
Received 3 July 2024, accepted 19 July 2024, date of publication 29 July 2024, date of current version 8 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3435333

Enhancing Software Fault Prediction Through
Feature Selection With Spider Wasp
Optimization Algorithm
HIMANSU DAS 1, SWARNAVA DAS1, MAHENDRA KUMAR GOURISARIA 1, (Member, IEEE),
SURBHI BHATIA KHAN 2,3, (Senior Member, IEEE), AHLAM ALMUSHARRAF4,
ABDULLAH I. ALHARBI5, AND T. R. MAHESH6, (Senior Member, IEEE)
1School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
2Department of Data Science, School of Science, Engineering and Environment, University of Salford, M5 4WT Manchester, U.K.
3Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon
4Department of Management, College of Business Administration, Princess Nourah Bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
5Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
6Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bengaluru 562112, India

Corresponding author: Himansu Das (das.himansu2007@gmail.com)

This research is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2024R432), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

ABSTRACT Software fault prediction (SFP) is a critical focus in software engineering, aiming to enhance
productivity andminimize costs by detecting faults early. Feature selection (FS) is pivotal in SFP, enabling the
identification of pertinent features for fault prognosis. Existing Feature Selection methods face challenges
such as high computational complexity and poor generalization. This paper introduces Feature Selection
using Spider Wasp Optimization (FSSWO), a novel FS approach employing the Spider Wasp Optimization
(SWO) algorithm, specifically designed for SFP. FSSWO selects optimal feature subsets inspired by spider
wasps’ behavior. The proposed FSSWO approach is compared with several existing feature selection
algorithms, namely FS using Genetic Algorithm (FSGA), FS using Particle Swarm Optimization (FSPSO),
FS using Differential Evolution (FSDE), and FS using Ant Colony Optimization (FSACO). Using eleven
benchmark datasets, the performance of the proposed FSSWO technique has been assessed and contrasted
with its equivalent. The results of the proposed FSSWO approach provide comparable and even superior
results to the existing algorithms. The significance of the results has been statistically validated using Fried-
man and Holm tests. The statistical result of the proposed FSSWO approach reveals that the performance of
proposed FSSWO models is improved which leads to better quality software at reduced costs.

INDEX TERMS Spider Wasp optimization algorithm, feature selection, wrapper method, software fault
prediction.

I. INTRODUCTION
SFP [1] is an essential area of research in software engi-
neering. Software systems are ubiquitous and play a crucial
role in modern society. They are used in various domains,
such as healthcare [2], finance [3], transportation [4], and
communication [5]. However, software systems are prone to
faults, which can lead to significant consequences, such as
system crashes, data loss, security breaches, and financial

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

losses. The early identification of software system flaws can
lower overall costs and boost software quality. The method
of determining and forecasting the likelihood of software
system flaws is known as SFP. Various SFP techniques [6],
including statistical, hybrid and machine learning, can be
used in current times, with each technique having its own
strengths and limitations.

Static analysis and dynamic analysis are the two divi-
sions that may be made for SFP. Dynamic analysis is the
process of examining the program while it is being exe-
cuted, whereas static analysis is the process of studying the

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 105309

https://orcid.org/0000-0002-3995-2768
https://orcid.org/0000-0002-1785-8586
https://orcid.org/0000-0003-3097-6568
https://orcid.org/0000-0002-9285-2555

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

software code without actually executing it. Static analysis
techniques include code inspection, code review, and code
analysis, while dynamic analysis techniques include test-
ing, debugging, and profiling. SFP is a difficult task given
the complexity and heterogeneity of software systems. Soft-
ware systems are often composed of multiple components
and layers, and the interactions between these components
and layers can be intricate. Furthermore, software systems
can exhibit different behavior under different circumstances,
making it difficult to capture their overall behavior accurately.
Presently, there are a lot of different SFP techniques, includ-
ing statistical methods [7], machine learning algorithms [8],
and hybrid approaches [9]. The advantages and disadvantages
of each technique dictate when and where these techniques
can be used for a multitude of test cases [10].

FS [11] serves as an essential step in SFP as it helps to
determine the important characteristics that influence fault
prediction. FS techniques can help reduce the dimensionality
of the data, which can then improve the accuracy and effec-
tiveness of the prediction models. Several FS techniques [12]
have been proposed in the literature, such as filter-based [13],
wrapper-based [14], and embedded-based [15] methods.
However, these methods [11], [12] suffer from various lim-
itations, such as high computational complexity, overfitting,
and poor generalization ability. FS techniques in machine
learning and their applications in various domains are also a
major aspect of today’s field of knowledge. The comparative
evaluation [16] of these techniques on various datasets pro-
vides important information on when to use which technique
and on what type of test case for increased accuracy and
effectiveness in the performance of the model.

Recently, several optimization algorithms have been pro-
posed for FS in SFP. The optimal or nearly optimal solution
to a particular problem can be found using optimization
algorithms, which are heuristic search approaches. Global
and local search are two categories into which optimization
algorithms can be divided. Global search algorithms like
simulated annealing [17], particle swarm optimization (PSO)
[18], genetic algorithms (GA) [19], and ant colony optimiza-
tion (ACO) [20], find the global optimal by searching the
entire solution space. Local search algorithms, such as hill
climbing [21] and the N-Queen algorithm [22], search the
local neighborhood of the current solution and can find a local
optimum. All the aforesaid optimization algorithms require
several hyperparameters to be tuned and sometimes trapped
in local optima. To address this issue, the SWO algorithm is
considered to select the ideal number of the most important
features to identify the fault in the software.

The SWO [23] algorithm is a recently developed optimiza-
tion technique that was motivated by spider wasp activity.
The SWO algorithm has been successful at resolving sev-
eral optimization issues, including FS. The SWO algorithm
is a global search algorithm that simulates the foraging
behavior of spider wasps. Spider wasps are known for
their ability to search for and capture spiders, which are
their primary food source. A comprehensive survey [24] of

the SWO algorithm, which reviews the current status and
future directions of this metaheuristic algorithm, is used as
a reference to influence the proposed methodology. The arti-
cle covers the origins, principles, and variations of SWO,
as well as its applications and performance compared to other
metaheuristics.

The orthodox operation used to perform FS boils down
to being an NP-hard [25] task. This method searches the
solution space in its entirety and thus performs an exhaustive
search. This method for searching leads to a significantly high
computation time for FS, which increases exponentially with
an increase in the feature set. This motivates to reduction of
the dataset dimensions to achieve a boost in accuracy due
to FS, which consecutively carries forward a reduction in
the quantity of time needed to compute the factors. Many of
the previously stated FS techniques using WOA, GWO, and
BOA heavily rely on adjusting hyperparameters, which can
be a time-consuming and expensive computational activity,
to achieve high performance. Furthermore, improper tun-
ing of these hyper-parameters could cause the algorithm to
perform poorly or possibly fall into a local optimum trap.
However, the FS using SWO can perform better than the
existing ones and is less reliant on hyperparameters. It is
designed to efficiently search the feature space without the
need for intensive hyperparameter adjustment.

The purpose of the suggested FSSWO approach is to
acquire an optimal subset of features, whichwould elevate the
classificationmodel’s accuracy by determining the aforemen-
tioned subset of optimal features. In the proposed FSSWO
approach, all columns except the target column are converted
into their correlated representation in binary (0s and 1s),
which is used to determine the features that should be taken
into consideration (1) and the features that should not be taken
into consideration (0) while performing classification. The
proposed FSSWO approach is then carried out as explained
in the paper to compute the optimal number of features that
should be selected to obtain the maximum possible accu-
racy and effectiveness. The results are then to be analyzed
through graphs and statistical analysis. The comparison of
the proposed FSSWO approach to other approaches to draw
derivatives on the metrics of accuracy and efficiency. It would
lead to describing the comparative function r wasps use a
combination of visual and olfactory cues to locate spiders.
It can adjust their search strategy of the proposed FSSWO
approach.

The key contributions of the research article are given
below

• In this article, a novel FS approach called FSSWO has
been proposed for SFP using the SWO algorithm.

• The proposed FSSWO approach is compared with other
existing FS algorithms, namely FSGA, FSDE, FSACO,
and FSPSO, and evaluated on eleven benchmark SFP
datasets.

• The features of the datasets along with the experimen-
tal results are analyzed to draw derivatives from the
acquired results.

105310 VOLUME 12, 2024

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

• Statistical analysis (Friedman Test and Holm Test) has
also been performed to verify the significance of the
difference in the results between the aforementioned
approaches and the proposed FSSWO approach.

The remainder of this paper follows the following scheme
of organization. A survey of related literature is included in
Section II. The problem statement is presented in Section III.
Section IV proposed the methodology for FS. Section V
discusses the results and their analysis. Section VI contains
statistical analysis including the Friedman test and Holm’s
procedure. Section VII provides a conclusion and the paper’s
future focus.

