
image quality evaluation (UCIQE) metrics [62] and under-
water image quality measures (UIQM) [63]. UCIQE is a
measure of weighted sum of contrast of luminance (Lc),
standard deviation of chroma (σ ) and average of saturation
(λs) weighted with a, b and c respectively in the CIELab color
plane. UCIQE is estimated by

UCIQE = a× Lc + b× σ + c× λc (17)

The authors in [62] considered the degradation of underwa-
ter images by marine snow, image blurring and color casts.
With the help of an image dataset of selective 44 degraded
underwater images to optimize the values of a, b and c such
that their sum is always 1, the authors consider a = 0.4680,
b = 0.2576 and c = 0.2745.

Also, these values are not appropriate to all other under-
water images taken in different environment. However,
we consider the same values of a, b and c as in [62] tomeasure
the UCIQE. The UIQM [63] is a measure of weighted sum
of colorfulness (CF) measured in HSV color space, con-
trast measure (CM) in RGB space and image sharpness (IS)
weighted with a, b and c respectively. The UIQM is given by

UIQM = a× CF + b× CM + c× IS (18)

The values of weights a, b and c vary with the type of
underwater images according to the application for which the
underwater image is improved. For color compensation, a has
more significant than b and c whereas b and c have more
significant for image enhancement to improve the visibility
quality. In [63] the authors consider the values of a= 0.0282,
b = 3.5753 and c = 0.2953 and the model is significant
with a P-value of 0.0339 using 30 randomly selected images
for training which belong to various water conditions and
depth. However, irrespective of the non-uniform values of the
weights of a, b and c for both UCIQE and UIQM, we consider
the values as same as used by the authors in [62] and [63].

In general, greater the values of UCIQE and UIQM cor-
respond to an image show that the better quality of the
image. A 10% increase in the value indicates that the image
visual quality has increased substantially with distinguish-
able improvement. The estimated average values of UCIQE
and UIQM for the resultant images as in Fig.6, Fig. 7,
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TABLE 4. Comparison of average value of uciqe and UIQM of proposed method with existing methods.

Fig. 8, Fig. 9, Fig. 10, Fig. 11 and Fig. 12 obtained by the
methods TOPAL [72], PCDE [89], ACCE [90], MLLE [66],
VCSE [87], TEBCF [88], SGUIE-Net [49], Color Mix-
ing [32] and the proposed method are given in Table 4.
The best values of UCIQE and UIQM are shown in bold
font. From the average values of images of each type as in
Table 4, TOPAL [72] shows poor performances quantitatively
whereas PCDE [89] shows better performances in terms of
UIQM of 0.9548 for bluish images. Although TEBCF [88]
shows poor performances qualitatively, it shows better per-
formances quantitatively in terms of UIQM of 0.7725 and
0.7349 for greenish images and yellowish images respec-
tively. ACCE [90] performs better in terms of UCIQE of
0.6794 and 0.6217 for bluish and greenish blue images
respectively. Also, ACCE [90] performs better in terms of
UIQM of 0.7138 and 0.8220 for greenish blue and haze
images respectively. The proposed method outperforms well
in terms of UCIQE of 0.6559, 0.6581, 0.6495 and 0.6284 for
greenish, bluish green, haze and yellowish images respec-
tively. Further, the proposedmethod performswell in terms of
UIQMof 0.7511 for bluish green images. Hence, it is inferred
that the proposed method is suitable for the enhancement of
underwater images of types such as greenish, bluish, haze,
yellowish and bluish green.

However, the proposed method has a limitation to solve
the vision problems for the dark underwater scenes in deep
sea or night time wherein artificial lighting is required to
capture the images. Fig. 12 depicts the results of the proposed
method for dark underwater images. The result of the pro-
posedmethod for the fish image is over brightened and the red
color is over compensated in case of diver image. Also, the
statistical conditions for the classification of dark underwater
images are not framed since all the three color channels get
completely attenuated in deep sea. The light from artificial
illumination is only available whereas the veiling light is not
available. Hence, the proposed method needs modification
for extending to dark underwater scenes. So, our future work
will focus on the enhancement of the dark underwater images.

FIGURE 12. Results of the proposed method for dark underwater images.

C. ANALYSIS OF COMPUTATIONAL TIME
The computational time complexity, i.e., time taken for the
enhancement of raw image having the pixel resolution of
778 × 1037 by TOPAL [72], PCDE [89], ACCE [90],
MLLE [66], VCSE [87], TEBCF [88], SGUIE-Net [49],
Color Mixing [32] and the proposed method are given in
Table 5. The freely available non commercial trained model
for SGUIE-Net [49] and TOPAL [72] are directly used for this
comparative analysis. Since the trained models need graphics
processor, they have been run using a separate computer
configured with Intel i5 12th Generation, 8GB RAM and a
GPU of NVIDIA GEFORCE RTX 4GB RAM.

From TABLE 5, it is inferred that the proposed method
requires less computational time to enhance the raw under-
water images.

D. ABLATION STUDIES
Usually, ablation studies are conducted to analyze the con-
tribution of a component and its importance in artificial
intelligence systems. The ablation study is also conducted
to investigate the importance of the proposed color correc-
tion. Fig. 13 shows the results of the proposed method with
removal of one component in the overall workflow. Fig. 13(a)
is the original underwater image, Fig. 13(b) is the disparity
corrected image wherein the dominancy of blue color is
completely removed, Fig. 13(c) is the result of Gray-World
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TABLE 5. Computational time complexity for an image size of
778 × 1037 pixels.

method which has red artefacts, Fig. 13(d) is the result of
Gray-World with Disparity Correction which has no red
artefacts, Fig. 13(e) is the result of fusion without disparity
correction and has red artefacts and Fig. 13(f) is the result of
fusion with disparity correction and has no red artefacts.

FIGURE 13. Results of ablation studies of proposed method.

From this ablation study, it is inferred that the proposed
color correction reduces the red artefacts substantially when
it is applied before the traditional color constancy methods.

VII. CONCLUSION
We have presented a new and simple method to enhance the
degraded underwater images in this paper. The strategy uses
the image statistics to estimate the rate of attenuation of light
color for classification of underwater images to restore the
information of degraded color channels. The experimental
results shows that the quality of enhanced images obtained
by the proposed method is free from yellow shades, red arte-
facts and block artefacts compared to the existing methods.
This method does not require special hardware to enhance
the images. We have depicted that the proposed approach
is able to enhance all the underwater images except dark
underwater images. The computational time complexity is
also less compared to the state-of-the-art works. Since, the
proposed method does not deal with the dark underwater
images, research work will be focused on it in the future.
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