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ABSTRACT With the widespread availability and utilization of 3D meshes across various applications, the
need for accurately assessing their visual quality has become increasingly important. Despite the significance
of this task, the literature offers few No-Reference (NR) approaches for evaluating the visual quality of 3D
meshes. In response to this gap, this paper proposes a novel NR approach tailored specifically to score
the quality of 3D meshes. After rendering a 3D mesh into 2D views and patches, a pre-trained convolutional
neural network automatically extracts deep features from. These features are then employed in aMulti-Layer
Perceptron regressor to predict the quality score of the rendered images. The obtained scores are combined
with their corresponding BRISQUE scores, and an additionalMLP regressor is used to predict the final score.
We present experimental results demonstrating the effectiveness and robustness of our approach across a
diverse range of 3D mesh datasets. Comparative analyses with existing NR methods underscore the superior
performance and versatility of the proposed approach. Overall, this paper contributes to the advancement
of NR techniques for assessing 3D mesh quality, offering a valuable tool for researchers, practitioners, and
developers working with 3D models across various domains.

INDEX TERMS 3D mesh, mesh visual quality assessment, convolutional neural network, deep learning,
no reference quality assessment, BRISQUE.

I. INTRODUCTION
Three dimensional meshes are widely used in many fields
and applications such as computer graphics and games. 3D
acquisition techniques have recently undergone a number of
advances and developments and many different techniques
can be now considered for 3D acquisition. We can quote
laser scanners, structured light cameras and photogrammetry.
Using the latter, it is now easily possible to generate 3D
models by simply taking pictures around an object or a
person. Once a 3D mesh model has been acquired, it can be
used in many various contexts such as computer graphics,
games, digital animation, virtual to augmented reality, digital
twins, heritage or forensics, 3D printing, industrial design
and many others. Depending on the application context, the
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required precision of the 3D mesh is not always the same.
For instance, for conservation purposes in digital heritage,
one would like to have very detailed meshes with millions of
vertices. But if the mesh is to be distributed via the Internet
for viewing by the general public, the size of the mesh
has to be greatly reduced to enable a fast and interactive
user experience. As a consequence, raw acquired 3D meshes
always undergo a lot of pre-processing steps [1], from
denoising [2] to simplification [3], [4], watermarking [5],
[6] and compression [7], [8]. Inevitably, all these processing
steps can introduce visual distortions and affect the 3D mesh
quality that can hinder a proper visualisation for end-users.

The direct consequence is that the development of 3D
acquisition techniques has put forward the need for 3D Mesh
Visual Quality Assessment (MVQA) methods. 3D meshes
are now subject to the same challenges as 2D images,
with their distribution via the Internet and the need for
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methods to assess their quality. If there exists a lot of state-
of-the-art methods for Image Quality Assessment (IQA)
(see [9] for a recent review) that are now used in practical
applications, this is far from being the case for 3D meshes.
For 2D IQA, we can categorize objective methods regarding
the availability of a reference. A metric is termed ‘‘No-
Reference’’ (NR) or ‘‘no-reference’’ when the evaluation is
conducted without access to the reference data. Conversely,
a metric is referred to as ‘‘Reduced-Reference’’ (RR) or
‘‘Full Reference’’ (FR) when the evaluation is performed
using partial or complete reference data, respectively. For 3D
MVQA, the same categories do apply. For NR methods, the
Mean Opinion Score (MOS) associated to the meshes can
be used as a ground truth for training a prediction model.
Historically, the majority of established objective methods
for 3D mesh quality assessment have predominantly fallen
into the categories of FR or RR. However, no-reference
methods (i.e. NR) hold particular significance as they operate
without the need for a reference object to assess mesh
quality. This characteristic makes them valuable for real-time
applications where speed is crucial, and the luxury of having
data references is not always feasible. Hence, this serves as
the motivation for undertaking this work and our objective is
to propose a NR MVQA approach. As the focus of the paper
is on NR methods, we will not describe in depth FR or NR
MVQA approaches. We refer the reader to [10] and [11] that
provide a good review of. These approaches usually compute
local geometrical features that are combined into a quality
score, such as the FR method MSDM2 [12], and the RR
method FMPD [13].

The organization of the paper unfolds as follows: in
section II, we provide a brief overview of the state-of-the-
art of NR MVQA. Following that, section III describes
the details of our proposed approach. Next, section IV
delves into the experimental setup with the considered
databases, the training and evaluation validation protocols,
and a comparison with the state-of-the-art (SOTA). Section V
concludes the paper and presents our perspectives on the
topic.

