
Received 4 July 2024, accepted 24 July 2024, date of publication 29 July 2024, date of current version 14 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3435572

KOA-CCTNet: An Enhanced Knee Osteoarthritis
Grade Assessment Framework Using Modified
Compact Convolutional Transformer Model
MUSHRAT JAHAN1, MD. ZAHID HASAN 1, (Member, IEEE),
ISMOT JAHAN SAMIA1, KANIZ FATEMA 1, MD. AWLAD HOSSEN RONY1,
MOHAMMAD SHAMSUL AREFIN 2, (Senior Member, IEEE), AND AHMED MOUSTAFA3,4,5
1Health Informatics Research Laboratory, Department of Computer Science and Engineering, Daffodil International University, Dhaka 1341, Bangladesh
2Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
3School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, QLD 4226, Australia
4Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2092, South Africa
5Centre for Data Analytics, Bond University, Gold Coast, QLD 4226, Australia

Corresponding author: Md. Zahid Hasan (zahid.cse@diu.edu.bd)

ABSTRACT Knee osteoarthritis (KOA) is a prevalent condition characterized by gradual progression,
resulting in observable bone alterations inX-ray images. X-rays are the preferred diagnostic tool for their ease
of use and cost-effectiveness. Physicians use the Kellgren and Lawrence (KL) grading system to understand
the severity of an individual condition of KOA. This system categorizes the disease from normal to a
severe stage. Early detection of the condition with this approach enables knee deterioration to be slowed
down with therapy. In this study, we aggregated four datasets to generate an extensive dataset comprising
110,232 raw images by applying an augmentation technique called deep convolutional generative adversarial
network (DCGAN).We employed advanced image pre-processingmethods (adaptive histogram equalization
(AHE), fast non-local means), including image resizing, to generate a substantial dataset and enhance image
quality. Our proposed approach involved developing a modified compact convolutional transformer (CCT)
model known as KOA-CCTNet as the foundational model. We further investigated optimal configurations
by adjusting various parameters and hyperparameters in the final model to handle large datasets and address
training time concerns efficiently. We investigated optimizing its configurations by adjusting numerous
parameters and hyperparameters to efficiently manage extensive data and address concerns related to training
time. Simulation results indicated that our proposed model outperforms other transfer learning models (Swin
Transformer, Vision Transformer, Involutional Neural Network) in terms of accuracy. The test accuracy
for the ResNet50, MobileNetv2, DenseNet201, InceptionV3, and VGG16 was 80.77%, 79.98%, 80.23%,
76.89%, and 79.58%, respectively. All of themwere surpassed by our proposed KOA-CCTNet model, which
had a test accuracy of 94.58% while classifying KOA X-ray images. Furthermore, we reduced the number
of images to assess the model’s performance and compared it to existing models. However, by employing
a large datahub, our proposed approach provides a unique and effective way to diagnose KOA grades with
satisfying results.

INDEX TERMS Knee osteoarthritis, deep convolutional generative adversarial network (DCGAN), knee
osteoarthritis grades, image pre-processing, compact convolutional transformer, knee X-ray.

The associate editor coordinating the review of this manuscript and

approving it for publication was You Yang .

I. INTRODUCTION
Knee osteoarthritis (KOA) is a common and disabling joint
disease that has become twice as prevalent since the mid-
20th century [1]. It occurs when the knee joint becomes
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FIGURE 1. The example of the Kellgren–Lawrence (KL) scale.

inflamed due to regular wear and tear, causing the carti-
lage to deteriorate and become damaged [2]. It primarily
targets the cartilage, the protective tissue covering the bone
ends. Cartilage allows smooth joint movement in a healthy
state, preventing bone-on-bone friction [3]. KOA involves the
breakdown of the outer cartilage layer, resulting in painful
bone friction [4]. This condition often impacts joints like the
knee, spine, hip, and foot. There are two forms: primary and
secondary. Primary KOA commonly affects older individuals
and can be attributed to genetics or aging. On the other hand,
secondary KOA is linked to factors such as injuries, diabetes,
vigorous sports activities, and rheumatoid arthritis, and it typ-
ically manifests earlier in life. Based on the Global Burden of
Disease (GBD) Study, the global prevalence of symptomatic
osteoarthritis is 9.6% in men and 18% in women among
individuals over the age of 60. Additionally, the study found
that the prevalence of osteoarthritis is 16% in individuals
aged 15 years and older, 22.99% in individuals aged 40 years
and older [5]. According to separate research, the proportion
of people with KOA in the 45+ age group is expected to
rise from 13.8% to 15.7% by 2032 [6]. The primary symp-
toms of KOA include severe pain, limited joint mobility,
and stiffness in the morning, which can significantly impact
a patient’s daily activities [7]. Diagnosing KOA typically
involves assessing pain and considering a combination of
clinical and radiographic symptoms [8]. However, measuring
pain precisely is difficult since it is subjective. There are sev-
eral methods for classifying the phases of osteoarthritis [9].

Furthermore, X-rays are readily accessible, cost-effective,
and safe imaging tools that aid in identifying articular car-
tilage degeneration, narrowing of the space between bones,
and the formation of bone spurs. The KL scale is a widely
recognized radiographic classification system designed to

gauge the severity of KOA knee osteoarthritis using X-rays.
Depending On the severity of the symptoms of osteophytes
and Joint Space Narrowing (JSN), KOA can be categorized
into five grades. Grading begins at Grade 0, denoting a knee
with no osteoarthritic narrowing and potential osteophytic
lipping within this scale. Grade 2 confirms the existence of
tiny osteophytes that may cause a reduction in joint space.
Grade 3 showcases evident joint space reduction, multiple
moderate osteophytes, some bone hardening, and poten-
tial deformities in bone contour [10]. Finally, Grade 4 is
characterized by pronounced joint space narrowing, large
osteophytes, intense bone sclerosis, and distinct bone defor-
mities. In this regard, there is a demand for computer-assisted
diagnostic tools to assist healthcare professionals in con-
sistently and automatically assessing the severity of KOA.
Since a patient’s clinical symptoms might not always align
perfectly with their KL grades, introducing variability in
symptom experiences relative to radiographic findings is also
crucial. That’s why, before proposing any automated system,
it’s essential to understand the medical characteristics of the
diseases. It will enhance the reliability and reproducibility of
X-ray interpretation for KOA diagnosis by offering signifi-
cant advantages [11]. However, Figure 1 and Table 1 show
examples of using the KL scale to assess KOA severity and
descriptions of the KOA grades.

