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ABSTRACT Fuzzy logic controls (FLCs) have emerged as a promising solution for speed regulation in
induction motor (IM) drives, offering adaptability to non-linearities, parameter variations, and external
disturbances. However, conventional FLCs with fixed parameters and a huge number of rules can limit
adaptiveness and increase system complexity, leading to deteriorated performance and high computational
requirements. Moreover, reliance on costly encoders in traditional sensor-based IM drives introduces
measurement errors and contributes toward the overall cost. To tackle these challenges, this paper proposes
an integrated sensorless IM drive with a simplified self-tuning FLC (ST-FLC) and data-driven reinforcement
learning (RL) for speed estimation. By employing a simplified 9-rule FLC instead of an intensive 49-rule
counterpart and integrating a simple self-tuning mechanism based on mathematical equations, adaptiveness
is maintained while computational overhead is reduced. Furthermore, the adoption of RL-based sensorless
speed estimation eliminates reliance on encoder data, offering a cost-effective and computationally efficient
alternative. Unlike conventional sensorless methods, the proposed sensorless-RL approach is data-driven and
does not rely on motor parameters, leveraging a pre-trained policy for efficient speed estimation. Validation
through simulation and experimentation on the dSPACE DS1104 platform demonstrates the efficacy of the
proposed ST-FLC Sim 9-rule with sensorless RL. The method showcases accurate speed estimation, with
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simulation results comparable to standard 49-rule FLC and superior experimental performance. Significant compu-
tational time reduction is achieved with the proposed approach, resulting in a notable improvement in experimental
performance metrics. Specifically, reductions of 50.5%, 20.4%, 15%, and 14.9% in settling time, current ripples,
torque ripples, and current harmonics, respectively, underscore the practical benefits of the proposed integrated
ST-FLC Sim 9-rule with sensorless-RL IM drive system.

INDEX TERMS FLC, ST-FLC, sensorless IM drives, RL, simplified rules, computation requirement.

NOMENCLATURE
AC Actor-critic || alternating current.
DTC Direct torque control.
DFOC Direct field-oriented control.
DDPG Deep deterministic policy gradient.
e/E Speed error.
1e Change of speed error.
EKF Extended kalman filter.
SMO Sliding mode observer.
LSO Luenberger State observer.
MRAS Model reference adaptive system.
MF Membership function.
EV Electric vehicle.
FLC Fuzzy logic control.
FOC Field oriented control.
HCC Hysteresis current control.
IM Induction machine.
IFOC Indirect FOC.
ST-FLC Self-tuning FLC.
SF Scaling factor.
NN Neural network.
DNN Deep neural network.
RL Reinforcement learning.
MDP Markov decision process.
PWM Pulse width modulation.
VSI Voltage Source Inverter.
9rd, 9rq Rotor flux of d- and q-axis.
vs, vr Stator and rotor voltages.
vds, vqs d- and q-axis stator voltages.
vdr , vqr d- and q-axis rotor voltages.
is, ir Stator and rotor currents.
ids, iqs d- and q-axis stator currents.
I∗qs, I

∗
ds dq-axis stator reference currents.

idr , iqr d- and q-axis rotor currents.
I∗α , I∗β α- and β-axis reference currents.
Ia, Ib, Ic Three-phase stator currents.
I∗a , I∗b , I∗c Three-phase reference currents.
Va,Vb,Vc Three-phase stator voltages.
Te electrical torque.
TL Load torque.
ω Machine speed.
ωest Estimated speed.
ωsl Slip frequency.
τr Rotor time constant.
θe Rotor flux position.
Ge FLC input error SF.
Gce FLC input change of error SF.

Gcu FLC output SF.
β Self-tuning gain.
S RL state space.
A RL action space.
r RL rewards.
π RL policy.
γ RL discount factor.

I. INTRODUCTION
Induction motors (IMs) are characterized by their simple
construction, ruggedness, affordability, and low maintenance
requirements. As such, IMs have been extensively utilized in
a variety of industrial applications, including electric vehi-
cles (EVs), oil and gas excavations, mills, and conveyors
[1], [2]. To effectively utilize IMs in these applications,
various control techniques (IM drives) are introduced, such
as scalar, vector, and model predictive controls [3]. Vector
control with torque and flux decoupling allows the IM to
be controlled in a similar manner to separately excited DC
motors, thus achieving satisfactory high performance with a
fast-dynamic response, robust performance, and stable oper-
ations compared to the conventional V/F scalar controls [4],
[5], [6]. Field Oriented Control (FOC) and Direct Torque
Control (DTC) are the most commonly used vector control
IM drives [7], [8], [9].