II. NO-REFERENCE 3D MESH VISUAL QUALITY
ASSESSMENT SOTA
In this section we provide a brief overview of the main
methods of the SOTA for NR MVQA.

Several NR metrics have been developed for MVQ assess-
ment. Abouelaziz et al. [14] proposed a no-referencemethod
that uses mean curvature features and a General Regression
Neural Network (GRNN). Nouri et al. [15] employed visual
saliency and Support Vector Regression (SVR) for 3D No-
Reference Mesh Quality Assessment Index (BMQI). In [16],
Lin et al. proposed BMQA-GSES (No-Reference Mesh
Quality Assessment with Graph Spectral Entropy ans Spatial
features). Using Graph Spectral Entropy and Spatial features,
the 3Dmesh is considered as a graph signal. In the graph spec-
tral domain, Gaussian curvature signal undergoes conversion

with Graph Fourier transform, extracting smoothness and
information entropy for distortion evaluation. In the spatial
domain, four key spatial features describe concave, convex,
and structural information. The random forest regression
fuses all features to predict the objective quality score of
the 3D mesh. In order to take advantage of Convolutional
Neural Networks (CNNs), Abouelaziz et al. proposed various
approaches feeding themwith 2D projection rendered images
to predict visual quality [17], [18], [19]. In their primary
work, they introduced a patch-selection strategy based on
mesh saliency to emphasize attractive regions [20]. They have
finally proposed an approach called CNNs-CMP [10] that
combines deep features extracted from several pre-trained
CNNs (VGG16/AlexNet/ResNet) and combine them using
Compact Multi-linear Pooling. This approach is actually the
best approach for NR MVQA.

In a previous work [21], we have presented DCFQI (Deep
Convolutional Features Quality Index). Our work is inline
with the approaches of Abouelaziz et al. that consider 2D
rendered projections of 3D meshes and extract deep features
from. By rendering a 3D mesh into 2D views that can be
further decomposed into patches, a pre-trained CNN firstly
automatically extracts deep features. These features are then
used in a Multi Layer Perceptron (MLP) regressor to the
quality of each rendered image. The quality scores of the 2D
views are then averaged to estimate the final 3Dmesh quality.
In this paper we will extend our previous work at different
levels:

• We use a MLP regressor instead of a simple average to
estimate the final 3D mesh quality score from rendered
images,

• We combine quality scores from both 2D views and
patches, and also those obtained from the BRISQUENR
IQA index [22] on the rendered images,

• We perform a thorough evaluation of the different
configurations that can be obtained with our approach
on four different 3D mesh quality databases,

• We demonstrate the effectiveness and robustness of our
approach versus the SOTA.

Details about the proposed approach are provided in the next
section.

III. NO-REFERENCE 3D MESH QUALITY ASSESSMENT
LEARNED FROM QUALITY SCORES ON 2D PROJECTIONS
A. FLOWCHART OF THE APPROACH
In order to assess the visual quality of a given 3D mesh, our
proposed method starts with the rendering of multiple 2D
projection (that will be called views), by varying the point of
view around the mesh. These views can potentially contain
a lot of white background that is not informative for quality
estimation. Therefore, they are cropped according to themesh
bounding box in the view. The processed views are then
divided into four overlapping patches. Each 2D view or patch
issued from a view are 2D images and are fed to a pre-trained
convolutional network (VGG16 [23] in our case), to extract
deep features describing the image. Afterwards, this obtained
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feature vector serves to predict the quality of a view or a
patch, using a MLP regressor from the Mean Opinion Score
(MOS) associated to each mesh Mi. As a mesh is described
by several views and patches, a vector of quality scores is
obtained. We also propose to enlarge the latter by appending
to it the scores estimated by the BRISQUE no-reference
image quality metric on views and patches. The final vector
of quality scores is used to estimate the Predictive Mean
Opinion Score (PMOS) for the 3D mesh. This estimation can
be done by two different fusion schemes: averaging (as in our
previous work [21]) or by a non-linear regression. Figure 1
illustrates the pipeline of the proposed approach. In the
sequel we will describe each step of the proposed MVQA
approach.

B. 2D PROJECTIONS PRE-PROCESSING
Given a database containing N 3D meshes, our objective is
to perform several 2D renderings of each 3D meshMi, where
i ∈ [1,N ]. To ensure that the different meshes are positioned
in a similar way, the meshes centroids’ are shifted to the
origin of the coordinate system. This ensures a consistent
positioning for all meshes, and the distance from the
rendering camera is adjusted for each mesh. Both are crucial
factors for achieving reliable quality assessments. Once well
positioned, a 3D mesh Mi is rendered from 11 different
viewpoints by systematically changing the azimuth (θa) and
elevation (θe) angles by π

3 (60 degrees) for each viewpoint.
This technique is illustrated in Figure 2.