However, the adoption of automation systems in the
assessment of KOA is driven by their ability to enhance
efficiency, accuracy, and accessibility in clinical settings [12].
Automated tools, particularly those incorporating artificial
intelligence and machine learning, provide rapid and con-
sistent analysis of medical images, significantly reducing
the time required for diagnosis and ensuring uniformity in
the evaluation of different patients [12], [13]. Additionally,
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TABLE 1. Knee osteoarthritis (KOA) grade description.

a viable method for diagnosing KOA disorders might be an
automated and trustworthy method based on deep learning
algorithms employing X-ray images. Identifying and clas-
sifying KOA diseases using CNN models trained on knee
x-ray images [22] requires a lot of resources and computing
time. These obstacles are exacerbated by the issue of small
medical datasets with an imbalanced number of images in the
various classifications. However, convolutions are not neces-
sary to create effective classification models that solve the
computational complexity problem. In this sense, machine
learning (ML) research has placed a significant emphasis on
transformers. Vision Transformer (ViT), which applies a pure
self-attention-basedmodel to sequences of image patches and
achieves competitive performance when compared to CNNs,
is themost noteworthy development in this field [14]. In terms
of computing efficiency and accuracy, ViTmodels beat CNNs
by nearly a factor of four, and they achieve superior accuracy
on large datasets with less training time. When we look
at how hard it is to program the ‘‘sequential operations,’’
transformers are much better than recurrent neural networks
(RNNs) because self-attention layers [15] work faster than
recurrent layers. ViTs can solve the problem of training
time, but because of the transformer models’ architecture,
they are data-hungry and need a ton of data to function
well. Gathering a significant volume of annotated image data
for medical research is frequently difficult, expensive, and
time-consuming. In order to address this, Hassani et al. [16]
added basic convolutional blocks to the vision transformer’s
tokenization stage, introducing the Compact Convolutional
Transformer (CCT). This resulted in a reduction of training
time and a noticeable improvement in performance. This
work utilizes four distinct datasets to automatically detect
and classify KOA disorders into the Normal, Doubtful, Mild,
Moderate, and Severe categories. This context admirably
handles small medical datasets, an imbalanced number of
images, low-resolution images, training duration and com-
plexity, among other difficulties.

The following are the primary contributions of this
research:

1. Differences in the quality and features of the images
arise from gathering different X-ray image datasets
using various sources and protocols. We establish a
large data hub of 11,431 X-ray images by combining
four datasets (Mendeley I [25], Mendeley II [26], Kag-
gle [27], and AIDA Data Hub [28]) with varying X-ray
image attributes and sizes. This study addresses the
challenge of handling the variation of the dataset.

2. The experiment’s dataset exhibits varying class imbal-
ances, which decrease the effectiveness of the model.
To address this issue, we proposed a state-of-the-
art deep convolutional generative adversarial network
(DCGAN) augmentation method in this study.

3. Advanced image pre-processing techniques such as
Adaptive Histogram Equalization (AHE) and Fast
Non-Local Means (FNLM) are utilized to augmented
images to eliminate noises and artifacts, enhance image
quality, and address illumination variations. These
techniques improve feature visibility, clarity and stan-
dardized dimensions of X-ray images.

4. To evaluate the model performance in handling
large-scale image datasets, training speed, and accu-
racy, we propose a compact convolutional trans-
former (CCT) model named KOA-CCTNet. The model
demonstrates remarkable classification performance
and operating efficiency with large datasets and com-
pare the propose model with other state of the art.

This paper is structured as follows: Section II presents a
comprehensive review of existing literature. Then, a detailed
discussion of the research methodology is provided in
Section III, followed by Section IV, where we elucidate the
results and analyse our proposed model utilizing a range
of performance metrics. This section also includes a com-
parative analysis of existing transfer learning models and
state-of-the-art works and an examination of our model’s
robustness. The paper is concluded in Section V, where we
summarize our findings, and Section VI offers insights into
the limitations of our study and potential directions for future
research.

II. LITERATURE REVIEW
Many studies have reviewed the use of knee X-ray images to
diagnose KOA. They have highlighted advancements in deep
learning and machine learning for accurate diagnosis. In this
section, we reviewed how these images have been used with
different techniques to identify KOA.

Ganesh Kumar and Das Goswami [17] proposed a method
for automatic classification of the severity of KOA using
enhanced image sharpening and convolutional neural net-
works (CNN). The KL grading system is used to assess the
severity of the KOA grades. The study used baseline X-ray
images from the Osteoarthritis Initiative (OAI). Their pro-
posed method achieved a mean accuracy of 91.03%, which
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is an improvement of 19.03% over the earlier accuracy of
72% by using the original knee X-ray images for the detec-
tion of OA with five gradings. Limitations of the study
include the fact that the images taken are not pre-processed
correctly, which impacts the model’s overall performance.
Additionally, The model’s accuracy is not promising due to
patients’ objectivity, such as pain grade. Besides,Mohammed
and his colleagues [18] discussed using deep neural net-
work (DNN) models to detect and classify KOA using X-ray
images. The authors used six pre-trainedDNNmodels in their
experiments: VGG16, VGG19, ResNet101, MobileNetV2,
InceptionResNetV2, and DenseNet121 and achieved maxi-
mum classification accuracies of 69%, 83%, and 89% on
three different datasets. The ResNet101 DNN model outper-
formed among them.

In another study, researcher [19] introduced a deep learn-
ing computer technique to automatically spot and classify
knee arthritis from X-ray images. Their method was nearly
99% accurate in identifying a specific area in the knee and
determining the severity of the arthritis. They utilized tech-
nical models such as Faster RCNN to pinpoint this area and
ResNet-50 to gather image features. They also used AlexNet
to determine how bad the arthritis was. This new method was
better than others, especially in identifying the early stages of
arthritis.

In addition, El-Ghany et al. [20] presented a proposed
model that showcased a remarkable 95.93% accuracy for
multi-classification and 93.78% for binary classification
in diagnosing KOA. The DenseNet169 model surpassed
other deep learning techniques such as InceptionV3, Xcep-
tion, ResNet50, and others in various performance metrics.
Notably, while past research capped an accuracy of 87%,
this model excelled in multi-classification and binary clas-
sification. Tested using the pre-processed OAI dataset and
benchmarked against recent classifiers, the model’s prowess
lies in its capability to diagnose KOA severity from X-ray
images precisely. The mentioned heightened accuracy paves
the way for more effective and economical KOA diagnoses,
ultimately leading to enhanced patient care and controlled
disease progression. Another researcher [21] introduces an
automated deep-learning technique to detect and classify
KOA from X-ray images. Utilizing a dataset from the
Osteoarthritis Initiative (OAI), it was divided into training,
testing, and validation portions. By leveraging transfer learn-
ing, the authors refined models like ResNet-34, VGG-19,
and DenseNet variants and combined them for better results.
This approach achieved an impressive 98% accuracy and a
Quadratic Weighted Kappa score of 0.99, especially improv-
ing the accuracy for specific arthritis grades. For context, the
paper also references past studies that employed various tech-
niques, positioning their results alongside this new method
for a comprehensive comparison.

Nasser et al. [13] present the Discriminative Shape-Texture
Convolutional Neural Network (DST-CNN) as a solution
for early KOA detection using X-ray images. This model
enhances classification using a unique discriminative loss and

a Gram Matrix Descriptor (GMD) block to analyze texture
and shape features. Remarkably, DST-CNN showcases top-
tier results, boasting an accuracy of 74.08%, precision of
68.46%, and other robust metrics. It stands out significantly
when differentiating between healthy individuals and bor-
derline cases, outclassing other CNN-based methods. The
paper underscores that each aspect of DST-CNN amplifies
its efficiency, with the best outcomes when blending texture
insights at various stages with the discriminative loss. Given
the subtle differences in early-stage KOA X-ray images, this
model emphasizes improved texture analysis via the GMD
block, a critical enhancement not usually focused on in tradi-
tional CNN designs. Testing on two extensive public datasets
validates the method’s strength.

Olsson et al. [22] proposed leveraging deep learning to
automatically classify the severity of KOA in adults, using
a vast set of unfiltered radiographic knee exams. Utilizing a
35-layer Convolutional Neural Network (CNN) based on the
ResNet framework, the team trained the model on 6103 man-
ually labeled images according to the KL scale. Initially
trained for 100 epochs without noise interference, followed
by 50 epochs with introduced noise factors, the CNN proved
highly efficient, achieving an AUC above 0.87 for most KL
grades. The study highlights the CNN’s robustness in accu-
rately determining knee OA severity even with unclean data,
underlining its proficiency and the encouraging potential for
medical diagnostic applications.