A vector control scheme consists of an outer speed control
loop and an inner current/torque control loop. The primary
function of these control loops is to generate switching pulses
for the power electronic converter to effectively drive the
motor [10]. In FOC, the switching pulses are generated using
hysteresis current control (HCC) or other pulse width modu-
lation (PWM) techniques such as sinusoidal PWM (SPWM)
or space vector PWM (SVPWM). On the other hand, DTC
directly generates the switching pulses based on a pre-defined
switching table according to flux and torque errors. Both
FOC and DTC have a fast-dynamic response and satisfac-
tory state-state performance. However, DTC generates high
steady-state torque ripples, variable switching frequency, and
degrades performance at low-speed operations [11].
There are two types of FOC commonly used in IM drives,

direct FOC (DFOC) and indirect FOC (IFOC). In DFOC,
control variables are directly measured using sensors, which
can be expensive to implement [12]. While IFOC indirectly
anticipates the slip frequency by relying on the machine’s
dynamic model, thus IFOC does not require direct mea-
surement of control variables, making it less sensitive to
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parameter variations and ultimately reducing the cost of
implementation [13]. Various researchers have implemented
IFOC for IM drives and reported good and satisfactory per-
formance [14], [15], [16], [17]. IFOC commonly employs
HCC for switching pulse generation due to its simplicity,
less currents and torque ripples, and reduced computational
requirements compared to other PWM techniques [18], [19],
[20].

The outer speed control loop is vital in any IM drive
system, significantly affecting performance. For decades,
Proportional Integral (PI) controller has been the main choice
for IM drive speed regulation due to its simplicity and abil-
ity to offer faster dynamic response [21], [22]. However,
PI controller with fixed gain values can experience various
issues, including inability to copewith system non-linearities,
parameter variations, and external disturbances [23], [24].
To overcome these issues, various adaptive speed controllers
are introduced, such as employing a self-tuning PI con-
troller [25] and other adaptive mechanisms [26], [27], [28].
Over the past 20 years, fuzzy logic controllers (FLCs) have
been garnering significant attention as adaptive speed con-
trollers for IM drives [10], [29], [30], [31]. FLCs excel with
complex systems, adapt well to uncertain parameters, and
are effective in precision-critical applications with varying
conditions. Their adaptability and robustness enhance system
performance and efficiency compared to traditional PI con-
trollers [32], [33], [34].

FLC design comprises scaling factors (SFs), fuzzy rules
and membership functions (MFs), which are selected based
on expert knowledge and engineering skills [35], [36].
However, fixed SFs and a big number of fuzzy rules
can degrade the drive performance and increase the com-
putational requirement and/or hardware cost [37], [38].
Self-tuning FLCs (ST-FLCs) [13], [39], [40] and simplified
rules-FLCs (SR-FLCs) [41], [42] have been introduced to
maintain the adaptivity and reduce the computational burden
of FLCs. In addition, a combination of self-tuning and sim-
plified fuzzy has been introduced to enhance the adaptiveness
and reduce computation requirements of FLCs simultane-
ously [43], [44]. However, the complexity of the self-tuning
mechanism and/or using an additional FLC for self-tuning
may degrade the performance and contribute to the overall
system computational burden.

Speed control in IM drives is a closed-loop system that
continuously compares the motor’s actual speed to a desired
reference speed in order to generate the desired control
signal. Typically, the actual speed is measured through a
speed sensor/ encoder. However, the encoder measurement is
never accurate and varies depending on the encoder type and
operating conditions. With more than ∓10% offset of some
encoders, high measurement errors are produced, affecting
the accuracy of speed controller. Continuous measurement
errors can result in accumulated steady-state ripples, signifi-
cantly affecting the overall drive performance [45]. Sensor-
less speed controls have been introduced to eliminate the

impacts associated with sensor measurement error and reduce
the hardware cost [46].

Various sensorless techniques have been proposed in the
literature to indirectly estimate the machine variables without
sensing instruments [47], [48], [49]. Based on the motor
mathematical model and measured variables (i.e., currents
and voltages), reference and adaptive models can be devel-
oped (i.e., MRAS [34]) and used to indirectly estimate the
motor speed. Other speed estimation techniques based on
observers are common sensorless IM drives such as Extended
Kalman Filter (EKF) [50], Luenberger state observer (LSO)
[51], Sliding Mode Observer (SMO) [52], and Disturbance
Observer [53]. However, MRAS highly depends on the motor
model and parameters, which may not accurately represent
the actual motor dynamics, and the parameters vary during
operations. Additionally, MRAS can contribute toward the
computation burden of the IM drive system. Thus, MRAS’s
less robustness to uncertainties and variations may result
in inaccurate speed estimation, degrading the drive system
performance [54]. In addition, observer-based techniques
incorporate several parameters that require tuning and affect
the speed estimation accuracy [55] and may require intensive
online computation, contributing toward the computational
burden of the overall IM drive system [56].