II. RELATED WORKS
SWO is an optimization process influenced by nature that has
derived a basis from the hunting behavior of spider wasps.
The SWO algorithm imitates the hunting characteristics of
spider wasps, which search for their prey by sensing the
vibration of the prey and moving towards the source of the
vibration. The algorithm consists of three phases: searching,
chasing, and attacking. In the searching phase, the algorithm
explores the search space to find potential solutions. In the
chasing phase, the algorithm moves towards the best solution
found in the searching phase. Finally, in the attacking phase,
the algorithm intensifies the search around the best solution
to refine the solution.

SFP [1] is a critical and significant activity during the abo-
riginal stage of software development life cycle for increase
software quality and reducing the maintenance cost. The
early detection of defect can lead to quicker problem resolve
and the transferral of rectifiable software. SFP intensify
the software quality by evaluating faults using previous
data. A comprehensive evaluation of SFP methods based
on machine learning which highlighted the effectiveness of
machine learning algorithms and identified the key factors
affecting the prediction performance has also been taken into
consideration as observed previously [26]. It also provides
a roadmap for upcoming avenues for this field of research.
The basics of FS and minute improvements through many
years improve the current performance of models through a
generative effect [1], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38]. Software testing also goes hand in
hand with the proposed methodology [39].
There have been extensively researched articles written

previously which present an insight into optimal FS [40],
[41], [42], [43], [44]. For example, a comprehensive review
of FS techniques and their applications in machine learn-
ing has been carried out before which discussed various
types of FS methods, their advantages, disadvantages, and
provided guidelines for selecting appropriate techniques for
different types of datasets [45]. A survey of FS techniques
and their applications in cancer research has been performed
previously [46]. There are a multitude of different methods
of FS based on similar concepts to the above-mentioned

papers [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57].

Researchers have suggested and investigated numerous
wrapper-based FS techniques that rely on optimisation algo-
rithms over the past ten years. A. Fatima et al. [96] developed
an FS technique based on GA. The detection of android
malware utilised their FS model. To detect faults in power
distribution networks, Cho et al. [97] presented an FS model
depending on PSO for feature selection and SVM parameter
optimisation. Dixit et al. [98] suggested another FS model
employing DE for the classification of text and image data.
To enhance the performance of the classifiers, they combined
DE with NB and SVM classifiers in their model. ACO was
used in an FS strategy.

A previously written article which proposes a hybridmodel
combining neuro-fuzzy systems and feature reduction tech-
niques for classification tasks is also relevant to the current
methodology. The proposed model used fuzzy rules to cap-
ture the non-linear relationships between input features and
output classes, while feature reduction methods are employed
to enhance the efficiency of the classification process [58].
The model was tested on various datasets, and the results
demonstrated its effectiveness in improving classification
accuracy and reducing computational costs. Research has
been done previously on a neuro-fuzzy model for biomedical
data analysis that combines the strengths of neural networks
and fuzzy logic. The proposed model employs methods for
reducing features to enhance the performance and efficiency
of the analysis. The article uses trials on two biomedical
datasets to show that the method is successful [59]. There
has also been research on a linguistic neuro-fuzzy model for
disease classification. The proposed model uses fuzzy logic
and linguistic variables to address the ambiguity and accuracy
issues with medical data. Real-world medical datasets are
used to assess the model’s performance, demonstrating its
effectiveness in accurately classifying diseases [60]. Articles
that have been previously written also provide light to the use
of different methods for Classification problems related to the
methods mentioned above [61], [62], [63], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73], [74]. The aforesaid FS
algorithms could be applied in different diversified area [75],
[76], [77], [78], [79], [80], [81], [82], [83], [84], [85] of
research to solve real life problems.

III. PROBLEM STATEMENT
This section represents the formulation of the problem that
has been used in this paper. FS refers to a technique for
picking the best subset of columns (used as features) from the
features that are present in the dataset in order to increase the
performance of classification models. The process is used to
select the elements that have a significance in the process of
making the decision for accurate results. The most important
group of characteristics is selected by removing superfluous
and pointless features, in order to lower the cost of compu-
tation for the problem. This is an NP-hard problem, which

VOLUME 12, 2024 105311

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

indicates that it will not be able to be solved in polynomial
time. Obtaining the most effective feature subset in order to
boost the process’ overall performance of classification is
the end goal for FS. The process of FS is composed of the
four phases : (i) Generating a subset of features; (ii) eval-
uating and comparing fitness levels by using the selected
subsets of characteristics; (iii) Verifying that the requirements
for termination have been satisfied and doing the processes
(i) and (ii) if they have not been met; validating the results
by using the optimal characteristic subset. The formulation
of the complication for FS is carried out by taking in d
significant features from a total set of D features, which can
be constituted in Equation (1).

f (x) = min_err(d) and d ⊂ D

Minimize f(x), Subject to Condition,

x = |D| and x ≥ 0 (1)

IV. BASIC CONCEPTS OF SWO ALGORITHM
The SWO Algorithm (SWOA) is a metaheuristic optimiza-
tion algorithm inspired by the hunting behavior of spider
wasps. Spider wasps are known for their unique hunting
strategy, where they search for spiders, paralyze them with
a venomous sting, and then carry them back to their nests for
their larvae to feed on. SWO explores the space of possible
feature subsets by representing each solution (a potential
subset of features) as a spider wasp’s position in the search
space. The algorithm iteratively explores different combina-
tions of features, evaluating their performance based on a
fitness function. The SWOA algorithm mimics this strategy
by using two types of agents: spiders and wasps. Spiders
in the SWOA algorithm represent possible answers to the
optimization issue. Each spider is represented by a binary
string of length N, where N is the number of decision vari-
ables in the problem. The value of each bit in the binary
string represents whether the corresponding decision vari-
able is selected or not. For example, if the problem has
three decision variables, the binary string ‘‘101’’ represents
a solution where the first and third variables are selected,
and the second variable is not selected. Wasps in the SWOA
algorithm represent exploratory agents that help spiders find
better solutions. Each wasp is also represented by a binary
string of length N, but its bits have a different meaning
than those of spiders. A wasp’s bits represent the degree of
similarity between the wasp and each spider, based on the
Hamming distance between their binary strings. The Ham-
ming distance between two binary strings is the number of
bits that differ between them. For example, if a spider has
the binary string ‘‘101’’ and a wasp has the binary string
‘‘111’’, the Hamming distance between them is 1. The SWOA
algorithm starts by initializing a population of spiders and
wasps randomly. The fitness of each spider is evaluated by
the implementation of a fitness function that determines how
effectively the spider’s binary string embodies a suitable
response to the optimization problem. The fitness of each
wasp is calculated based on its similarity to the spiders, using

the Hamming distance. The spiders and wasps are then sorted
by their fitness, and the top half of each group is selected for
further breeding. New spiders are created by combining the
first half of the top spiders with the second half of the top
wasps, using a crossover operation. The crossover operation
selects a random point in the binary string and swaps the
bits on either side of the point between the spider and the
wasp. For example, if the spider has the binary string ‘‘101’’
and the wasp has the binary string ‘‘111’’, and the crossover
point is at position 2, the new spider will have the binary
string ‘‘111’’. This operation helps the spiders explore new
areas of the search space by incorporating the best features
of the wasps. New wasps are created by mutating the second
half of the top wasps, using a bit-flip operation. The bit-flip
operation selects a random bit in the binary string and flips its
value. This operation helps the wasps explore new areas of the
search space by creating small perturbations to their binary
strings. The spiders and wasps are then combined into a new
population, and each agent’s fitness is assessed once more.
The process of selection, breeding, and mutation is recurred
for a predetermined number of times. or until a satisfactory
solution is found. The SWOA algorithm has demonstrated to
be successful in resolving a variety of optimization issues,
such as feature selection in machine learning. Mathemat-
ically, the SWOA algorithm fundamental parameters such
as (i) spider representation; (ii) wasp representation; (iii)
hamming distance is shown in Equation (2), (3), and (4)
respectively.

Si =
(
si,1, si,2, . . . , si,N

)
(2)

Wj =
(
wj,1,wj,2, . . . ,wj,N

)
(3)

The Hamming distance between two binary strings Si andWj
can be defined in Equation (4).

Hi,j =

N∑
k=1

δ
(
si,k ,wj,k

)
(4)

Here, δ(a, b) is the Kronecker delta function, which is 1 if
a = b and 0 otherwise.
The fitness function used in the SWOA algorithm for FS

can vary depending on the specific problem being solved.
In this case, Gaussian Naive Bayes (NB) algorithm, Deci-
sion Tree Classifier (DTC), K-Nearest Neighbors Classifier
(KNN) and Linear Discriminant Analysis (LDA) are used
as fitness functions. These are probabilistic algorithms of
machine learning which are commonly used for classification
tasks. The fitness function for the SWOA algorithm using
these classifiers (CLF) can be defined in Equation (5).