Chaugule et al. [7] introduced a Deep Convolutional
Neural Network (DCNN) model adept at classifying the
severity of KOA using digital X-ray images. The model
encompasses four stages: autoencoder-driven denoising, seg-
mentation of the image into specific regions, comprehensive
feature extraction (comprising region, Zernike, wavelet, and
Haralick features), and a feature fusion step to bolster repre-
sentation. Notably, the DCNN is optimized using the Adam
algorithm, registering impressive testing and validation accu-
racies of 96.31% and 95.70%, respectively. This proposed
methodology surpasses other contemporary techniques in
discerning KOA severity. An emphasis on the significance
of feature extraction, fusion, and pinpointing pivotal features
for KOA classification is also presented. Furthermore, the
research indicates potential refinements to amplify compu-
tational speed and classification efficiency.

Qadir et al. [23] presents an enhanced deep learning
algorithm, grounded on a Bidirectional Long Short-Term
Memory (BiLSTM) network, tailored for detecting and clas-
sifying KOA severity. Employing segmented knee images,
features are extracted using ResNet, with the model trained
on the Mendeley VI dataset and cross-validated on the
Osteoarthritis Initiative (OAI) dataset. The algorithm notably
achieves a cross-validation accuracy of 78.57% and a test-
ing accuracy of 84.09%. Assessment utilizes metrics such
as recall, accuracy, precision, and F1 score. The system
impressively classifies knee images into five categories—
Healthy, Phase I to IV—with an overall accuracy of 84.09%,
a precision of 92.5%, recall of 99.11%, and an F1 score
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TABLE 2. Prior models and their accuracy.

of 95.69%. Significantly, this approach surpasses current
deep learning models in accuracy, robustness, and training
and testing durations. Yunus et al. [24] presented a novel
method for classifying and pinpointing KOA using radio-
graphic images. This involves transforming two-dimensional
radiographs into a three-dimensional format and harnessing
LBP features. With the aid of PCA, optimal features are
selected, while additional deep features are extracted via
AlexNet and Darknet-53 models.

These culminated features, once fused, enable classifiers
to reach an accuracy of 90.6% in distinguishing KOA grades.
Furthermore, by merging an open exchange neural network
(ONNX) with YOLOv2, the system can localize classi-
fied images with a mean average precision (mAP) of 0.98.
The problem of classifying KOA using deep learning has
been highlighted in several studies. This work overcomes
these challenges by combining datasets, using sophisticated
image pre-processing techniques, and developing a specific
model for various knee osteoarthritis classifications. Table 2
presents a comprehensive comparison of the existing related
works and Table 3 shows the limitation of those existing
related works.

III. METHODOLOGY
Our methodology begins with dataset preparation (Step-1),
integrating four distinct datasets to create a comprehensive
dataset. Following this, we utilize Generative Adversarial
Networks (GANs) for data augmentation (Step-2), enriching

our dataset with varied and robust examples to enhancemodel
training. Step-3 involves extensive image pre-processing
methods, including a conversion of color channel, applying
AHE and FNLM, and resizing function to the augmented
images. Then, we proceed to the data splitting method (Step-
4) to divide our dataset into training, validation, and testing
subsets (for transfer learning models). The subsequent step
involves establishing the foundational model (Step-5), which
includes adjusting the internal architecture of the CCTmodel.

Following this, we enact our proposed approach (Step-6),
implementing ten distinct modifications to the base mod-
els to craft an improved and fine-tuned model designed to
meet our specific requirements. Finally, in the results and
discussion section (Step-7), we meticulously analyzed the
outcomes, evaluating our models using various performance
metrics, assessing their robustness with image reduction, and
delving into the proposed model’s behavior through con-
fusion matrices. This comprehensive and detailed approach
ensures a thorough understanding and evaluation of our pro-
posed model compared to existing solutions, highlighting
its strengths and areas for potential improvement. Figure 2
depicts the main workflow of our work.

A. DATASET DESCRIPTION
We procured the data from four accessible datasets, namely
the KOA Severity Grading and Digital Knee X-ray Images
collected from Mendeley: Mendeley I [25] and Mendeley
II [26], CGMH KOA Images is collected from Kaggle [27],
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TABLE 3. Limitations of earlier studies.

FIGURE 2. Workflow diagram.

KOA classification, according to KL is collected from AIDA
Data Hub [28]. Each dataset encompasses a range of five
distinct grades, which include normal (Grade 0), doubt-
ful (Grade 1), mild (Grade 2), moderate (Grade 3), and
severe (Grade 4). The dataset of Digital Knee X-ray images
comprises 1650 digital X-ray images of the knee joint, metic-
ulously collected from reputable hospitals and diagnostic
centers. Two medical experts have meticulously labeled each
radiographic knee X-ray image with KL grades. Furthermore,
a pioneering technique has been developed to automatically
isolate the cartilage region, which is the region of interest
(ROI), based on pixel density [29]. On the other hand, the
Mendeley dataset is known as ‘‘KOASeverity Grading’’. This
dataset includes knee X-ray data that can be used for both
knee joint detection and knee KL grading. After integrat-
ing the four datasets, we accumulated 11,431 raw images.
Figure 3 shows four distinct types of public datasets and

images were captured using an X-ray machine, and the orig-
inal images are in 8-bit grayscale.

Table 4 represents the distribution of data across vari-
ous stages of a category, with the data being sourced from
four different public datasets: Mendeley Dataset (including
a specific subset of 1650 images), Kaggle Dataset, AIDA
Data Hub, and an integrated dataset combining four sources.
In the ‘Normal’ stage, there are 3,253 instances from the first
Mendeley Dataset, 503 from the second Mendeley Dataset,
80 in the Kaggle Dataset, 248 from AIDA Data Hub, and
4,084 in the integrated dataset. The ‘Doubtful’ category has
1,495 instances from the first Mendeley Dataset, 488 from
the second, 80 from Kaggle, 89 from AIDA Data Hub, and
2,152 in the integrated dataset. For the ‘Mild’ stage, there
are 2,175 instances in the first Mendeley Dataset, 232 in the
second, 80 in Kaggle, 89 in AIDA Data Hub, and 2,576 in
the integrated dataset. The ‘Moderate’ stage includes 1,086
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FIGURE 3. Four type of different public dataset.

FIGURE 4. Eliminated images from the datahub.

instances from the first Mendeley Dataset, 221 from the
second, 80 from Kaggle, 425 from AIDA Data Hub, and
1,812 in the integrated dataset. Lastly, the ‘Severe’ category
has 251 instances from the first Mendeley Dataset, 206 from
the second, 80 from Kaggle, 270 from AIDA Data Hub, and
807 in the integrated dataset.

However, we did not include all images in this dataset
because some X-ray images were also poor quality and dam-
aged. That is why we removed 1,199 sample images from
11431 images. As a result, our total data set comprises around
10,232 images. Some sample images from the damaged
dataset images is shown in Figure 4.