Machine learning-based approaches, including neural net-
works (NNs), have been utilized to overcome the related
issues of MRAS and observers-based speed estimation meth-
ods. Several methods have been proposed to replace the
adaptive and/or reference models of MRAS with NNs [57].
However, these methods normally train NNs based on offline
pre-collected data, and the speed estimation highly depends
on the amount and quality of training data. Additionally,
gathering a large data set can be difficult and computationally
intensive. If the trained NNs encounter conditions unseen in
the training, undesired performance may occur [58], [59].

Recently, reinforcement learning (RL) based control meth-
ods have been employed to achieve various control tasks
of the electrical machine drives, including RL-based speed,
torque, and current controls [60], [61], [62]. RL allows online
interaction with an environment (IM drive) through observa-
tion and rewards technique to learn a policy (controller) that
can be used to replace the traditional controllers. The learned
policy, when deployed, does not require online optimization,
thus producing computationally efficient control compared
to traditional control [63]. Recent studies have employed
RL-based control techniques for sensorless speed estimation
of electrical machine drives [64], [65], [66]. However, other
methods were incorporated with RL, such as SMO and LSO
observers, and traditional speed controllers were used. Thus,
reducing the drive system’s adaptiveness and increasing the
computation requirements.

The common flaws of the various sensorless methods are
inaccurate speed estimation at low-speed operations, ineffec-
tive load-disturbance rejection, the overall complexity of the
drive, and high computation requirements and/or increased
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hardware cost [67], [68], [69]. In addition, most existing
sensorless IM drives utilize traditional fixed parameters speed
controllers [70]. A few studies have combined sensorless
techniques with adaptive speed controllers, including the use
of FLCs or ST-FLCs [71], [72], [73], [74]. However, self-
tuning complexity and big fuzzy rules remain issues that
need to be addressed. In other words, an integrated sensorless
IM drive that is adaptive, less complex, and computationally
efficient has not been discussed in the literature.

This paper proposes a simple yet effective sensorless-RL
for IFOC IM drive, which uses a self-tuning simplified
rules FLC speed controller. The speed estimation is achieved
through a pre-trained RL policy, eliminating encoder mea-
surement errors. An RL agent interacts with the environment
(IM drive) to receive observations, produce action, receive
rewards, and modify its action until the desired rewards
are achieved and optimal policy is obtained. This policy
is learned offline through simulation; thus, no data collec-
tion is required, and the policy is computationally efficient
since it does not require online optimization. To enhance
adaptiveness, reduce complexity, and computational require-
ments of the speed controller, a simplified rules FLC
with a self-tuning mechanism is employed. The number of
fuzzy rules is reduced using a systemic rules simplification
method [42], resulting in a computationally efficient IM drive
system. The FLC fixed parameters are adaptively updated
during operation using a simple mathematical equation self-
tuning mechanism. The proposed method is an integrated
IM drive system that accounts for various issues simul-
taneously. Unlike existing methods, the proposed method
incorporates an accurate, less complex speed estimation
along with an adaptive speed controller that accounts for
adaptiveness and realization of the hardware implementation
by using a self-tuning simplified rules FLC. The effectiveness
of the proposed method is validated based on simulation and
experimental results by conducting performance comparisons
with sensor-based standard FLC speed control of IM drives,
considering various speed operations and load conditions.

In summary, this article proposes an integrated,
computationally efficient sensorless IM drive that
incorporates:

i. ST-FLCSim 9-rule is employed as the speed controller.
The number of fuzzy rules is reduced to 9-rule using a
systematic rules simplification method, resulting in a
computationally efficient controller. The FLC param-
eters are adaptively updated during operation using a
simple mathematical equation self-tuning mechanism,
enhancing the controller’s adaptiveness.

ii. Speed estimation is achieved through a pre-trained
RL policy, eliminating the need for an encoder and
associated measurement errors. The RL agent interacts
with the IM drive environment, receiving observa-
tions, producing actions, and receiving rewards to
learn the optimal policy offline through simulation.
The pre-trained RL policy is computationally efficient
since it does not require online optimization.

iii. The proposed method is an integrated IM drive system
that simultaneously addresses various issues, such as
accurate speed estimation, adaptive speed control, and
computational efficiency. It incorporates an accurate,
less complex speed estimation along with an adaptive
speed controller that accounts for adaptiveness and
hardware implementation using ST-FLC Sim 9-rule.