Fitness (Si) = accuracy
(
CLF

(
XSi , y

))
(5)

Here, XSi is the feature subset represented by spider Si,y is the
target variable, and accuracy

(
CLF

(
XSi , y

))
is the accuracy

of the CLF algorithm trained on XSi and Y after performing
train test split operation with testing size = 0.2 (20%).

105312 VOLUME 12, 2024

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

The crossover operation used in the SWOA algorithm can
be represented by Equation (6).

Crossover
(
Si,Wj

)
=

(
si,1, si,2, . . . , si,k−1,wj,k ,wj,k+1, . . . ,wj,N

)
(6)

Here, k is a random crossover point selected uniformly at
random from 1 to N −1. The bit-flip mutation operation used
in the SWOA algorithm can be represented in Equation (7).

Mutation
(
Wj

)
=

(
wj,1,wj,2, . . . ,wj,k−1, 1 − wj,k ,wj,k+1, . . . ,wj,N

)
(7)

Here, k is a random bit position selected uniformly at random
from 1 to N .
In summary, the SWOA algorithm is a metaheuristic

optimization algorithm inspired by the hunting behavior of
spider wasps. It uses two types of agents, spiders and wasps,
to explore the search space efficiently and maintain diversity
in the population. The algorithm can be applied to various
optimization problems, including FS in machine learning.
The fitness function used in the SWOA algorithm varies
based on the particular issue being treated, and the crossover
and mutation operations help the spiders and wasps explore
new areas of the search space.

V. PROPOSED FEATURE SELECTION APPROACH
USING SWO (FSSWO)
In this section, the proposed FSSWOmethod is broken down
into several steps such as (i) initialization, (ii) fitness eval-
uation, (iii) Spider Movement (Crossover), and (iv) Wasp
Movement (Mutation).

A. INITIALIZATION OF PARAMETERS
In this step, the initial population of spiders and wasps are
randomly generated within the search space. The size of the
population is defined as (Number of spiders/Wasps(i/j)) ∗

(Number of features(N)). The spider population and wasp
population is denoted in Equation (8), and (9) respectively.

S =

S1,1 . . . S1,N/2 . . . S1,N
...

. . .
... /

...

Si/2,1 . . . Si/2,N/2 . . . Si/2,N
... /

...
. . .

...

Si,1 . . . Si,N/2 . . . Si,N

iχN

(8)

W =

W1,1 . . . W1,N/2 . . . W1,N
...

. . .
... /

...

Wj/2,1 . . . Wj/2,N/2 . . . Wj/2,N
... /

...
. . .

...

Wj,1 . . . Wj,N/2 . . . Wj,N

jχN

(9)

B. FITNESS EVALUATION
The fitness of each subset of features (each row of spiders
and wasps) is calculated by passing each subset into the
fitness function, and the results are stored in two new arrays

FIGURE 1. Process of crossover for spiders.

(spider_fitness and wasp_fitness). Two new populations are
then created (spider_sorted and wasp_sorted) which store the
subsets of features in ascending order of error (fitness value)
for the spider and wasp populations respectively. The top half
of these populations are stored in newly defined spider_top
and wasp_top populations respectively for the current iter-
ation. The fitness functions used in this method implement
NB, DTC, KNN and LDA as four different fitness functions
that are passed into the main SWO algorithm function for
the results. The calculation of fitness (Fi) for each selected
subset of features(i) is performed by calculating the summa-
tion of differences between the original and predicted results(
Errorgi

)
and dividing by the total number of instances (Ni)

as shown in Equations (10) and (11).

Errorgi =

[
y′gi ̸= ygi

]
(10)

Fi =

∑Ni
i=1 Error

g
i

Ni
(11)

C. SPIDER MOVEMENT (CROSSOVER)
A new blank population is created (spider_new) and feature
subsets are assigned by performing crossover as shown in
Fig. 1.

The Crossover operation is done by concatenating certain
features from the spider_top(St) and wasp_top(Wt) popu-
lation which are selected as depicted in Equation(12) and
Equation(13).

FeatjSj = St

[
Rem

(
j,
Ns
2

)] [
:
Nfeat
2

]
(12)

FeatjWj = Wt

[
Rem

(
j,
Nw
2

)] [
Nfeat
2

:

]
(13)

VOLUME 12, 2024 105313

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

FIGURE 2. Process of mutation of wasps.

Here, FeatSj and FeatWj denote the features selected from St
and Wt for iteration number j respectively. Rem(a, b) calcu-
lates the remainder when dividing a by b.Ns and Nw represent
number of spiders and number of wasps respectively andNfeat
represents the total number of features available. The features
from the spiders and wasps are then concatenated to retrieve
the original number of features and the newly formed subset
of feature for each iteration is appended to a new population
(Snew).

D. WASP MOVEMENT (MUTATION)
A new blank population is created (wasps_new) and feature
subsets are assigned by performing mutation as shown in
Fig. 2.

The Mutation operation is performed by randomly chang-
ing the selection of certain features in the wasp_top popula-
tion which gives rise to change in the features being selected
for fitness calculation and thus changing the feature subset
while keeping high performing subsets as a base. The newly
formed feature subsets are then stored in a new population
(Wnew) as depicted in Equation(14).

MutWji = Wt

[
Rem

(
j,
Nw
2

)]
[i] × [Rand(0, 1)] (14)

Here, MutWji is the mutated value for the feature with index
j for iteration number l̇ and Rand(a, ḃ) returns an integer
within the bounds of a and b.

Then the initial spider and wasp populations are concate-
nated with the newly formed populations (spiders_new and
wasps_new). Then the fitness of each of the feature sub-
sets are calculated and compared to the global_best fitness
for all iterations. Whenever a local fitness value exceeds a
global fitness value, the global best fitness and feature set are
updated to the current better values and are then appended
to the error curve before moving on to the next iteration.
Up until the maximum number of iterations is achieved, this
entire procedure continues, and the final variables that are
returned are global_best_features, global_best_fitness and
curve (which contains the global_best_fitness for successive

FIGURE 3. Representation FSSWO for feature selection.

iterations until current iteration(i) reaches maximum num-
ber of iterations). The complete process is shown through
flowcharts as depicted in Fig 3 (Spider Wasp Optimization
Algorithm use) and Fig 4 (Complete process of FS used).
The algorithm for the implementation of FSSWO is provided
in Algorithm 1.

VI. RESULT ANALYSIS
This section gives a brief of the datasets used in this
experiment, experimental setups, and analysis of results for
11 number of datasets.

A. DATASET DESCRIPTION
The research has been performed using eleven datasets of
software defects that were open-source and obtained from
the PROMISE repository [86], which is run by NASA. This
repository provides standardized datasets that are commonly
used by software engineering researchers to benchmark and
compare different techniques for identifying and preventing
software faults. By analyzing code attributes in these datasets,
researchers develop models that can predict future faults by
identifying patterns and characteristics commonly associated
with software faults. This approach to software fault pre-
diction has led to improved techniques for identifying and
preventing software faults, which ultimately enhances the
general effectiveness and dependability of software systems.

105314 VOLUME 12, 2024

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

FIGURE 4. Complete feature selection process.

TABLE 1. Datasets and number of instances and features.

The datasets used in the experiments have specific attributes
that are described below in Table 1.

The datasets that have been used contain static code
attributes of Java software systems which provide important
information to dictate if the software defects present in a
system can be attributed to singular features or a combination
of features based on a binary feature that represents if the
current software contains a defect or not, which in turn,
provides a basis for analysis of the corresponding features that

Algorithm 1 Feature Selection Using SWO
1. Initialize n_features, n_iterations, n_spiders and n_wasps
2. Computation of training and testing data
3. Generate binary populations for spiders and wasps randomly
4. for (i =1 to n_iterations) do
5. Compute the fitness for each subset of features present in the

spider population(S_i) and wasp population(W_i)
6. Sort spiders and wasps by fitness and store in spider_sorted and

wasp_sorted respectively
7. Select top half of sorted populations and store in spider_top and

wasp_top respectively
8. for (j =1 to n_spiders) do
9. Perform crossover for spiders by extracting features from

spider_top and wasp_top populations
using () and () for n_spiders

10. Append each subset to a new population (spider_new)
11 end
12 for (j =1 to n_wasps) do
13. Perform mutation of wasps by assigning random binary

values to the features of wasp_top population
using () for n_wasps

14. Append each feature subset to new population
(wasp_new)

15 end
16. Concatenate spider_new to spiders population and

wasp_new to wasps population
17. Sort both spiders and wasps population in increasing order

of fitness and select the top n_spiders and n_wasps
feature subsets to initialize the spider and wasp
populations for the next iteration