B. EXPERIMENTAL SETUP
After generating a new dataset of 10,232 images, we pro-
ceeded with further processing and experimental setup. All
experiments were conducted on a system powered by an
AMD Ryzen 5 5600X 6-core CPU and 16 GB of RAM.
The system was equipped with a ZOTAC GAMING GeForce
RTX 3060 Twin Edge OC GDDR6, which claims 12 GB of
VRAM.We implemented all models in this experiment using
Python 3.9, Keras, TensorFlow v2.15.0, and the PyTorch
v1.12.0 framework. We trained a total of 200 epochs in this
experiment, and Tables 12 and 13 list all of our experiment’s
epoch times.

TABLE 4. Knee dataset description.

C. DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
NETWORK
DCGAN can produce stunning, detailed images that resemble
actual pictures by combining cutting-edge technology such as
deep learning and CNNs. The generator and the discriminator
are the two components of DCGAN [47]. While the discrim-
inator’s responsibility is to ascertain if a picture is produced
or real, the generator’s task is to produce new images. These
two elements collaborate in a creative dance that continually
pushes and tests one another. The discriminator grows bet-
ter at recognizing the difference between actual and created
images as the generator learns and improves at producing
images. DCGANs were added to synthetic images to over-
sample the dataset by enhancing its ability to distinguish
between real and imitation samples by maximizing a similar
loss function. Due to this, we used DCGAN, which modifies
the architecture to ensure stability when combining GAN
with deep CNN [30]. Figure 5 depticts the architecture of
DCGAN. A discriminative network and a generated network
are the two basic types of networks that make up the overall
network structure.

They combine their layers into four layers. The generator
R that can convert the noise vector z into the sample x is
what we are trying to train. A discriminator S. that distin-
guished between the produced data pz(z) and the real sample
data Pdata(x) determined the generator R training objective.
The discriminator S will be misled by the generator R into
believing that the created data is accurate.
R and S will finally be guided through training to strike

a balance in a non-convex game. We employ the gradi-
ent descent optimization method without making any prior
assumptions or model demands for the data distribution.
To train the generator and discriminator networks, use
equation (1) [31].

V (R, S) = Ex ∼ Pdata (x) [logS (x)]

+ Ez ∼ pz(z)[log(1 − S(R(z)))] (1)

The generator uses four convolution2D transpositions and
one conv2D layer to sample an image size representation
from 14 × 14 × 512 to 224× 224 × 3. The vector is fed into
the dense layer and reshaped to 14 × 14 × 512. Data with a
size of 14×14× 512 is transformed into an image with a size
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FIGURE 5. Architecture of DCGAN.

of 28 × 28 × 256. The output of the first Conv2D transpose
layer is sent via the batch normalization layer, activation
function LeakyReLu, and the Conv2D transpose layer before
being reshaped to 56 × 56 × 128, 112 × 112 × 64, and
224 × 224 × 32. The Conv2D layer is used in the final layer
to provide an output with an image size of 224 ×224 ×3.
Figure 6 displays some images generated by DCGAN.

In Table 5, we present a comprehensive dataset combining
original and generated images facilitated by DCGAN. Across
various grades, ranging from ‘Normal’ to ‘Severe’, the total
count of images (both original and generated) amounts to
110,232. Specifically, for Grade 0 - Normal, there are 23,782
images; Grade 1 - Doubtful has 22,056; Grade 2 - Mild
includes 22,441; Grade 3 - Moderate consists of 21,408;
and Grade 4 - Severe contains 20,545 images. When we
delve into the distribution of original images within these
grades, Grade 0 - Normal comprises 3,782 images, Grade 1 -
Doubtful has 2,056, Grade 2 - Mild includes 2,441, Grade 3
- Moderate has 1,408, and Grade 4 - Severe contains a sig-
nificant 545 images, with a total of c original images across
all grades. This meticulous compilation and augmentation of
the dataset using DCGAN ensure a robust and diverse set of
images, facilitating enhanced performance and reliability in
subsequent analyses or model training processes.

The figure 7 compares a DCGAN-generated image with
an original medical image. Anatomically, both images show
a comparable structure, most likely a knee joint. The bottom
left displays a histogram that shows the image’s intensity dis-
tribution, while the top left displays the original image. A few
of the original image’s most important statistical features are
as follows: The mode is 173 with a count of 3403, the total
count is 1576, the maximum intensity is 255, the minimum
intensity is 1, the standard deviation is 49.559, and the value
is 196. The top right corner displays the DCGAN-generated

picture, while the bottom right displays the matching his-
togram. The resulting image has a value of 194, a count
of 3804, a total count of 1832, a minimum intensity of 0,
a mean intensity of 143.546, a maximum intensity of 253,
and a standard deviation of 52.995. The histograms illustrate
variations in mean intensity, standard deviation, and mode
by displaying the distribution of pixel intensity values in the
two images. The original images mean intensity is marginally
greater than the produced images. In addition, a greater stan-
dard deviation in the resulting image indicates a broader
distribution of intensity values. The mode values indicate a
difference in the most common intensity values between the
two images, and both have comparable maximum intensity
values that are near the upper limit of 255. This comparison
shows how well DCGAN performs in producing images that
are almost identical to the original, despite minor differences
in statistical characteristics and intensity distribution.

D. IMAGE PRE-PROCESSING
Image pre-processing is crucial for ensuring optimal compu-
tation time and enhanced model performance, and it must be
completed before inputting the images into a neural network.
In this phase, we started by cropping the selected portion of
the image. Following that, we performed a Lightness, channel
a and channel b (Lab) color space transformation and applied
the AHE is utilized to enhance the contrast of the images,
which is particularly beneficial for images with low contrast
or uneven illumination, as it redistributes the pixel values to
make the image details more discernible. To further refine
the image quality, we removed noise using FNLM. filter by
applying to the L channel of the LAB color space [32]. This
process involves comparing each pixel to its nearby pixels and
averaging their values based on their similarity, resulting in a
smoother image. Lastly, we resized to a consistent resolution
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FIGURE 6. Original data and DCGAN Generated Data.

TABLE 5. Number of original and generated data using DCGAN.

of 224 × 224 pixels with FNLM for subsequent use. How-
ever, Figure 8 shows the total image processing workflow and
all the methods are demonstrated below.

1) ADAPTIVE HISTOGRAM EQUALIZATION (AHE)
The AHE in medical imaging primarily aims to enhance
image contrast, particularly in regions crucial for diagno-
sis. Medical images often present interpretation challenges
due to their inherently poor contrast, complicating the dif-
ferentiation between various tissue types and identifying
potential abnormalities. AHE tackles this issue by adaptively
redistributing intensity values across the image, focusing on
local regions instead of the entire image [33]. This localized
approach to contrast enhancement ensures that subtle details
and vital diagnostic features aremore visible and pronounced,
enabling medical professionals to interpret the images more
accurately and reliably. Ultimately, AHE contributes to pre-
cise diagnosis and treatment, improving patient outcomes.
Although AHE can be complex to implement, it has proven
particularly effective for medical images, as evidenced by
several studies [34]. Some methods have simplified AHE’s
application, such as using fewer pixels or adjusting the sur-
rounding area of each pixel [35]. In the context of X-ray imag-
ing, AHE enhances contrast by dividing the image into small
sections called tiles, each of which is adjusted individually
to highlight its details. This adaptive approach ensures bright
and dark areas are distinctly visible, making identifying cru-
cial bodily features and any existing health issues easier. The
output after employing AHE method is shown in Figure 8.

FIGURE 7. Original image and DCGAN generated images histogram
visualization.