To capture diverse views, the elevation angle is maintained
at 0 degrees, while the Azimuth angle is systematically varied
(and vice versa). The camera position and the distance to
the object are set manually. Indeed, the bounding box of
a mesh can strongly vary from one mesh to another, and
it is essential to adjust the rendering to each. This ensures
that the object is localized close to the camera, maximizing
the visibility of intricate details. The adjustment of these
parameters facilitates the creation of an extensive dataset
of 2D views. This dataset encompasses various perspectives
and highlights crucial object details. Figure 2 presents the
obtained rendered 2D views of the Jessy 3D mesh from the
UWB Compression database [24].
After this rendering step, 11 rendered views are obtained

for each mesh Mi. We will denote them by V j
i with j ∈

[1, 11]. The size of the rendered views is 1024 × 1024.
This fixed size was chosen to meticulously capture crucial
distinguishing details vital for visual quality assessment.
Nevertheless, these images comewith a considerable expanse
of white background. To mitigate the influence of this non-
informative background on quality assessment, we conduct a
cropping and resizing process. The objective is to retain solely
the mesh bounding box, effectively eliminating the majority
of the surrounding white backdrop. Given that the cropping
operation is contingent on the size of the mesh bounding box,
the resultant images may exhibit varying sizes. To ensure
uniformity, we resize all images to a standardized 512× 512.

With the goal of capturing intricate details from 3Dmeshes
through 2D views, the acquisition of only 11×N views might
fall short in a supervised learning setting. To address this
limitation, we adopt a strategy of extracting four overlapping
patches from each 2D view. Therefore, we extract four
patches of size 288 × 288: the patches are larger than
256 × 256 as we enforce 12.5% of overlap. This way of
splitting a view into several patches is different from the
one proposed in [18]. Indeed, they extract tiny patches of
size 32 × 32 and this has several drawbacks. First, small
patches may lack sufficient information for comprehensive
quality assessment. Second, small patches can predominantly
consist of background, necessitating specific strategies for
background elimination: in [10], they have proposed to
eliminate background patches with the help of saliency
detection. Third, as the number of eliminated background
patches varies from one 2D view to another, this produces
a different number of retained extracted patches per view and
produces an unbalanced dataset. With our approach of larger
patch extraction, we cope with all these problems. We will
denote the extracted patches from the 2D views V j

i of a mesh
Mi by P

j,k
i with j ∈ [1, 11] and k ∈ [1, 4].

To conclude this pre-processing, the extracted images
V j
i and Pj,ki of a mesh Mi undergo normalization, scaling

its values between 0 and 1. Unlike the local contrast
normalization employed in [10], our proposed method opts
for global normalization performed on the L∗ lightness
channel within the CIELAB color space. This choice is
motivated by the nonlinear nature of perceived lightness (L∗),
mirroring human perception, and aims to enhance the quality
assessment process.

C. QUALITY ESTIMATION OF A 2D PROJECTION
With the pre-processing step, from an initial database B of
N meshes, two distinct datasets have been generated: 1) BV
considering only views (2D images) and 2)BP dedicated to
patches. The BV = {V j

i } dataset contains N ×11 images with
i ∈ [1,N ], and j ∈ [1, 11]. The BP = {Pj,ki } dataset contains
N×11×4 images with i ∈ [1,N ], j ∈ [1, 11], and k ∈ [1, 4].
To simplify the notations we will denote as I ji an image of a
set BS with S ∈ {V ,P}, i ∈ [1,N ], j ∈ [1,NS ], NV = 11 and
NP = 44.

1) LEARNED 2D PROJECTION QUALITY ESTIMATION
From these two datasets, our objective is to learn to score
the quality of a 2D projection image from its corresponding
3D mesh MOS as reference value, whether it is a view or
a patch issued from a view. To do so, we first extract a
deep feature vector from an image I ji using a pre-trained
VGG16 convolutional network [23] (we do not train it
from scratch but re-use the pre-trained weights obtained on
ImageNet). Each image is resized to 224 × 224 before being
fed to VGG16. The latter was chosen for its superior feature
extraction performance compared to alternative models
like AlexNet and ResNet [10]. The resize operation to
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FIGURE 1. Illustration of the proposed Mesh Visual Quality Assessment approach.