18. Store feature set with best fitness value for output as local
best
19. Check if local best is better than global best and update

the values as necessary
20. i = i+1
21 end
22. Use the global best selected subset of features

for classification

may or may not have caused the defect to occur. For example,
in the datasets, some columns present are as described in
table 1 above. These columns are : (i) loc: How many lines
of code there are in the source file. This column represents
the total number of lines that contain code, comments, and
whitespace, (ii) v(g): The McCabe complexity of the code,
i.e., the number of decision points plus one. Based on the
number of decision points in the control flow graph, this
column represents the complexity of the code. (iii) ev(g):
The McCabe complexity of the code, weighted by the control
flow graph’s edge count. This column is similar to v(g) but
considers the number of edges in the control flow graph.
(iv) iv(g): The McCabe complexity of the code, weighted by
the control flow graph’s number of independent pathways.
This column is similar to v(g) and ev(g) but considers the
number of independent paths in the control flow graph. (v) n:
a This column represents the total number of statements that
are executable in the source code, including statements within
loops and conditions. (vi) v: TheHalstead volume of the code,
i.e., the total number of operations and operands. This column
is a measure of the size of the code based on the quantity of
distinct operators and operands. (vii) l: The Halstead program

VOLUME 12, 2024 105315

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

length of the code, i.e., the total number of operations and
operands. This column is similar to v but includes duplicates.
(viii) d: The Halstead program difficulty of the code, i.e., the
ratio of the number of unique operators and operands to the
total number. Based on the proportion of unique operators and
operands to the overall number, this column indicates how
challenging the code is to comprehend. (ix) i: The Halstead
intelligence of the code, i.e., the proportion of distinctive
operators to distinctive operands. This column is a measure
of the intelligence or expressiveness of the code based on
the ratio of unique operators to unique operands. (x) e: The
Halstead effort of the code, i.e., the product of program length
and program difficulty. This column is a measure of the effort
required to develop and maintain the code based on program
length and program difficulty.

Here, the target column is taken as Defective as it provides
us with information if the software under analysis contains
a defect or not. The other columns are then treated as fea-
tures on which the FS model is run, which provides us with
information on the amount of contribution that each feature
has in influencing the software having or not having a defect
present, thus providing a basis on which features can be
excluded from the analysis which provide little to no signif-
icant effect on the performance of the model and increase
the accuracy of the model leading to better predictions for
classification.

B. EXPERIMENTAL SETUP
In this experiment, the simulation environment used is
Jupyter Notebook with Python version (3.9.6). along with
details of the hardware in the system as follows; a processor
with an Intel i5-10300HCentral Processing Unit, with a pulse
generation of frequency 2.50GHz from the clock and 16GB
capacity for Random Access Memory. The number of wasps
and spiders and the max number of generations(iterations)
that were used in the individual methodologies have been
taken as 20 and 200, respectively. The termination criterion
for every experiment is set to 200.

C. EXPERIMENTAL ANALYSIS
In the ongoing section, we compare the error curves of each
of the algorithms with respect to each of the four classi-
fiers taken in order to calculate fitness. The error curves
for each dataset have been taken into another jupyter note-
book for comparison and the ‘‘mathplotlib.pyplot’’ library
has been used to compare the error curves for all of the
algorithms for each classifier and successive datasets respec-
tively. This gives a general idea about how each of the
algorithm’s function at different points of dimensions and
iterations and provides a deeper understanding of how each
algorithm reacts to different situations. The time complexity
of feature selection using spider wasp optimization (FSSWO)
depends on a number of factors, including the number of
features, the number of iterations, and the parameters of the
FSSWO algorithm. However, in general, the time complexity
of FSSWO isO(n∗t), where n is the number of features and t is

FIGURE 5. Fitness error curve for dataset (CM1) for the five distinct FS
approaches.

FIGURE 6. Fitness error curve for dataset (KC3) for five distinct FS
approaches.

the number of iterations. The graphs depicted for convergence
curves of five distinct FS algorithms for various classifiers
in Fig. 5-6 and the table 2 depict the performance of each
algorithm.

As seen from the graphs presented above which display the
performance of the different models for the different datasets
used in the experiment, the proposed methodology provides
comparable or better results from the other FS methods used
for classification with minimal effect on performance due to
the dimensionality of the dataset, be it the number of features
or the number of instances, whereas, the other models may

105316 VOLUME 12, 2024

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

TABLE 2. Comparison of accuracy of the FSSWO algorithm with other algorithms and their average selected features.

VOLUME 12, 2024 105317

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

TABLE 2. (Continued.) Comparison of accuracy of the FSSWO algorithm with other algorithms and their average selected features.

differ in a large range for performance depending on the
dimensionality of the provided dataset. The results that can
be seen in Table 2 indicate that the proposed methodology
of FS using the Spider Wasp Optimization (SWO) Algorithm
generally produces consistently good results that rivals the
performance of the other algorithms used for comparison.
It can also be seen from the graphs Fig. 5-6 and table 2
provided above that the proposed methodology of FS works
better with LDA classifier and KNN classifier than the NB
classifier and DTC by a slight margin consistently through
most of the datasets.

Since the datasets are very varied in their number of
instances and features, this provides a solid understand-
ing that the proposed methodology works in a number of
situations and provides consistent and comparable results
even with classifiers with lower results. Table 3 outlines the
various hyperparameters used for feature selection in five
different algorithms: GA, DE, ACO, PSO and SWO. The
hyperparameters include population size, epoch, mutation
rate, crossover rate, weight, C1, C2, scaling factor, number
of spiders, number of wasps, α, ρ, and β. Population size
specifies the number of solutions generated in each itera-
tion of the algorithm, which in this case is 20 for all five
algorithms. Epoch defines the number of iterations that the
algorithm runs, which is 200 for all five algorithms. Mutation
rate controls the probability of a gene in an individual being
mutated, with GA using a rate of 0.8 while PSO, DE andACO
do not use mutation. Crossover rate is specific to GA and DE
and determines the probability of two individuals exchanging
genetic information to produce new offspring, with a rate of
0.5 for GA and 0.7 for DE respectively. Weight is specific to
PSO and is used to calculate the individual’s velocity during
optimization. C1 and C2 are unique parameters used in PSO

TABLE 3. Hyperparameters used in the experiment.

to maintain equilibrium between a particle’s present location
and its established optimum position, with PSO using a value
of 1 for both C1 and C2. Scaling factor is specific to DE and
controls the amount by which the difference between two
individuals is scaled to generate a new individual, with DE
using a factor of 0.5. Number of spiders and number of ants
is specific to SWO. Finally, α, ρ, and β are parameters used in
ACO to control the probability of selecting a particular path,
with values of 1, 0.1, and 0.5, respectively.

VII. STATISTICAL ANALYSIS
The Statistical Analysis section of this article on SFP using
SWO for FS is a critical component of the research [87], [88].
The main design of this section is to judge and interpolate

105318 VOLUME 12, 2024

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

TABLE 4. Friedman ranking of algorithms.

VOLUME 12, 2024 105319

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

TABLE 4. (Continued.) Friedman ranking of algorithms.

information from the results obtained from the experimental
study conducted in the previous section. There are also certain
factors that must be kept in mind in order to procure accurate
results from statistical analysis [89].

This section discusses the application of the Friedman
Test [90], a nonparametric rank-based test used to compare
multiple paired groups of data (more than or equal to three)
that have been tested under different situations. Specifically,
the test is useful for analyzing the performance of various
models for ranking by comparing them to the proposedmodel
and its results. The test involves ranking all of the groups
that were matched, from lower to higher, continuing for
every instance, and then calculating the average rank of each
column by using the summation for all rows. If all models
are equivalent, which is indicated if there is no noteworthy
difference among them, the null hypothesis is accepted [91].
In contrast, The null hypothesis is disproved if the models are
not equal and subsequently, the acceptance of the alternative
hypothesis. If the p-value is less than the threshold at which a
difference might be considered significant, It denotes that the
nullifying hypothesis is ignored and that at least two models
are considerably distinct from one another. In the end, every
single model is attributed a rank based on its performance
for the task at hand (classification) during the course of the
experimentation [92]. The mean rank of all of the models
that have been evaluated (FSSWO, FSDE, FSGA, FSACO,
FSPSO andWithout FS), including the different models used
in classification (NB, DTC, KNN and LDA) is calculated as
described in Equation (15) and the outcomes are depicted in
Tables 4. Then, averaging over all related models’ rankings is
calculated., by using the division of the number ofmodels that
have been used for classification as denominator and the total
added value of the ranks of the usedmodels as numerator. The
norm of all ranks of all of the used models FSSWO, FSDE,

TABLE 5. Calculation of average rank.

FSGA, FSACO, FSPSO and Without FS) for all of the used
datasets is calculated as depicted in Equation (16) and the
result is differentiated in Table 4.