2) FAST NON-LOCAL MEANS
Utilizing the FNLM for X-ray images significantly enhances
image quality by effectively reducing noise while preserving
crucial structural details. This advanced denoising technique
outperforms many traditional methods, particularly in keep-
ing edges and fine details, which are vital for accurate
diagnosis and analysis in medical imaging. The algorithm
achieves this by considering a wider range of pixels for
denoising, extending beyond local neighborhoods to cap-
ture the inherent patterns and structures in the data. As a
result, medical professionals benefit frommore precise, more
reliable images, leading to improved detection and characteri-
zation of abnormalities [36]. Additionally, the ‘fast’ variant of
Non-Local Means (NLM) ensures quicker processing times,
making it more practical for clinical settings where time is of
the essence. Ultimately, FNLM contributes to more accurate
diagnostic decisions and potentially better patient outcomes.
The FNLM is a quick and efficient way to clean up noisy
images. It is based on the NLM method, which studies the
entire image and finds patterns to reduce noise. However,
NLM can be a bit slow, especially with large images. So,
FNLM was created to speed things up [37]. It uses some
clever shortcuts and tools to find and fix noise faster. While it
might not be as thorough as the original NLM in some cases,
FNLM strikes a good balance between speed and quality,
making it handy for on-the-fly edits or handling big batches
of images. The noisy image is represented by Y = X + N .
and denoised pixel value X (i) is given by

X(i) =
1
Z

∑n

jϵI
ωijY (i) (2)

where, wij is the weight denoting the contribution from pixel
Y (i) to the denoised pixel X (i).
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FIGURE 8. Image pre-processing workflow.

3) VERIFICATION
A statistical analysis was conducted to show that the algo-
rithms do not negatively affect image quality. The equations
for various verification techniques are listed below.

MSE is perhaps the most often used and simple loss func-
tion. MSE is computed by taking the square of the difference
between the actual data and the model’s predictions and then
averaging the result for the whole dataset. The following
equation provides the mathematical definition of MSE:

MSE =
1
pq

∑x−1

i=0

∑y−1

i=0
(O(x, y), −P(x, y))2 (3)

Here p and q denote the pixels of O and P, x and y
denote the rows of the pixels p and q, where O is the
original picture and P is the processed image. A number
around 0 denotes high picture quality. The MSE value goes
from 0 to 1.

In this study, we used PSNR to calculate the signal-to-
noise ratio and to compare the quality of a picture between
its original and compressed versions. With increasing PSNR,
the image quality improves. The following equation provides
the mathematical definition of PSNR:

PSNR = 20log10(
(MAX )
√
MSE

) (4)

The maximum pixel value of the picture is indicated here
by MAX. An 8-bit picture should typically have a PSNR of
between 30 and 50 dB.

A statistic called SSIM quantifies the loss of picture quality
brought on by image processing. A reference picture and a
processed imagewith the same image origin are required. The
SSIM equation is given by

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(5)

Model predictions or estimations are routinely compared
with actual observed data using the root mean square error
(RMSE). Table 6 shows that MSE values greater than 0.33,

PSNR values greater than 31, SSIM values greater than 0.99,
and RMSE values greater than 0.54 ensure that our prepro-
cessed image has good quality.

E. TRANSFER LEARNING MODELS
After applying our image pre-processing techniques, we con-
ducted tests using five pre-trained models: VGG16,
DenseNet201, InceptionV3, MobileNetV2, and ResNet50.
The following sections briefly describe each pre-trained
model.

1) VGG16
VGG16 model consists of 16 weighted layers, mainly using
3 × 3 convolutional layers, making it both deep and rela-
tively straightforward [38]. VGG16 excelled in the ImageNet
challenge, a key benchmark in image classification. While its
depth gives it strength, its high computational cost has paved
the way for more efficient models like ResNet. Neverthe-
less, VGG16 remains a foundational model in deep learning,
valuable for various applications beyond more image classi-
fication.

2) DenseNet201
Its unusual densely linked topology distinguishes a deep
convolutional neural network with 201 layers, DenseNet201.
DenseNet201 boasts a novel architecture where each layer
receives inputs from all of its preceding levels, in contrast
to typical networks where layers are connected sequen-
tially [39]. Due to the effective transmission of features and
gradients across the network made possible by this dense
connection design, learning and feature reuse are increased.
Despite its depth, DenseNet201 achieves outstanding param-
eter efficiency, albeit at the expense of higher memory
usage [40]. DenseNet201, which is at the cutting edge of
deep learning architecture developments, emphasizes the pos-
sibility of enhancing intra-network connection to improve
performance in challenging image classification tasks.
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TABLE 6. MSE, PSNR, SSIM, RMSE value for seven images.

3) InceptionV3
This model has higher performance in object detection and
has three distinct parts: the initial convolutional block, the
classifier, and the improved inception module. In this model,
for accelerating the training speed and reducing the number
of feature channels, a 1×1 [41] convolutional kernel is highly
used. This model is built with different layers, such as max-
pooling layers, average pooling layers, conventional layers,
dropout layers, and fully connected layers. And then, to show
the result, the SoftMax activation function is associated with
a fully connected (FC) layer.

4) MobileNetV2
MobileNetV2 stands out in the deep learning as a compact
and efficient model designed with a mobile-first approach
to balance performance and efficiency [42]. It features an
inverted residual structure and linear bottleneck, significantly
reducing size and complexity while maintaining essential
information. This makes it suitable for mobile and embedded
vision applications, offering strong performance in image
classification and recognition tasks, even in scenarios with
limited computational resources or power [43].

5) ResNet50
Another CNN architecture is ResNet50. In this architecture,
the model contains 50 layers. In this model, there is a shortcut
route for reaching the final state, and during the training
period, this shortcut route helps avoid the unusual layers [41],
making the entire process faster. This model has over 23 mil-
lion parameters.

F. TRANSFORMER MODELS
In this study, we also trained several transformer mod-
els, including the compact convolutional transformer (CCT),
vision transformer (ViT), shifted window transformer (Swin),
and the Involutional neural network.We applied the enhanced
dataset to each model to determine our research’s most suit-
able base model.

1) SHIFTED WINDOW TRANSFORMERS (SWIN
TRANSFORMERS)
The Swin Transformer, commonly termed as Swin is an
innovative structure in the computer vision domain. Essen-
tially, it breaks down an image into smaller segments or
patches. Its method of handling these patches is unique to

the Swin: as they delve deeper into the transformer layers
and are merged to generate a layered hierarchical under-
standing of the image [44]. Swin starts by partitioning an
image into non-overlapping patches. These patches are then
linearly embedded. While typical transformers would look
at all patches, Swin smartly chooses a subset of adjacent
patches and applies self-attention locally within this window.
To prevent edge patches from only attending to a limited
set of neighbors, swin rotates or ‘‘shifts’’ these windows in
subsequent layers. The transformer layers are organized hier-
archically. As progress progresses deeper, adjacent patches
are merged, effectively increasing the receptive field without
significantly adding to the computational cost [45]. Swin
can be paired with architectures like Feature Pyramid Net-
works (FPN) or U-Net to refine its dense predictions further.
One of the standout features of Swin is that its computa-
tional complexity grows linearly with the image size. This
starkly contrasts traditional transformers, where the com-
plexity can increase quadratically. Using these architectural
strategies, the Swin Transformer balances local and global
self-attention, making it a versatile and efficient backbone for
many visual tasks.

Attention(Q,K ,V ) = Softtmax(
QK
√
dk

T
)V (6)

where:

• Q, K, and V are the query, key, value matrices.
• dk is the dimension of the keys.