FIGURE 2. Illustrating viewing angles in the rendering process of a 3D
mesh: Azimuth angle (θa) in the horizontal plane with z = 0 and Elevation
angle (θe) from the xz plane with y = 0.

224 × 224 is needed as we consider a pre-trained VGG16
the input size of which is fixed. For 2D views, that have a
size of 512×512, this resize operation has a strong reduction
factor and this can alter the extracted features. This is the
reason why we also consider patches extracted from views.
As the size of the extracted patches is 288 × 288, this time
the reduction factor is negligible. An alternative would be to
re-train the VGG16 feature extractor for views and patches,
we will consider this possibility in future works. Anyway,
as it will be demonstrated in Section IV, the experimental
results show that the features extracted from the resized views
are sufficient for an accurate quality prediction, but they can
be enhanced by combining them with predictions made on
patches.

Formally we denote as φ the VGG16 deep feature extractor
(i.e., obtained with the VGG16 layer before its final Fully
Connected layers). It takes as input an image of size
224×224 and outputs a flattened vector of size 7×7×512 =

25088. It is defined as φ : R224×224
→ R25088.

Given a datasetBS , each image I ji ∈ BS is now described by
a feature vector φ(I ji ). The latter is used as input to a shallow

Multi-Layer Perceptron (MLP) the objective of which is to
predict a quality score close to the MOS of the associated
mesh Mi. Therefore we train a MLP non-linear regressor
with each input vector being φ(I ji ) and the associated value
to predict is MOS(Mi). As we have two distinct datasets
of views and patches BV and BP, we finally obtain two
distinct MLP non-linear regressors denoted by MLPRS that
can estimate the quality of an image (being either a view
or a patch, as given by S). We quote this as the Predicted
Image Mean Opinion Square and denote it by PIMOSS (I

j
i ) =

MLPRS (φ(I
j
i )) with S ∈ {V ,P}, i ∈ [1,N ], and j ∈ [1,NS ].

2) BRISQUE IQA FOR 2D PROJECTION QUALITY ESTIMATION
We just have shown how to learn to estimate the quality of
2D projections from reference datasets of views or patches.
However, as 2D projections are images, we could also
consider NR Image Quality Assessment (IQA) metrics to
do so. The BRISQUE (No-Reference/Referenceless Image
Spatial Quality Evaluator) IQA stands out from the literature
as a no-reference image quality assessment algorithm [22].
It measures the perceived quality of images without the
need for a reference image for comparison. This algorithm
leverages spatial domain features within the image, extracting
statistical measures like local mean and standard deviation.
Then, a machine learning model is trained to predict the
quality score, with the model being trained on a dataset
of natural images with known quality scores. High Brisque
scores typically indicate lower image quality, while lower
scores suggest higher image quality. We propose to also
consider such a no-reference IQA to estimate the quality of
2D projections. The interest of using BRISQUE is twofold:
it is referenceless and is already trained. We quote this
estimation by PIMOSBS (I

j
i ) = BRISQUES (I

j
i ) with S ∈

{V ,P}, i ∈ [1,N ], and j ∈ [1,NS ]. As with VGG16,
the BRISQUE model we consider is pre-trained: it has
been trained beforehand on the LIVE IQA dataset [22].
BRISQUE extracts coefficients from Mean Substracted
Contrast Normalized (MSCN) images and a Generalized
Gaussian Distribution (GGD) is fit onto. Features are
extracted from the fitted GGD and used to train a Support
Vector Regressor model that predicts the image quality.
To be able to use this pre-trained BRISQUE model, we have
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FIGURE 3. Illustration of the Gaussianity of 2D projections.
Figure (a)-(c) present a 2D projection of an original mesh and two of its
degraded versions (with added noise in (b) and simplification in (c)). The
histograms of the normalized luminance coefficients follow a nearby
Gaussian distribution.

to ensure that the 2D projections also do follow a GGD.
Figure 3 presents a 2D projection for a reference mesh
and two degraded versions, obtained by adding noise or
simplifying the mesh. As it can be seen theMSCN coefficient
nearby follow a Gaussian distribution, and this validates our
assumption that BRISQUE can be used on 2D projections.
Here we have considered a pre-trained BRISQUE model,
but we could have re-trained it on a dedicated dataset of 2D
projections. This will be considered in future investigations.