AvgRankModels =

∑
rank of all classificationmodels

Number of classificationmodels
(15)

AvgRank(Datasets) =

∑
AvgRank(Models)
Datasetsused

(16)

After Calculation of Average ranks for all the algorithms for
each dataset in Table 4, we then calculate the total average
rank of all the algorithms as shown in Table 5.

The Holm procedure [93], [94], [95] is commonly
employed for Post Hoc testing after the null hypothesis

105320 VOLUME 12, 2024

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

TABLE 6. Holm’s method analysis.

TABLE 7. ANOVA test result for six models with 11 number of datasets.

has been taken out of the possibilities and subsequently,
the alternative hypothesis has been regarded as the current
hypothesis. By utilizing the value of p and the value of z,
the Holm procedure assesses the performance of each model
relative to others. This is achieved through a comparison
with other models. The calculation of z-value is done from
Equation (17). The determined z-value and the normal distri-
bution table are used to determine the value of p.

z =

(
AvgRanki − AvgRankj

)√
V (V+1)

6U

(17)

From the values that are calculated and represented in Table 6,
an indication is identified that in the majority of the values,
the p-values are higher than the value of alpha/(M− i), except
in FSSWO and FSPSO models. This shows that, in compar-
ison to all other models save the FSPSO model, the FSSWO
model is statistically significant and produces superior out-
comes. Analysis of variance (ANOVA) is a statistical analysis
technique to determine the experimental results are signifi-
cance or not by accepting or rejecting the null or alternative
hypothesis. It is used to compare means among models using
F-distribution to determine the all the models are same or
different.In experimental conditions, the FSSWO model is
seen to be better than FSPSO model, although when taking
statistics into account, the performance variances amongst
the models presented are not that substantial. Table 7. shows
the result of ANOVA Test for six models with 11 number of
datasets. Here, the features of Table 7 represents six mod-
els(Without FS, FSGA, FSDE, FSACO, FSPSO and FSSWO)
respectively.

VIII. DISCUSSION
This section addresses the brief discussion on the strengths
and weaknesses of each compared algorithms used in this
experiment. The FS models are generally NP-hard problems.
This method searches the solution space entirely and by
performing an exhaustive search. This method for searching
leads to a significantly high computation time for FS, which
increases exponentially with an increase in the feature set.
In this experiment, wrapper-based approach of FS approach
has been used for analysis. In this approach, the features
are selected by training the classifiers using an initial sub-
set of features and founded on the inferences drawn from
the previous model, a decision is taken whether to add or
remove features. In this experiment, four FS models such as
FSGA, FSDE, and FSPSO has been considered for analysis.
All the aforesaid FS based optimization algorithms require
several hyperparameters to be tuned and sometimes trapped
in local optima. To address this issue, the FSSWO algorithm
is considered to select the ideal number of the most important
features to identify the fault in the software.

IX. CONCLUSION
The proposed FSSWO method efficiently identifies the
optimal subset of features using the SWOmetaheuristic opti-
mization algorithm. The data considered for predicting the
software faults are high dimensional in nature and to select
the applicable information from data by using several FS
approaches. For the experiments, 12 open-source software
defect datasets from the PROMISE repository of NASA
were used. FSSWO demonstrates significant improvements
in both precision and computational efficiency compared to

VOLUME 12, 2024 105321

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

alternative models like FSGA, FSPSO, FSDE, and FSACO,
across various classifiers including Gaussian NB, DTC,
KNN, and LDA. The selected feature subset size achieved
by FSSWO is competitive with some classifiers and superior
with others. Moreover, it pick out the most befitting and
optimal number of features while ignoring noise and irrel-
evant features. Statistical analysis employing the Friedman
and Holm procedures confirms the superiority of the pro-
posed FSSWO approach in terms of accuracy. However, it is
worth noting that FSSWO requires more time to train the
model compared to other conventional FS methods, although
it is still faster than the other comparative methods dis-
cussed in this study. Future research avenues could explore
hybrid approaches integrating different metaheuristic algo-
rithms with wrapper-based FS methods to optimize feature
selection for diverse classification models. This FS algorithm
could be further improved with different classifiers can be
embedded in the future to provide even better accuracy. Addi-
tionally, the FSSWO model holds promise for applications
such as advertisement click-through rate prediction, weather
forecasting, hazardous asteroid classification, disease predic-
tion, space debris classification, and language analysis.

REFERENCES

[1] C. Catal, ‘‘Software fault prediction: A literature review and current
trends,’’ Expert Syst. Appl., vol. 38, no. 4, pp. 4626–4636, Apr. 2011.

[2] Z. Lian, Q. Zeng, W. Wang, T. R. Gadekallu, and C. Su, ‘‘Blockchain-
based two-stage federated learning with non-IID data in IoMT system,’’
IEEE Trans. Computat. Social Syst., vol. 1, no. 2, pp. 1–10, Jul. 2022.

[3] B. S. Kumar and V. Ravi, ‘‘A survey of the applications of text mining in
financial domain,’’Knowl.-Based Syst., vol. 114, pp. 128–147, Dec. 2016.

[4] A. M. Judith, S. B. Priya, R. K. Mahendran, T. R. Gadekallu, and
L. S. Ambati, ‘‘Two-phase classification: ANN and A-SVM classifiers
on motor imagery BCI,’’ Asian J. Control, vol. 25, no. 5, pp. 3318–3329,
Sep. 2023.

[5] S. Hakak, T. R. Gadekallu, P. K. R. Maddikunta, S. P. Ramu, M. Parimala,
C. D. Alwis, and M. Liyanage, ‘‘Autonomous vehicles in 5G and beyond:
A survey,’’ Veh. Commun., vol. 39, Feb. 2023, Art. no. 100551.

[6] C. Catal and B. Diri, ‘‘A systematic review of software fault pre-
diction studies,’’ Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354,
May 2009.

[7] G. Xie, G. Hou, Q. Pei, and H. Huang, ‘‘Lightweight privacy pro-
tection via adversarial sample,’’ Electronics, vol. 13, no. 7, p. 1230,
Mar. 2024.

[8] X. Zhang, J. Wang, J. Xu, and C. Gu, ‘‘Detection of Android malware
based on deep forest and feature enhancement,’’ IEEE Access, vol. 11,
pp. 29344–29359, 2023, doi: 10.1109/ACCESS.2023.3260977.

[9] C. Zheng, Y. An, Z. Wang, H. Wu, X. Qin, B. Eynard, and Y. Zhang,
‘‘Hybrid offline programming method for robotic welding systems,’’
Robot. Comput.-Integr. Manuf., vol. 73, Feb. 2022, Art. no. 102238, doi:
10.1016/j.rcim.2021.102238.

[10] S. Xu, H. Dai, L. Feng, H. Chen, Y. Chai, and W. X. Zheng, ‘‘Fault
estimation for switched interconnected nonlinear systems with external
disturbances via variable weighted iterative learning,’’ IEEE Trans. Cir-
cuits Syst. II, Exp. Briefs, vol. 70, no. 6, pp. 2011–2015, Sep. 2023, doi:
10.1109/TCSII.2023.3234609.

[11] J. Cai, J. Luo, S. Wang, and S. Yang, ‘‘Feature selection in machine
learning: A new perspective,’’ Neurocomputing, vol. 300, pp. 70–79,
Jul. 2018.

[12] B. Amarnath, S. Balamurugan, andA.Alias, ‘‘Review on feature selection
techniques and its impact for effective data classification using UCI
machine learning repository dataset,’’ J. Eng. Sci. Technol., vol. 11, no. 11,
pp. 1639–1646, 2016.

[13] G. P.Wang and J. X. Yang, ‘‘SKICA: A feature extraction algorithm based
on supervised ICA with kernel for anomaly detection,’’ J. Intell. Fuzzy
Syst., vol. 36, no. 1, pp. 761–773, Feb. 2019, doi: 10.3233/jifs-17749.

[14] Z. Xuemin, D. Haitao, X. Zenggang, R. Ying, L. Yanchao, L. Yuan,
and H. Delin, ‘‘Self-organizing key security management algorithm in
socially aware networking,’’ J. Signal Process. Syst., vol. 96, nos. 6–7,
pp. 369–383, Jul. 2024, doi: 10.1007/s11265-024-01918-7.

[15] S. Maldonado and J. López, ‘‘Dealing with high-dimensional class-
imbalanced datasets: Embedded feature selection for SVM classifica-
tion,’’ Appl. Soft Comput., vol. 67, pp. 94–105, Jun. 2018.

[16] O. Villacampa, ‘‘Feature selection and classificationmethods for decision
making: A comparative analysis,’’ Ph.D. dissertation, Nova Southeastern
Univ., Davie, FL, USA, 2015.

[17] E. Wang, Y. Yang, J. Wu, W. Liu, and X. Wang, ‘‘An efficient
prediction-based user recruitment for mobile crowdsensing,’’ IEEE
Trans. Mobile Comput., vol. 17, no. 1, pp. 16–28, Jan. 2018, doi:
10.1109/TMC.2017.2702613.