2) COMPACT CONVOLUTIONAL TRANSFORMER (CCT)
Compact Convolutional Transformer (CCT) model is an
innovative blend of convolutional neural networks (CNNs)
and transformer architecture [46]. In simple terms, CCT
uses filters like CNNs to break down images and then uses
transformers to understand them better. This combined struc-
ture makes it efficient and effective, especially for diverse
image data. The CCT uses convolutional layers to process
input images at the onset [47]. These layers are adept at
extracting intricate spatial features from the images. They
can recognize patterns, edges, and other essential elements,
making them the foundation of many image-related tasks.
After the convolutional processing, the extracted features
undergo tokenization. This step transforms the spatial fea-
tures into a sequence of tokens. These tokens represent parts
of the image in a format that transformers can understand
and manipulate. Post-tokenization, these sequences are fed
into the transformer architecture. Unlike traditional CNNs,
transformers are particularly skilled at capturing long-range
dependencies and relationships between different parts of an
image [48]. The self-attention mechanism in transformers
allows each token to weigh its relationship with every other
token, leading to a more comprehensive understanding of the
image’s context. After processing through the transformer
layers, the model generates an output that can be used for
various tasks, such as classification, segmentation, or any
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other relevant objective. In this method, we use convolutional
blocks to extract portions of the image, known as patches.

Image(Y ) ∈ RH x W xC (7)

Yo = MaxPool(ReLU (Conv2D(Y ))) (8)

For any image Y with height (H ), width (W ), and chan-
nels (C), these patches are then turned into a sequence of a
certain length (l). In Figure 9, shows the Base CCT model
architecture.

3) VISION TRANSFORMER (ViT)
Convolutional Neural Networks (CNNs) have dominated the
landscape of image-processing tasks. Inspired by the human
visual system, these networks utilize convolutional layers to
process spatial hierarchies in images, capturing local features
and patterns. However, recent advances in deep learning
have introduced a paradigm shift in how we perceive and
process visual data. Enter the ViT [49]. Borrowing from
the success of transformers in natural language process-
ing tasks, the ViT seeks to apply similar principles to the
domain of computer vision. Instead of exploiting spatial
hierarchies, the Vision Transformer focuses on a sequence
of non-overlapping image patches, representing each as a
linear embedding. These patches are then processed in par-
allel through self-attention mechanisms, enabling the model
to capture long-range dependencies and intricate patterns
within the image [50]. The promise of ViT lies not just in
its novel approach but also in its scalability. Similar large
transformers have benefitted natural language tasks, and the
Vision Transformer’s performance improves with increased
data and computational resources. In many benchmark
tasks, ViTs, especially when pre-trained on vast datasets,
have either matched or surpassed traditional CNN-based
approaches.

4) INVOLUTIONAL NEURAL NETWORK
The Involutional Neural Network is a unique twist on tra-
ditional neural structures, focusing on capturing local and
global contextual information in a novel manner. Unlike the
consistent kernel application in typical convolutional net-
works, involution generates dynamic kernels for each pixel
based on spatial location [51]. This involves a kernel gener-
ation layer that uses operations like point-wise convolution.
To optimize computational efficiency, the architecture incor-
porates channel reduction and splitting techniques [52]. This
ensures the network remains adaptive to spatial variations
while managing computational demands, creating a blend of
precision and efficiency.

G. PERFORMANCE OF OUR PROPOSED MODEL
Our research primarily aimed to refine the KOA classification
technique through X-ray imagery. We performed nine abla-
tion studies to determine the best-performing setup for our
model.

1) BASE COMPACT CONVOLUTIONAL TRANSFORMER (CCT)
MODEL
In a recent analysis, we compared the performance of four
transformermodels and found that the CCTmodel was highly
effective. By performing ablation investigations on a base
CCT model, a modified version of the model is proposed
in this study. Figure 9 presents the architecture of our base
CCTmodel. We saw the potential to improve its performance
further and modified its fundamental framework to create
a more advanced version. Initially, it takes 32 × 32 ×3
dimension images and enhances them using various geomet-
ric augmentations. These improved images are then resized
to 36× 128 dimensions through a process involving the CCT
tokenizer and other elements such as a convolution layer
and pooling layer with specific technical parameters (like
a stride size of 2, a kernel size of 5 for the convolution
layer, and a kernel size of 4 for the pooling layer). Follow-
ing reshaping, the image goes through a series of intricate
modifications in two major encoder blocks, each with several
layers for functions, including normalization, regulation, and
multi-head attention. These blocks clean up the image data,
keeping the output in the 36 × 128 dimension during this
stage [53]. Following this, the output moves through another
normalization layer, transitioning into a dense layer paired
with a Softmax layer, further producing the dimensions to
64×1. This output is then streamlined to a 1×128 dimension
through a sequence pooling layer. The X-ray image is then
divided into five classes using a linear classification layer that
processes the improved data. Table 7 outlines our proposed
base CCT model. Where we have a data augmentation layer,
which input images of 32× 32 pixels to improve the model’s
ability. Then we have CCT Tokenizer transforms the data into
a format the model can understand with a size of 36,128.
Central to the model are two transformer encoder blocks
crucial for interpreting data as shown in figure 9. Layer nor-
malization with a size of 36,128 also helps in achieving more
uniform training results. The model includes dense layers,
which are types of fully connected neural network layers.
For turning raw scores into a distribution of probabilities, the
Softmax function is utilized. Additionally, sequence pooling,
which has a size of 1,128, allows the model to manage inputs
of different sizes.

Each part of this model serves as a fundamental compo-
nent, with most being used only once, but the encoder blocks
are utilized twice. Additionally, Categorical Cross entropy is
chosen as the loss function, and theAdamoptimizer is applied
with a learning rate of 0.001. The model is executed with a
batch size of 128 over 200 epochs.

Table 7 presents the details of the transformer block. It has
two-layer normalization, two dropout, two dense layer, three
regularization layer and a multi head attention layer.

a: RESULTS OF THE MODEL ABLATION
As noted before, we carried out ablation research on the
fundamental CCT model to improve performance through
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FIGURE 9. CCT model architecture.

TABLE 7. Architecture details of the base CCT model.

TABLE 8. Details of transformer encoder block.

layer layout modifications. We conducted nine studies modi-
fying kernel size, stride size, batch size, batch learning rates,
various optimizers, and pooling layer kernel size. In our study,
we employed an ablation study approach to optimize the Base
CCT model. This process involves selecting a standard value
for each hyperparameter and conducting experiments with
varied parameter values.