D. MVQA FROM 2D PROJECTION QUALITY SCORES
Once a regressor MLPRS has been trained on a dataset BS ,
a vector of NS image-based quality scores is obtained for
each mesh Mi: PQS(Mi) = [PIMOSS (I

j
i ) : j ∈ [1,NS ]]T .

A similar vector of scores can be obtained with the BRISQUE
IQA index: PQS,B(Mi) = [PIMOSBS (I

j
i ) : j ∈ [1,NS ]]T .

Finally, as we have two datasets BS for views and patches,
we obtain four different vectors depending whether the 2D
quality evalxuators are performed on views or patches:

• PQV(Mi) for quality scores with MLPRV on views,
• PQP(Mi) for quality scores with MLPRP on views’
patches,

• PQV,B(Mi) for quality scores with BRISQUE on views,
• PQP,B(Mi) for quality scores with BRISQUE on views’
patches.

To estimate the quality of a mesh Mi, a fusion strategy
is needed to aggregate all the PQS,∗(Mi) scores into a
single one that provides the global mesh quality. We quote
this final quality score of a mesh as the Predicted Mesh
Mean Opinion Square, denoted by PMMOS. We consider
two aggregation strategies: 1) an averaging and 2) a MLP
non-linear regression. Both will be performed on a vector of
quality scores PQ.

The first aggregation scheme, the averaging, can be
expressed as:

PMMOS(Mi) =
1

|PQ|

|PQ|∑
j=1

PQj(Mi) (1)

with PQj the j-th element of the vector PQ, and |PQ| the
cardinality of PQ.

The second aggregation scheme, the MLP non-linear
regressor, can be expressed as:

PMMOS(Mi) = MLPR(PQ(Mi)) (2)

So far we do not have mentioned what are the elements that
do constitute the vector PQ. We could solely use the quality
scores on views and patches separately, but we could also
make the most of them by using both. Therefore, we will
investigate the following configurations:

• PQ(Mi) = PQV(Mi): the vector of 11 quality scores
estimated from views with MLPRV

• PQ(Mi) = PQP(Mi): the vector of 44 quality scores
estimated from views’ patches with MLPRP

• PQ(Mi) = PQV(Mi)∪PQP(Mi): the vector of 55 quality
scores estimated from views and views’ patches with
MLPRV and MLPRP

• PQ(Mi) = PQV,B(Mi): the vector of 11 quality scores
estimated from views with BRISQUE

• PQ(Mi) = PQP,B(Mi): the vector of 44 quality scores
estimated from views’ patches with BRISQUE.

• PQ(Mi) = PQV,B(Mi) ∪ PQP,B(Mi): the vector
of 55 quality scores estimated from views and views’
patches with BRISQUE.

• PQ(Mi) = PQV(Mi) ∪ PQP(Mi) ∪ PQV,B(Mi) ∪

PQP,B(Mi): the vector of 110 quality scores estimated
from views and views’ patches with MLPRV , MLPRP,
and BRISQUE.

All these configurations will give rise to different MVQA
methods that we will compare in the next section.

IV. EXPERIMENTS
Now that we have introduced our approach to MVQA,
we investigate its properties by experiments with several
configurations on different databases. Let us first present the
databases we have considered.

A. DATABASES
We give a short description of the databases we used. For
each database, a histogram of the meshes’ MOS is shown to
illustrate the database MOS diversity (or lack thereof).

1) LIRIS/EPFL GENERAL PURPOSE DATABASE
The LIRIS/EPFL General-Purpose Database [5] contains
88 models ranging from 40K to 50K vertices. These models
are derived from 4 reference meshes (Armadillo, Dynosaur,
Venus, and RockerArm). Distortions, such as noise addition
and smoothing, are applied to the 3D meshes with varying
strengths at four locations: uniformly (on the entire object),
or on smooth, rough, and intermediate areas. A total of
12 observers participated in the subjective evaluation and
their subjective scores were averaged to obtain a MOS per
mesh. Figure 4 presents the 3D meshes of this database.
Figure 5 presents the MOS histogram for this database (few
meshes of low quality are present).
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FIGURE 4. The meshes of the Liris/EPFL General Purpose Database. From
top-left to bottom-right: Armadillo, Dyno, RockerArm, Venus.

FIGURE 5. Liris/EPFL General Purpose Database histogram of MOS.