[18] G. Sun, Z. Xu, H. Yu, X. Chen, V. Chang, and A. V. Vasilakos, ‘‘Low-
latency and resource-efficient service function chaining orchestration in
network function virtualization,’’ IEEE Internet Things J., vol. 7, no. 7,
pp. 5760–5772, Jul. 2020, doi: 10.1109/JIOT.2019.2937110.

[19] M. Mitchell, ‘‘Genetic algorithms: An overview,’’ Complex, vol. 1, no. 1,
pp. 31–39, 1995.

[20] M. Dorigo and T. Stutzle, Ant Colony Optimization: Overview and Recent
Advances. Cham, Switzerland: Springer, 2019, pp. 311–351.

[21] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, ‘‘The max-min hill-
climbing Bayesian network structure learning algorithm,’’Mach. Learn.,
vol. 65, no. 1, pp. 31–78, Oct. 2006.

[22] H. S. Stone and J. M. Stone, ‘‘Efficient search techniques—An empirical
study of the N-Queens problem,’’ IBM J. Res. Develop., vol. 31, no. 4,
pp. 464–474, Jul. 1987.

[23] H. E. Evans, ‘‘Comparative ethology and the systematics of spider
wasps,’’ Systematic Zoology, vol. 2, no. 4, p. 155, Dec. 1953.

[24] M. Abdel-Basset, R. Mohamed, M. Jameel, andM. Abouhawwash, ‘‘Spi-
der wasp optimizer: A novel meta-heuristic optimization algorithm,’’
Artif. Intell. Rev., vol. 56, no. 10, pp. 11675–11738, Oct. 2023.

[25] T. Naghibi, S. Hoffmann, and B. Pfister, ‘‘Convex approximation of the
NP-hard search problem in feature subset selection,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., May 2013, pp. 3273–3277.

[26] R. Malhotra, ‘‘A systematic review of machine learning techniques for
software fault prediction,’’ Appl. Soft Comput., vol. 27, pp. 504–518,
Feb. 2015.

[27] R. S. Wahono, ‘‘A systematic literature review of software defect predic-
tion,’’ J. Software Engineering, vol. 1, no. 1, pp. 1–16, 2015.

[28] V. U. B. Challagulla, F. B. Bastani, I.-L. Yen, and R. A. Paul, ‘‘Empir-
ical assessment of machine learning based software defect prediction
techniques,’’ Int. J. Artif. Intell. Tools, vol. 17, no. 2, pp. 389–400,
Apr. 2008.

[29] M. Cetiner and O. K. Sahingoz, ‘‘A comparative analysis for machine
learning based software defect prediction systems,’’ in Proc. 11th Int.
Conf. Comput., Commun. Netw. Technol. (ICCCNT), Jul. 2020, pp. 1–7.

[30] R. Rana, M. Staron, J. Hansson, and M. Nilsson, ‘‘Defect prediction over
software life cycle in automotive domain state of the art and road map for
future,’’ inProc. 9th Int. Conf. Softw. Eng. Appl., Aug. 2014, pp. 377–382.

[31] D. Sharma and P. Chandra, ‘‘Software fault prediction using machine-
learning techniques,’’ in Proc. 1st Int. Conf. SCI, 2018, pp. 541–549.

[32] I. H. Laradji, M. Alshayeb, and L. Ghouti, ‘‘Software defect predic-
tion using ensemble learning on selected features,’’ Inf. Softw. Technol.,
vol. 58, pp. 388–402, Feb. 2015.

[33] L. Kumar, S. Misra, and S. K. Rath, ‘‘An empirical analysis of the effec-
tiveness of software metrics and fault prediction model for identifying
faulty classes,’’ Comput. Standards Inter., vol. 53, pp. 1–32, Aug. 2017.

[34] J. Walden, J. Stuckman, and R. Scandariato, ‘‘Predicting vulnerable
components: Software metrics vs text mining,’’ in Proc. IEEE 25th Int.
Symp. Softw. Rel. Eng., Nov. 2014, pp. 23–33.

[35] H. Wang, T. M. Khoshgoftaar, and A. Napolitano, ‘‘A comparative study
of ensemble feature selection techniques for software defect prediction,’’
in Proc. 9th Int. Conf. Mach. Learn. Appl., Dec. 2010, pp. 135–140.

[36] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, ‘‘Machine learning based
methods for software fault prediction: A survey,’’ Expert Syst. Appl.,
vol. 172, Jun. 2021, Art. no. 114595.

105322 VOLUME 12, 2024

http://dx.doi.org/10.1109/ACCESS.2023.3260977
http://dx.doi.org/10.1016/j.rcim.2021.102238
http://dx.doi.org/10.1109/TCSII.2023.3234609
http://dx.doi.org/10.3233/jifs-17749
http://dx.doi.org/10.1007/s11265-024-01918-7
http://dx.doi.org/10.1109/TMC.2017.2702613
http://dx.doi.org/10.1109/JIOT.2019.2937110

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

[37] S. Saab, Y. Fu, A. Ray, and M. Hauser, ‘‘A dynamically stabilized recur-
rent neural network,’’Neural Process. Lett., vol. 54, no. 2, pp. 1195–1209,
Apr. 2022.

[38] A. Kundu, P. Dutta, K. Ranjit, S. Bidyadhar,M. K. Gourisaria, andH. Das,
‘‘Software fault prediction using machine learning models,’’ in Proc. Int.
Conf. Inf. Technol., 2022, pp. 170–175.

[39] S. Rani, H. Babbar, G. Srivastava, T. Reddy Gadekallu, and G. Dhiman,
‘‘Security framework for Internet-of-Things-based software-defined net-
works using blockchain,’’ IEEE Internet Things J., vol. 10, no. 7,
pp. 6074–6081, Sep. 2022.

[40] H. Das, B. Naik, and H. S. Behera, ‘‘Optimal selection of features using
artificial electric field algorithm for classification,’’ Arabian J. Sci. Eng.,
vol. 46, no. 9, pp. 8355–8369, Sep. 2021.

[41] H. Das, B. Naik, and H. S. Behera, ‘‘A Jaya algorithm based wrap-
per method for optimal feature selection in supervised classification,’’
J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 6, pp. 3851–3863,
Jun. 2022.

[42] H. Das, S. Chakraborty, B. Acharya, and A. K. Sahoo, ‘‘Optimal selection
of features using teaching-learning-based optimization algorithm for clas-
sification,’’ Appl. Intell. Decis. Making Mach. Learn., vol. 213, pp. 1–12,
Jul. 2020.

[43] B. K. Padhi, S. Chakravarty, B. Naik, R. M. Pattanayak, and H. Das,
‘‘RHSOFS: Feature selection using the rock hyrax swarm optimization
algorithm for credit card fraud detection system,’’ Sensors, vol. 22, no. 23,
p. 9321, Nov. 2022.

[44] H. Dutta, M. K. Gourisaria, and H. Das, ‘‘Wrapper based feature selection
approach using black widow optimization algorithm for data classifi-
cation,’’ in Computational Intelligence in Pattern Recognition. Cham,
Switzerland: Springer, 2022, pp. 487–496.

[45] I. Guyon and A. Elisseeff, ‘‘An introduction to variable and feature
selection,’’ J. Mach. Learn. Res., vol. 3, no. Mar, pp. 1157–1182,
2003.

[46] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and
D. I. Fotiadis, ‘‘Machine learning applications in cancer prognosis
and prediction,’’ Comput. Struct. Biotechnol. J., vol. 13, pp. 8–17,
Aug. 2015.

[47] J. Li, K. Cheng, S. Wang, F. Morstatter, P. R. Trevino, J. Tang, and H. Liu,
‘‘Feature selection: A data perspective,’’ ACM Comput. Surv., vol. 50,
no. 6, pp. 1–45, 2017.

[48] L. Yu and H. Liu, ‘‘Feature selection for high-dimensional data: A fast
correlation-based filter solution,’’ in Proc. 20th Int. Conf. Mach. Learn.,
2003, pp. 856–863.

[49] M. B. Kursa and W. R. Rudnicki, ‘‘Feature selection with the Boruta
package,’’ J. Stat. Softw., vol. 36, pp. 1–13, Nov. 2010.

[50] F. Alimoglu and E. Alpaydin, ‘‘Combining multiple representations for
pen-based handwritten digit recognition,’’ Turkish J. Elect. Eng. Comput.
Sci., vol. 9, no. 1, pp. 1–12, 2001.

[51] H. Liu and L. Yu, ‘‘Toward integrating feature selection algorithms for
classification and clustering,’’ IEEE Trans. Knowl. Data Eng., vol. 17,
no. 4, pp. 491–502, Apr. 2005.