We iteratively refine the parameters, using the best-found
values as the starting point for subsequent experiments. With

this methodical process, we are able to determine the ideal
configuration for our suggested CCT model. These ablation
studies on the initial CCT model led to a more stable archi-
tecture with faster processing speeds and better classification
accuracy. The results of these experiments are comprehen-
sively detailed in Table 9 and 10.
Study 1 (Modifying the Transformer Layers): We added

or removed several encoded blocks from the base model’s
transformer layers in order to get the best results. The
model worked best with the first configuration, training in
170 seconds for each cycle and getting the highest accuracy.
However, the second and third configurations also got good
results, with 89.56% and 90.50% accuracy. Since the third
configuration took the shortest time to train, we decided to
use it for our next set of experiments.
Study 2 (Modifying Dense and Dropout Layers): The quan-

tity of dense and dropout layers may influence a classifier’s
performance. In this study, we used different combinations
of dropout and dense layers. Our basic model had the best
accuracy in configuration 1 (90.68%), but it also required
the most training time per epoch (122 s). Our base model
(configuration 3) follows the addition of dropout and dense
layers and achieved the second-highest accuracy with 120 s
per epoch. Our model’s test accuracy for configuration 2 was
90.30%, and its training time for each epoch was 121s.
Although the third configuration achieved accuracy very
close to the second highest, training took less time than the
other configurations. As a result, configuration 3 was picked
for additional testing.
Study 3 (Altering the Activation Function): The efficacy of

a classification model is influenced by the activation func-
tions used. Finding the best activation function can improve a
model’s performance. We also used several additional acti-
vation functions, such as the soft sign, soft plus, rectified
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TABLE 9. Ablation study on changing transformer encoder block dense layer, dropout layer, activation function, and pooling layer.

linear unit (ReLU), and exponential linear unit (ELU). Table 9
displays the ReLU activation function’s performance, reveal-
ing a best test accuracy of 90.84%. Every epoch (120 s) has
the same training time for every activation function. In this
regard, we chose a future investigation on ReLU activation.
Study 4 (Changing the Pooling Layer):We tested two dif-

ferent pooling layers: maxpooling and average pooling. Both
took 120 seconds to train in each epoch. The maxpooling
layer came out on top with the highest accuracy, reaching
91.51%. So, we chose to use maxpooling for our next steps.
Study 5 (Altering the Stride Size): In this research,

we explored various stride sizes in the transformer layers
of the model. We tested sizes 1, 2, 3, and 4, each taking
120 seconds for every training cycle. The first configuration,
using a stride size of 1and achieved the highest accuracy

(91.51%). This led us to choose stride size 1 for the next steps
in our research.
Study 6 (Altering the Kernel Size): We conducted tests

using various kernel sizes (4, 3, 2, and 1) in the transformer
layers. The tests showed that the 4-sized kernel was the most
efficient, yielding a top accuracy of 91.91% and requiring
122 seconds for each training session. While the 3-sized
kernel also performed reasonably well with an 85.77% accu-
racy, it did not match the performance of the 4-sized kernel.
Hence, we have selected the 4-sized kernel for in-depth future
research.
Study 7 (Altering the Batch Size): Changing the batch size

can affect howwell the classification works. So, we have used
different batch sizes: 256, 128, 64, and 32. The 32-batch size
gave us the best accuracy at 91.96%, but it also took a long
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TABLE 10. Ablation study on changing stride size, kernel size, batch size, optimizer and learning rate.

time 145 seconds for each training session. The 128-batch
size took 119 seconds and was almost accurate. That’s why
we decided to use the 128-batch size for our next studies.
Study 8 (Altering the Optimizer): We have used five opti-

mizers to find the best one: Adam, Nadam, SGD, Adamax,
and RMSprop. The Adam optimizer came out on top with the
highest accuracy of 92.20%. The other optimizers performed
well, as well, but they couldn’t beat Adam’s score. So, we’ve
chosen to stick with the Adam optimizer for our future tests.
Study 9 (Altering the Learning Rate): We tested various

learning rates: 0.01, 0.006, 0.001, and 0.0008 to see which
worked best. Everything else stayed the same during these
tests. The 0.001 rate gave us the best accuracy, so we used it
for our planned model. Table 11 and 12 represent the optimal
configurations of the proposed model and model design and
tuning, respectively.

2) PROPOSED MODEL
In order to optimize performance while minimizing time
complexity and training durations, we strengthen and shorten
the proposed CCT architecture. Our based CCT architecture

has two transformer encoder blocks, whereas after ablation
study, the proposed KOA-CCT model has just one trans-
former encoder blocks. The resultant CCT architecture is
robust and allows for shorter training durations than the origi-
nal CCT architecture. This version maintains the strengths of
the previous one while making it more streamlined and effi-
cient. The configuration of our proposed KOA-CCT model
shown in Figure 10 for a clear understanding on a visual level.
The KOA-CCTNet model differs from the traditional CCT
model principally by its simplified structure. To maintain
model efficacy, further adjustments are made, such as reduc-
ing the stride and kernel sizes to 1 and 4, respectively. To fit
this new framework, we also change the CCT tokenizer’s
output’s size to 64 × 128. This novel model does not require
positional encoding, a technique frequently applied in previ-
ous transfer-basedmodels. This absence significantly reduces
the computational demands, characterized mathematically as
reducing the complexity from,

O(L∧2D+ LD∧2) (9)
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FIGURE 10. Architecture of the proposed KOA-CCTNet model.

TABLE 11. Configuration of proposed model after the ablation study.

where D is the dimensionality of the vector represen-
tation and L is the length of the input sequence [54].
This trimmed-down approach means that the KOA-CCTNet
needs fewer resources to function, speeding up the training
and testing phases without compromising performance and
enhancing the model’s overall efficiency.

IV. RESULTS AND ANALYSIS
A. PERFORMANCE METRICS
We used several metrics such as accuracy, precision, recall,
F1-score, specificity, False Positive Rate (FPR), False Neg-

TABLE 12. Model design and tuning.

ative Rate (FNR), False Discovery Rate (FDR), Negative
Predictive Value (NPV), Matthews Correlation Coefficient
(MCC) to assess the proposed classification model in this
work. The confusion matrix, accuracy and loss curve for
the proposed model is also shown in Figure 11C. When the
model correctly identifies a positive class, the result is true
positive (TP). A true Negative (TN) is an outcome where the
model properly categorizes a negative class. When the model
incorrectly predicts the positive class, it is called false positive
(FP), while false negative is an output in which the negative
class is mispredicted. The value or performance metrics were
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calculated using equations (10)-(19), [52], [53], [54], [55],
[56].

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

F1 − score = 2
precision× recall
precision+ recall

(13)

Specificity =
TN

TN + FP
(14)

FPR =
FP

FP+ TN
(15)

FNR =
FN

FN + TP
(16)

FDR =
FP

FP+ TP
(17)

NPV =
TN

TN + FN
(18)

MCC=
TNXTP−FPXFN

√
(TP+FP) (TP+FN ) (TN+FP) (TN+FN )

(19)

B. RESULTS OF THE TRANSFER LEARNING MODELS
In our research, we first experimentedwith five transfer learn-
ing techniques. Table 13 shows that all yielded lower accuracy
levels, demanded extended training times, sensitivity, speci-
ficity, recall, f1 score and AUC. We tested these techniques
using our improved merged dataset. Each model was trained
for 200 epochs. While MobileNetV2 achieved the highest
accuracy, it was time-consuming. The other models also
exhibited significant training times and comparatively lower
performance. Nevertheless, there is a chance to improve the
performance of the model by reducing the time during clas-
sification.

C. RESULTS OF THE TRANSFORMER MODELS
This study examined four transformer models using images
from our dataset. Every model ran for 200 epochs. We aimed
to find a model that was both accurate and efficient. As per
Table 14, the CCT model got 86.54% accuracy in 225 sec-
onds for each epoch, while the ViT model was the second
best accurate at 84.81% but took more time. With an accu-
racy of 83.58%, the involutional neural network had the
lowest accuracy, while the Swin transformers was com-
parable to the ViT’s. Given that the CCT model was the
fastest, we chose it as the foundation for our ongoing
research.

FIGURE 11. Results of image reduction.

TABLE 13. Comparison of performance in transfer learning models
considering accuracy and epoch duration.