2) LIRIS MASKING DATABASE
The LIRIS Masking Database [25] contains 26 models
ranging from 9K to 40K vertices, generated from 4 reference
meshes (Armadillo, Bimba, Dynosaur, and Lion). These
objects were selected for their distinct smooth and rough
areas. The sole applied distortion is noise addition, with
three different strengths, exclusively on either smooth or
rough regions. The primary objective of this database is to
assess metric behavior concerning the visual masking effect.
As noise is less visible on rough regions, metrics should
align with this perceptual mechanism. A total of 11 observers
participated in the subjective evaluation and their subjective
scores were averaged to obtain a MOS per mesh. Figure 6
presents the 3D meshes of this database. Figure 7 presents
the MOS histogram for this database.

3) IEETA SIMPLIFICATION DATABASE
The IEETA Simplification Database [26] contains 30 models
generated from 5 reference meshes (Bunny, Foot, Head,

FIGURE 6. The meshes of the LIRIS Masking Database. From top-left to
bottom-right: Armadillo, Dyno, Bimba, Lion.

FIGURE 7. LIRIS Masking Database histogram of MOS.

Lung, and Strange) ranging from 2K to 25K vertices.
Reference models have undergone simplification using three
different methods at two levels (20% and 50% of the original
number of faces). A total of 65 observers contributed to
the subjective evaluation and their subjective scores were
averaged to obtain a MOS per mesh. Figure 8 presents the 3D
meshes of this database. Figure 9 presents theMOShistogram
for this database, that is very unbalanced.

4) UWB COMPRESSION DATABASE
The UWB Compression Database [24], contains a total
of 78 altered models generated from 6 reference meshes.
Each original model undergoes 13 distinct compression
types implemented by various algorithms. The subjective
evaluation study involves the participation of 69 observer and
their subjective scores were averaged to obtain a MOS per
mesh. Figure 10 presents the 3D meshes of this database.
Figure 11 presents the MOS histogram for this database.
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FIGURE 8. The meshes of the IEETA Simplification Database. From
top-left to bottom-right: Bones, Bunny, Head, Lung, Strange.

FIGURE 9. IEETA Simplification Database histogram of MOS.

B. EVALUATION METRICS
To evaluate the quality assessment performance of our
approach, we will employ two standard metrics: the Spear-
man Rank-Order Correlation Coefficient SROOC and the
Pearson Linear Correlation Coefficient PLCC . Widely used
in visual quality assessment, these metrics measure the
agreement and similarity between predicted scores and
ground truth values. They form the basis for comparing the
performance of our proposed approach with existing no-
reference mesh quality assessment metrics. By quantifying
the relationship between predicted and actual scores or

FIGURE 10. The meshes of the UWB Compression Database. From top-left
to bottom-right: Bunny, James, Jessy, Nissan, Helix.

FIGURE 11. UWB Compression Database histogram of MOS.

rankings, these coefficients offer valuable insights into the
model’s performance.

The SROOC coefficient (rs) is a statistical measure used to
assess the strength and direction of the monotonic relation-
ship between the predicted quality scores PMMOS(Mi) and
the reference mean opinion scores MOS(Mi). On the other
hand, the PLCC metric (rp) assesses the linear relationship
or correlation between the predicted scores and the ground
truth values.

C. TRAINING AND EVALUATION PROTOCOL
We provide details on the MLP regressors’ MLPRS architec-
ture used to perform quality estimation from 2D projections
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TABLE 1. The different configurations of our approach that we tested in the experiments. To each configuration an acronym is given (see text for details).

FIGURE 12. Illustration of the different configurations that can be considered with our proposed approach (see text for details).

as well on how they are trained (two procedures are
considered) and evaluated.

1) MLP REGRESSORS TRAINING
For 2D projections quality estimation, the considered MLP
regressorMLPRS architecture is composed by a single hidden
layer of 512 neurons using a Rectified Linear Unit (ReLU)
activation function, followed by a single-neuron output layer
using a sigmoid activation function. A dropout layer with a
rate of 0.5 is appended after the dense layer to counteract
overfitting. Weight initialization for the dense layer employs
the Glorot uniform initialization method [27]. The training
is performed with the Mean Average Error loss and the
RMSprop optimizer with a learning rate fixed to 0.001. Based
on extensive tests, we have found that the best correlation
scores are obtained with a batch size of one-third of the
training set size. This parameter will be fixed this way for
all the trials. In order to enhance the results, we employ the
Early Stopping technique which is a form of regularization
that helps prevent overfitting and improves generalization of
the trained model.

For the aggregation of image quality scores, a third
MLP regressor MLPR is used. It is composed of a a
single hidden layer of neurons using a Rectified Linear

Unit (ReLU) activation function, followed by a single-
neuron output layer using a sigmoid activation function. The
number of neurons of the hidden layer is the same than its
number of inputs (i.e., |PQ|). The other parameters are the
same than for the two other regressors (activation function,
optimizer, etc.).