[52] I. Rish, G. Grabarnik, G. Cecchi, F. Pereira, and G. J. Gordon,
‘‘Closed-form supervised dimensionality reduction with generalized lin-
ear models,’’ in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 832–839.

[53] Z. Zhao, F. Morstatter, S. Sharma, A. Alelyani, S. Anand, and H. Liu,
‘‘Advancing feature selection research,’’ ASU Feature Selection Reposi-
tory, vol. 1, pp. 1–28, Nov. 2010.

[54] M. Dash and H. Liu, ‘‘Feature selection for classification. Intelligent data
analysis,’’ Tech. Rep., pp. 131–156.

[55] H. Li, J. Zhu, J. Zhang, C. Zong, and X. He, ‘‘Keywords-guided abstrac-
tive sentence summarization,’’ in Proc. AAAI Conf. Artif. Intell., 2020,
vol. 34, no. 5, pp. 8196–8203.

[56] C. L. Huang and C. J. Wang, ‘‘A GA-based feature selection and param-
eters optimization for support vector machines,’’ Expert Syst. Appl.,
vol. 31, no. 2, pp. 231–240, 2006.

[57] B. Waske, S. van der Linden, J. A. Benediktsson, A. Rabe, and P. Hostert,
‘‘Sensitivity of support vector machines to random feature selection in
classification of hyperspectral data,’’ IEEE Trans. Geosci. Remote Sens.,
vol. 48, no. 7, pp. 2880–2889, Jul. 2010.

[58] H. Das, B. Naik, and H. S. Behera, ‘‘A hybrid neuro-fuzzy and feature
reduction model for classification,’’ Adv. Fuzzy Syst., vol. 2020, pp. 1–15,
Mar. 2020.

[59] H. Das, B. Naik, H. S. Behera, S. Jaiswal, P. Mahato, and M. Rout,
‘‘Biomedical data analysis using neuro-fuzzy model with post-feature
reduction,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 6,
pp. 2540–2550, Jun. 2022.

[60] H. Das, B. Naik, andH. S. Behera, ‘‘Disease classification using linguistic
neuro-fuzzy model,’’ in Progress in Computing, Analytics and Network-
ing. Cham, Switzerland: Springer, 2020, pp. 45–53.

[61] H. Das, B. Naik, andH. S. Behera, ‘‘Medical disease analysis using neuro-
fuzzy with feature extraction model for classification,’’ Informat. Med.
Unlocked, vol. 18, Jul. 2020, Art. no. 100288.

[62] H. Das, B. Naik, and H. S. Behera, ‘‘An experimental analysis of machine
learning classification algorithms on biomedical data,’’ in Proc. 2nd Int.
Conf. Commun., Devices Comput., 2020, pp. 525–539.

[63] H. Das, B. Naik, and H. S. Behera, ‘‘Classification of diabetes mel-
litus disease (DMD): A data mining (DM) approach,’’ in Advances in
Intelligent Systems and Computing. Cham, Switzerland: Springer, 2018,
pp. 539–549.

[64] H. Das, M. K. Gourisaria, B. K. Sah, S. Bilgaiyan, J. C. Badajena, and
R. M. Pattanayak, ‘‘E-healthcare system for disease detection based on
medical image classification using CNN,’’ in Empirical Research for
Futuristic e-commerce Systems. Hershey, PA, USA: IGI Global, 2022,
pp. 213–230.

[65] A. A. Freitas, ‘‘Comprehensible classification models: A position
paper,’’ ACM SIGKDD Explorations Newslett., vol. 15, no. 1, pp. 1–10,
Mar. 2014.

[66] S. Dreiseitl and L. Ohno-Machado, ‘‘Logistic regression and artificial
neural network classificationmodels: Amethodology review,’’ J. Biomed.
Informat., vol. 35, nos. 5–6, pp. 352–359, Oct. 2002.

[67] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, ‘‘Machine learning:
A review of classification and combining techniques,’’ Artif. Intell. Rev.,
vol. 26, no. 3, pp. 159–190, Nov. 2006.

[68] J. Brownlee, ‘‘Imbalanced classification with Python: Better metrics,
balance skewed classes, cost-sensitive learning,’’ Mach. Learn. Mastery,
vol. 1, no. 1, pp. 1–23, 2020.

[69] J.-B. Lamy, ‘‘Owlready: Ontology-oriented programming in
Python with automatic classification and high level constructs
for biomedical ontologies,’’ Artif. Intell. Med., vol. 80, pp. 11–28,
Jul. 2017.

[70] J. D. Novakovic, A. Veljovic, S. S. Ilic, Z. Papic, and M. Tomovic,
‘‘Evaluation of classification models in machine learning,’’ Theory Appl.
Math. Comput. Sci., vol. 7, no. 1, p. 39, 2017.

[71] D. L. Verbyla and J. A. Litvaitis, ‘‘Resampling methods for evaluating
classification accuracy of wildlife habitat models,’’ Environ. Manage.,
vol. 13, no. 6, pp. 783–787, Nov. 1989.

[72] Ž. Ð. Vujovic, ‘‘Classification model evaluation metrics,’’ Int. J. Adv.
Comput. Sci. Appl., vol. 12, no. 6, pp. 599–606, 2021.

[73] C. Beleites, U. Neugebauer, T. Bocklitz, C. Krafft, and J. Popp, ‘‘Sample
size planning for classification models,’’ Analytica Chim. Acta, vol. 760,
pp. 25–33, Jan. 2013.

[74] M. Carney, B. Webster, I. Alvarado, K. Phillips, N. Howell, J. Griffith,
J. Jongejan, A. Pitaru, and A. Chen, ‘‘Teachable machine: Approachable
Web-based tool for exploring machine learning classification,’’ in Proc.
Extended Abstr. CHI Conf. Hum. Factors Comput. Syst., Apr. 2020,
pp. 1–8.

[75] M. T. Sadiq, H. Akbari, S. Siuly, Y. Li, and P. Wen, ‘‘Alcoholic
EEG signals recognition based on phase space dynamic and geo-
metrical features,’’ Chaos, Solitons Fractals, vol. 158, May 2022,
Art. no. 112036.

[76] M. T. Sadiq, H. Akbari, A. U. Rehman, Z. Nishtar, B. Masood,
M. Ghazvini, J. Too, N. Hamedi, and M. K. A. Kaabar, ‘‘Exploiting
feature selection and neural network techniques for identification of
focal and nonfocal EEG signals in TQWT domain,’’ J. Healthcare Eng.,
vol. 2021, pp. 1–24, Aug. 2021.

[77] A. M. Anter, A. W. Mohamed, M. Zhang, and Z. Zhang, ‘‘A robust
intelligence regression model for monitoring Parkinson’s disease based
on speech signals,’’ Future Gener. Comput. Syst., vol. 147, pp. 316–327,
Oct. 2023.

[78] A. M. Anter and Z. Zhang, ‘‘RLWOA-SOFL: A new learning model-
based reinforcement swarm intelligence and self-organizing deep fuzzy
rules for fMRI pain decoding,’’ IEEE Trans. Affect. Comput., vol. 1, no. 1,
pp. 1–12, Aug. 2023.

VOLUME 12, 2024 105323

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

[79] A. M. Anter and L. Abualigah, ‘‘Deep federated machine learning-based
optimization methods for liver tumor diagnosis: A review,’’ Arch. Com-
put. Methods Eng., vol. 30, no. 5, pp. 3359–3378, Jun. 2023.

[80] A. Thakare, A. M. Anter, and A. Abraham, ‘‘Seizure disorders
recognition model from EEG signals using new probabilistic par-
ticle swarm optimizer and sequential differential evolution,’’ Mul-
tidimensional Syst. Signal Process., vol. 34, no. 2, pp. 397–421,
Jun. 2023.

[81] A. M. Anter, H. S. Elnashar, and Z. Zhang, ‘‘QMVO-SCDL: A new
regression model for fMRI pain decoding using quantum-behaved
sparse dictionary learning,’’ Knowl.-Based Syst., vol. 252, Sep. 2022,
Art. no. 109323.

[82] A. M. Anter, M. Abd Elaziz, and Z. Zhang, ‘‘Real-time epileptic
seizure recognition using Bayesian genetic whale optimizer and adaptive
machine learning,’’ Future Gener. Comput. Syst., vol. 127, pp. 426–434,
Feb. 2022.

[83] A. M. Anter, Y. S. Moemen, A. Darwish, and A. E. Hassanien, ‘‘Multi-
target QSAR modelling of chemo-genomic data analysis based on
extreme learning machine,’’ Knowl.-Based Syst., vol. 188, Jan. 2020,
Art. no. 104977.

[84] A. M. Anter, G. Huang, L. Li, L. Zhang, Z. Liang, and Z. Zhang, ‘‘A
new type of fuzzy-rule-based system with chaotic swarm intelligence for
multiclassification of pain perception from fMRI,’’ IEEE Trans. Fuzzy
Syst., vol. 28, no. 6, pp. 1096–1109, Jun. 2020.