TABLE 14. Transformer model’s performance comparison based on
accuracy and epoch time.

D. RESULT OF THE OPTIMAL MODEL
1) EVALUATING THE PROPOSED MODEL’S PERFORMANCE
Our suggested CCT model achieved notably better clas-
sification accuracy after completing an ablation study on
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FIGURE 12. Visualization of (A) Accuracy curve (B) Loss curve (C) Confusion matrix.

TABLE 15. Computation of different matrixes for the proposed model’s
performance assessment.

the base model. Table 15 displays the results of numerous
performance metrics, including statistical evaluation for the
suggested CCT model. The model got an F1-score of 94.2%,
an accuracy of 94.4%, a recall of 94.2%, a specificity of

TABLE 16. Individual accuracy for five grades.

98.53%, and an accuracy of 94.4% when the test data set
was used to test the proposed CTT model. The correspond-
ing values for the FPR, FNR, FDR, NPV, and MCC were
0.01464, 0.05738, 0.05718, 98.54%, and 92.81%. The results
of the performance measures show that our proposed model
is capable of accurately classifying X-ray images.
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TABLE 17. Accuracy comparison with different augmentation techniques.

Table 16 presents the individual accuracy for all five
grades. From Table 16, we can see that grade 0 achieved
97.10% accuracy. Grade 1 and grade 2 obtained an accuracy
of 97.25% and 96.50%, respectively. Grade 3 accuracy is con-
sidered the second-best with an accuracy of 98.26%. Grade
4 recorded the highest accuracy of 99.29%.

E. A BRIEF SUMMARY OF THE PROCESS OF CREATING
IMPROVED DATASETS USING VARIOUS AUGMENTATION
METHODS
Table 17 illustrates the use of four distinct augmentation tech-
niques to evaluate the model’s performance. We supplement
the dataset’s original images with elastic deformation [57]
approaches, four geometric techniques (vertical flipping,
horizontal flipping, rotation 90◦, and rotation −90◦) [41],
four photometric techniques (increasing brightness, reducing
brightness, increasing contrast, and reducing contrast) [41],
and DCGAN. In order to balance the quantity of images
in each class, we immediately applied several augmentation

strategies to the dataset. We created a total of 40,928 images
using photometric augmentation techniques. We evaluated
our proposed model and found the accuracy of 88.33%.
We processed 40928 images using geometric approaches and
found 76.56% accuracy. After employing the elastic defor-
mation approach to balance the dataset with 75,000 images,
we achieved an accuracy of 80.22%. In conclusion, we evalu-
ated DCGAN augmentation methods and generated a total of
1,102,232 images. The DCGAN-generated dataset performs
better in our proposed model, with 94.58% accuracy.

F. PERFORMANCE WITH IMAGE REDUCTION
In this study, we checked the reliability of our proposed
KOA-CCTNet model by reducing the number of images.
We kept reducing the number of images it looked at by 25%
in every step to see if it still worked well.We did this test three
times with different random sets of images each time to make
sure our results were accurate. Figure 11 shows the average
accuracy we got from these tests and helping us to understand
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TABLE 18. Accuracy comparison with existing literature.

how our model performs with less data. We experimented
with 100%, 75%, 50% and 25% images of testing dataset and
achieved 94.58%, 92.26%, 90.15%, and 87.55% accuracy.
Figure 11 delineate the model accuracy for three times test
cases.

G. VISUALIZATION OF CONFUSION MATRIX, ACCURACY
CURVE AND LOSS CURVE
Figure 12 illustrates the performance of our proposed model
through its accuracy and loss curves. In Figure 12(a), we can
see that the training and validation curves come together
nicely, showing no substantial gaps between them; this is a
good sign indicating no overfitting during the training stage.
This positive trend is mirrored in Figure 12(b), where the
loss curves also come together nicely, reassuring us that the
training did not suffer from overfitting or underfitting issues.
Finally, Figure 12(c) visually represents this data through the
model’s confusion matrices

H. COMPARISON WITH EXISTING WORK
Table 18 provides an overview of the comparison between
our proposed model and the existing related works based on
accuracy and datasets.

Mohammed et al. [18] introduced four multiclass clas-
sification, using three datasets where dataset III produced
the best accuracy of 89%. For dataset I and dataset II,
their model achieved an accuracy of 69% and 83%, respec-
tively. However, in their work there is a lack of augmen-
tation and image pre-processing techniques. S. Olsson and
his team [22], used Osteoarthritis Initiative (OAI) dataset
and their model CNN achieved 87% of accuracy. In their
work, there is also a lack of augmentation techniques.
Other researcher [24] used Mendeley VI dataset and their
proposemodel reach the accuracy of 90.6%. In light of similar
earlier research, it may be concluded that multiclass classifi-
cation using a large dataset and applying the advanced image
pre-processing augmentation technique (DCGAN) is more
challenging.

While our proposed approach acquired the satisfactory
result in with a large datahub in terms of KOA multi-class
classification.

V. CONCLUSION
In our study, we aimed to enhance the classification of
KOA utilizing X-ray images using a large datahub, leading
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to the development of the KOA-CCTNet framework. This
framework is an innovation based on a modified transformer
model, specifically the CCT model, which we selected as our
foundational architecture after evaluating four transformer
and five transfer learning models. We curated a diverse
dataset comprising four distinct sets of X-ray images, each
varying in quality and resolution. These images presented
challenges due to noise and artifacts, prompting us to employ
image processing techniques to improve the quality of all
110,232 images in our dataset. We prioritized creating a bal-
anced dataset, employing augmentation strategies to expand
its size and enhance the model’s training efficiency. This
approach was crucial in addressing the diverse nature of
our image dataset and ensuring comprehensive training. Our
extensive evaluation included nine different ablation stud-
ies, enabling us to optimize the KOA-CCTNet model and
address challenges related to training time and dataset size.
Remarkably, the KOA-CCTNet demonstrated exceptional
performance, achieving a 94.58% accuracy rate. This high
level of accuracy was maintained even when collaborating
with a reduced number of images, showcasing the model’s
robustness and reliability. Our study makes significant contri-
butions to the field, including the development of a depend-
able dataset through unique augmentation strategies and the
enhancement of image quality using various pre-processing
techniques. Moreover, we provided detailed comparisons
between different transformer and transfer learning models,
ultimately optimizing the KOA-CCTNet to deliver outstand-
ing results.

VI. LIMITATIONS AND FUTURE SCOPES
The transformer model we introduced in the current
study, KOA-CCTNet, demonstrated superior performance
in comparison to traditional deep learning models, espe-
cially in the multiclass classification of numerous low-pixel
X-ray images. Despite its commendable achievements, the
KOA-CCTNet model is not without its limitations, present-
ing opportunities for further enhancements in future studies.
Evaluating the model’s effectiveness in real-time data scenar-
ios would provide valuable insights into its practical applica-
bility and performance under different conditions. In addi-
tion, it is also important to highlight that the KOA-CCTNet
model exhibits exceptional capabilities in most testing sce-
narios, consistently delivering accurate classification results
across the five distinct categories of KOA X-ray images. One
more potential area for exploring is segmenting the region
of interest (ROI) from images, exploring 3D reconstruction,
and graphical fields, for example: graph neural networks
(GNN), geometric deep learning (GDL), etc. This enhance-
ment could contribute to an even more robust and reliable
classification performance. Despite its few limitations, the
model stands out for its robustness and reliability, showcas-
ing its potential as a valuable tool in the medical imaging
domain.
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