We will refer to this training procedure of the three
regressors as the ‘‘Base Model (BM)’’.

2) LEAVE-ONE-MESH-OUT EVALUATION PROTOCOL
In order to evaluate the accuracy of the MLP regressors
MLPRS , we will perform a Leave-One-Mesh-Out Cross-
Validation procedure (LOMO-CV). At training, all the
meshes are considered except one mesh and its distorted
versions. In such a protocol, while training a MLP regressor
MLPRS , the images associated to a specific mesh are all
excluded from the training process. The trained neural
network is then tested on these excluded images to evaluate
its performance as they represent unseen data. This LOMO-
CV process is repeated for each mesh (a reference mesh
and its degraded versions) of a dataset. By employing cross-
validation, we ensure an objective assessment of the MLPR
model as it is evaluated on strictly independent data that it has
not been trained on.
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When training the third regressor MLPR, the same
procedure is applied and the quality scores of the excluded
mesh and its degraded version are excluded.

3) CUMULATIVE TRAINING OF THE MLP REGRESSORS
By using a LOMO-CV training of theMLP regressors, we are
able to measure their generalization abilities. However,
we are not able to use a resulting network to evaluate the
quality of new unseen 3Dmeshes. Indeed, we obtain a trained
MLP regressor for each fold and not a single trained model.
To cope with this problem, we propose to use a different
learning strategy that we call ‘‘Cumulative’’. It allows to
obtain a single neural network that can be used to assess
the visual quality of 3D meshes and that can go beyond the
performances of the base models obtained by LOMO-CV.
To do so, we consider a cumulative training the principle of
which was presented in our previous work [21]. This learning
strategy begins by training and testing the MLPR model with
Glorot initialization on the first fold for 1000 epochs. Then,
the same MLPR is used for training on the next fold and
so on. As a consequence, the final cumulative MLPR can
be used to perform future predictions on unseen data and
this also helps in improving its accuracy. However, if we
measure the performances of this final model, this obviously
leads to overestimated results as this cumulative training was
gradually trained over the entire dataset. To mitigate this
effect and better evaluate the performances of the Cumulative
Model (CM), we re-train it using LOMO-CV in order to
obtain a final Retrained Cumulative Model. To do so, on each
fold, a new MLPR is initialized with the weights of the CM
and is trained for a fixed number of epochs. The latter is
determined by finding the global minimum of the average of
the losses of all folds during the cumulative training. We will
see in the results that the CM model performs better than the
Base model and refitting it enables to have a better evaluation
of its generalization abilities.

4) EVALUATED CONFIGURATIONS
As we have seen in the description of the approach, we can
consider different configurations depending on the way the
vector PQ is built. Its size can vary from 11 (only views are
considered), 44 (only patches are considered), 55 (both views
and patches are considered), to 110 (both views and patches
are considered with the addition of BRISQUE scores on both
views and patches). In addition, we can consider either a
base model or a cumulative model depending on the chosen
training procedure. To differentiate all these configurations
and compare them, we will use a specific notation. The
approach will be denoted by DCFQI (Deep Convolutional
Features Quality Index) and the different configurations will
be specified by the different terms between dashes:

DCFQI - BM - A - V
CM R P

VP
VPB

FIGURE 13. From top-left to bottom right: Reference MOS and predicted
MOS with our model DCFQI-CM-R-VPB on meshes from Liris General
purpose, Liris masking, IEETA Simplification, and UWB Compression
databases.

where BM stands for Base Model, CM for Cumulative
Model, A for Average Aggregation (Equation 1), R for MLP
Regression (Equation 2), V for quality scores from views,
P for quality scores from patches, VP for quality scores from
both views and patches, and VPB for quality scores from
both views and patches with the addition of BRISQUE scores
on both views and patches. When using only BRISQUE, the
configuration are specified by:

BRISQUE - R - V
P
VP

There is no base or cumulative model for BRISQUE and
we will consider only the MLP Regression for aggregation
of the scores. These configurations will be used to assess
the performance of the BRISQUE IQA taken solely for
the MVQA. The different configurations are summed up
in Table 1 and illustrated in Figure 12 (for only the MLP
Regression aggregation).

D. RESULTS AND COMPARISON WITH SOTA
We have compared the different configurations of our
proposed approach (the ones resumed in Table 1) on the
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TABLE 2. Comparison of SROOC and PLCC values of our proposed methods with the state of the art applied to the Liris general purpose database.