[85] A. M. Anter, D. Gupta, and O. Castillo, ‘‘A novel parameter estimation in
dynamic model via fuzzy swarm intelligence and chaos theory for faults
in wastewater treatment plant,’’ Soft Comput., vol. 24, no. 1, pp. 111–129,
Jan. 2020.

[86] G. Boetticher. (2007). The PROMISE Repository of Empirical Software
Engineering Data. [Online]. Available: http://promisedata.org/repository

[87] Y. Wang, F. Li, H. Zheng, L. Jiang, M. F. Mahani, and Z. Liao, ‘‘Human
trust in robots: A survey on trust models and their controls/robotics
applications,’’ IEEE Open J. Control Syst., vol. 1, no. 1, pp. 58–86,
Dec. 20, 2023.

[88] C. Carlberg, Statistical Analysis:Microsoft Excel. Seattle,WA,USA:Que
Publishing, 2014.

[89] J. Hao, P. Chen, J. Chen, and X. Li, ‘‘Multi-task federated learning-
based system anomaly detection and multi-classification for microser-
vices architecture,’’ Future Gener. Comput. Syst., vol. 159, pp. 77–90,
Oct. 2024, doi: 10.1016/j.future.2024.05.006.

[90] X. Fu, P. Pace, G. Aloi, A. Guerrieri, W. Li, and G. Fortino, ‘‘Toler-
ance analysis of cyber-manufacturing systems to cascading failures,’’
ACM Trans. Internet Technol., vol. 23, no. 4, pp. 1–23, Nov. 2023, doi:
10.1145/3579847.

[91] J. Zhang, D. Yang, W. Li, H. Zhang, G. Li, and P. Gu, ‘‘Resilient output
control of multiagent systems with DoS attacks and actuator faults: Fully
distributed event-triggered approach,’’ IEEE Trans. Cybern., vol. 1, no. 1,
pp. 1–10, Oct. 2024, doi: 10.1109/tcyb.2024.3404010.

[92] M. R. Sheldon, M. J. Fillyaw, and W. D. Thompson, ‘‘The use and
interpretation of the Friedman test in the analysis of ordinal-scale data
in repeated measures designs,’’ Physiotherapy Res. Int., vol. 1, no. 4,
pp. 221–228, Nov. 1996.

[93] A. Y. Gordon and P. Salzman, ‘‘Optimality of the Holm procedure among
general step-down multiple testing procedures,’’ Statist. Probab. Lett.,
vol. 78, no. 13, pp. 1878–1884, Sep. 2008.

[94] M. Aickin and H. Gensler, ‘‘Adjusting for multiple testing when reporting
research results: The Bonferroni vs Holm methods,’’ Amer. J. Public
Health, vol. 86, no. 5, pp. 726–728, May 1996.

[95] H. Abdi, ‘‘Holm’s sequential Bonferroni procedure,’’ Encyclopedia Res.
Des., vol. 1, no. 8, pp. 1–8, 2010.

[96] A. Fatima, R. Maurya, M. K. Dutta, R. Burget, and J. Masek, ‘‘Android
malware detection using genetic algorithm based optimized feature selec-
tion and machine learning,’’ in Proc. 42nd Int. Conf. Telecommun. Signal
Process. (TSP), Jul. 2019, pp. 220–223.

[97] M.-Y. Cho and T. T. Hoang, ‘‘Feature selection and parameters optimiza-
tion of SVM using particle swarm optimization for fault classification
in power distribution systems,’’ Comput. Intell. Neurosci., vol. 2017,
pp. 1–9, Jun. 2017.

[98] A. Dixit, A. Mani, and R. Bansal, ‘‘Feature selection for text and image
data using differential evolution with SVM and Naïve Bayes classifiers,’’
Eng. J., vol. 24, no. 5, pp. 161–172, Sep. 2020.

HIMANSU DAS received the B.Tech. degree from
the Institute of Technical Education and Research,
Odisha, India, the M.Tech. degree in computer sci-
ence and engineering from the National Institute
of Science and Technology, Odisha, and the Ph.D.
degree in engineering from the Veer Surendra
Sai University of Technology (VSSUT), Odisha.
He is currently an Associate Professor with the
School of Computer Engineering, Kalinga Insti-
tute of Industrial Technology (KIIT), Deemed to

be University, Bhubaneswar, India. He has published several research papers
in various international journals and has presented at conferences. He has
also edited several books published by IGI Global, Springer, CRC Press,
and Elsevier. He has also served on many journals and conferences as an
editorial or reviewer board member. He is proficient in the field of computer
science engineering and served as the organizing chair, the publicity chair,
and acted as a member of the technical program committees for many
national and international conferences. He is also associated with various
educational and research societies, such as IET, IACSIT, ISTE, UACEE, CSI,
IAENG, and ISCA. His research interests include the field of data mining,
soft computing, and machine learning. He has also more than 12 years
of teaching and research experience in various engineering colleges and
universities.

SWARNAVA DAS received the B.Tech. degree
from the Kalinga Institute of Industrial Tech-
nology (KIIT), Deemed to be University,
Bhubaneswar, India. He is currently with Dish
Network Ltd., as a Software Engineer. He was
an Intern for the companies Expand AI and
Highradius for a tenure of two months and
ten months, respectively. His research interests
include machine learning computer vision and
artificial intelligence.

MAHENDRA KUMAR GOURISARIA (Member,
IEEE) received the master’s degree in computer
application from Indira Gandhi National Open
University, New Delhi, the M.Tech. degree in
computer science and engineering from the Biju
Patnaik University of Technology, Rourkela, and
the Ph.D. degree from KIIT Deemed to be Uni-
versity, Bhubaneswar, Odisha. He is currently
an Assistant Professor with the School of Com-
puter Engineering, KIIT Deemed to be University.

He has an experience of more than 20 years in academia and nine years in
research. He has guided more than 60 B.Tech. students in their project work
and seven M.Tech. thesis. He has published more than 100 research papers
in different book chapters, international journals, and conferences of repute.
His google scholar citation is more than 1000 with an H-index of 17 and
i10- index of 35. He has served as an organizing committees members for
various conferences andworkshops. He chaired session inmany international
conferences and acted as a reviewer in many reputed journals of Springer and
Hindawi and many reputed conferences. His research interests include cloud
computing, machine learning, deep learning, data mining, soft computing,
and internet and web technology. He is a member of IAENG and UACEE;
and a Life Member of ISTE, CSI, and ISCA.

105324 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.future.2024.05.006
http://dx.doi.org/10.1145/3579847
http://dx.doi.org/10.1109/tcyb.2024.3404010

H. Das et al.: Enhancing SFP Through FS With SWO Algorithm

SURBHI BHATIA KHAN (SeniorMember, IEEE)
is currently pursuing the Doctorate degree in
computer science and engineering in the area
of machine learning and social media analytics.
She received the project management professional
certification from the reputed Project Manage-
ment Institute, USA. She is currently an Assistant
Professor with the Department of Data Science,
School of Science, Engineering and environment,
University of Salford, Manchester, U.K. She has

more than ten years of academic and teaching experience in different univer-
sities. She has published many papers in reputed journals and conferences
in high indexing outlets. She has published ten international patents from
India, Australia, and USA; and also authored and edited around 12 books.
Her research interests include information systems, artificial intelligence,
and data science.

AHLAM ALMUSHARRAF received the Ph.D. degree in business admin-
istration with concentration in information systems. She is currently an
Assistant Professor with the College of Business and Administration,
Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia. Her
research interests include AI, IS applications, social media, e-commerce,
and ICT.

ABDULLAH I. ALHARBI received the Ph.D. degree in computer science
from the University of Birmingham, U.K., in 2022. He is currently an Assis-
tant Professor with the Faculty of Computing and Information Technology in
Rabigh, King Abdulaziz University. He specializes in artificial intelligence
(AI), natural language processing (NLP), machine learning, and deep learn-
ing, focusing on analyzing social media to explore social phenomena and
gather public opinion. He has extensive experience in detecting sentiment,
emotions, events, abusive content from online textual data, and applying
advanced AI-driven methodologies to address real-world challenges.

T. R. MAHESH (Senior Member, IEEE) is cur-
rently an Associate Professor and the Program
Head of the Department of Computer Science and
Engineering, Faculty of Engineering and Technol-
ogy, JAIN (Deemed-to-be University), Bengaluru,
India. He has to his credit more than 100 research
articles in Scopus/WoS and SCIE indexed jour-
nals of high repute. He has been an editor for
books on emerging and new age technologies with
publishers like Springer, IGI Global, and Wiley.

He has served as a reviewer and a technical committee member for multiple
conferences and journals of high reputation. His research interests include
image processing, machine learning, deep learning, artificial intelligence, the
IoT, and data science.

VOLUME 12, 2024 105325