TABLE 3. Comparison of SROOC and PLCC values of our proposed methods with the state of the art applied to the Liris masking database.

four databases introduced at the beginning of this section
(Liris/EPFL General Purpose Database, Liris Masking
Database, IEETA Simplification Database, UWB Compres-
sion Database). The results are repectively shown in Tables 2,
3, 4, 5. To ease the reading of the tables, we have: best rates
bolded in each column for each category of approach, best
SOTA approach is shown with color , our best Base Model
is shown with color , best Cumulative Model is shown with
color . The three overall best scores are shown in each
column with colors , , and .

If the scores are presented for all the meshes of the
databases, we will draw our conclusions only from the global
scores: ‘‘All models’’ and ‘‘Average’’, as they are more
representative. The Average column is the average of the
SROOC and PLCC scores of all the meshes. The All models
column is the computation of the SROOC and PLCC directly

on all the models quality scores. This last measure is the most
important one to analyze.

Whatever the database, using only the BRISQUE IQA
scores for MVQA does not produce good results. This shows
that classical IQA algorithms are not solely sufficient to
learn 3D Mesh quality scores from views or patches. If we
compare the BRISQUE-R-* scores with those of the DFCQI
Base Models, using a simple averaging of the quality scores
estimated from views or patches (DCFQI-BM-A-*), there is a
systematic gain of performance for all themodels. This shows
the interest of learning a dedicated image quality score on
projections instead of using BRISQUE. Now, if we have a
look to all of the DFCQI Base Models, we can see that it
is always beneficial to replace the averaging score quality
aggregator by a MLP non-linear Regressor. Therefore, the
relationship between the estimated 2D image quality scores
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TABLE 4. Comparison of SROOC and PLCC values of our proposed methods with the state of the art applied to the IEETA database.

TABLE 5. Comparison of SROOC and PLCC values of our proposed Indexes with the state of the art applied to the compression database.

is clearly not linear. This enhances the results of our previous
works that used an averaging aggregator [21].

If we compare the best DFCQI Base Models to the
best state-of-the-art approach CNNs-CMP [10], we are
very competitive (on Liris Masking, IEETA databases) or
better (on Liris General Purpose,Compression databases)
when using a combination of views and patches (DCFQI-
BM-R-VP). In addition, CNNs-CMP [10] uses a complex
approach that relies on the combination of features from three
pre-trained models (VGG/AlexNet/ResNet) combined with
saliency patch-based selection (with small patches of size
32×32). Our approach shows that, evenwith the use of views,
we can obtain better results and enhance them by combining
predictions from both views and patches.

Lastly if we consider a cumulative model, we surpass
the state-of-the-art for all meshes, except for the IEETA
Database where this depends on the considered evaluation
metrics but we are always better with SROOC versus CNNs-
CMP. As shown in [10], the deep features extracted from
ResNet [28] enable to obtain better results on this database,
and this could be considered to further enhance our results.
A cumulative model using both view and patches (DCFQI-
CM-R-VP) works well on all the databases, but the results can
be further enhanced by incorporating the BRISQUE scores

(DCFQI-BM-R-VPB). So, if the BRISQUE IQA scores
solely are not of interest, they can bring some supplementary
information to our learned 2D projection quality scores.

All these results show the benefit of our approach at
different levels and how it can be tuned to overpass the
state-of-the-art. To end these experiments, we provide some
qualitative results. Figure 13 presents distorted meshes from
each of the considered databases along with the reference
MOS and the PMMOS predicted by our model DCFQI-CM-
R-VPB. One can see that the predicted values are very close
to the reference ones.

V. CONCLUSION
In this paper, we have introduced an innovative no-reference
approach for assessing mesh quality. The method involves
rendering the mesh into 2D views, which are subsequently
divided into patches. Deep features are then extracted from
these images using the pre-trained VGG16 Convolutional
Neural Network (CNN) and fed into a Multilayer Perceptron
(MLP) to predict the quality of the 2D projections based
on the reference Mean Opinion Score (MOS) of the 3D
mesh. Our base model demonstrates competitiveness with
the state-of-the-art, particularly when incorporating scores
from both views and patches. Additionally, we proposed a
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cumulative training approach to obtain a final unified model
for prediction, which surpasses the current state-of-the-art
performance across all considered databases. Future research
directions will explore the application of our metrics for
estimating the quality of colored meshes [11] and the use of
alternative deep representation such as Vision Transformers.
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