The rest of the paper is organized as follows: Section I
presents the mathematical model of the induction motor,
as well as the structure and principle of (IFOC). Section II
discusses speed control methods, including standard FLC,
ST-FLC and fuzzy rules simplification. Section III discusses
the proposed sensorless-RL control method. Sections IV
and V present the simulation, experimental results, and anal-
ysis and comparison of the proposed method with standard
FLC. Finally, Section VI summarises the paper’s content and
highlights the key findings.

FIGURE 1. General block diagram of IM drive.

II. DYNAMIC MODELING OF IM DRIVES
The typical IM drive system comprises several essential
components, including a speed controller, a vector control
scheme (FOC or DTC), a three-phase inverter, and an elec-
tric motor. Depending on the chosen vector control method,
PWM switching pulses are generated to regulate the output
voltages of the inverter, which, in turn, controls the motor’s
operation.

Current sensors and a speed encoder are utilized tomeasure
motor currents and speed, which are fed back to the controller.
The speed controller and, where applicable, inner current or
torque controllers (depending on the vector control method
employed) compare the measured signals with reference sig-
nals. A general IM drive system is depicted in the block
diagram shown in Fig.1.

A. MATHEMATICAL MODEL OF IM
To design a controller for a physical system, the equations
governing that system must be represented mathematically,
which is known as a systemmathematical model. For efficient
IM drive performance, creating a precise mathematical model
is crucial. The accuracy and effectiveness of vector control
and sensorless techniques in IM drives depend heavily on
the accuracy of the motor model used. With the help of a
phasor diagram and phase transformation, the three-phase
(Fig.2 (a)) can be represented by an equivalent two-phase IM
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FIGURE 2. IM phasor representation in (a) three-phase, and
(b) two-phase equivalent.

machine with two axes, d-axis and q-axis (Fig.2 (b)). In a
synchronous reference, the voltage equations are expressed
in (1), as shown at the bottom of the next page, where Vqs,
Vds,Vqr,Vdr are the applied d-axis and q-axis voltages to
the stator and rotor; and iqs, ids, iqr, idr are the corresponding
d-axis and q-axis stator current and rotor currents. Rs, Rr
are the stator and rotor resistances .Ls, Lr denotes stator
and rotor inductances respectively, whereas Lm is the mutual
inductance.ωs, synchronous speed,ωr ,rotor speed and, ρ, the
Laplace operator.

In state space form, the stator and rotor currents (is, ir) are
used as state variables and can be expressed as follows:

d
dt

[
is
ir

]
=

1
σLsLr

[
−RsLr−jωmL2

m RrLm−jωmLmLr
RsLm+jωmLmLs −RrLs+jωmLsLr

] [
is
ir

]
+

1
σLsLr

[
Lr −Lm

−Lm Lr

] [
vs
vr

]
(2)

where σ is sigma and equal to σ = 1 −
L2m
LsLr

.

The electrical torque of IM can be described by the interac-
tion between the rotor flux and stator currents. By resolving
the variable into dq components, the electrical torque is
expressed in (3). Meanwhile, the mechanical torque depends
on the mechanical load applied to the motor shaft as well
as the inertia and friction of the motor, and the rotor speed,
which can be expressed as in (4).

Te =
3
2
PLm

(
iqsidr − idsiqr

)
(3)

Te − TL = J
dωr

dt
+Bωr (4)

where P, TL, J and B denote respectively the number of
poles, external load, inertia and friction of the inductionmotor
respectively.

B. INDIRECT FIELD ORIENTED CONTROL (IFOC)
The FOC imitates the concept of separately excited dc motor
drive where the torque and the flux are controlled by two
independent orthogonal variables known as the armature and
field currents. In FOC, there are two control inputs, the
torque component, represented by the q-axis, and the flux

component, represented by the d-axis. By representing the
IM model in a rotating synchronous reference frame, the
torque component represented by iqs and flux component
represented by ids. Hence, the voltage equations are expressed
as follows:

d9rd

dt
= −

1
τr

9rd + (ωs − ωr ) 9rq +
Lm
τr
Isd (5)

d9rq

dt
= −

1
τr

9rq − (ωs − ωr ) 9rd +
Lm
τr
Isq (6)

where 9rd and 9rq represent the d-and q-axis rotor flux
respectively, assuming 9rd = 9r and 9rq = 0.

When the rotor flux is locked to the d-axis, the following
new expression is obtained:

9r =
Lm

τrs+ 1
Isd (7)

(ωs − ωr ) = ωsl =
Lm
τr

Isq
9r

(8)

where τr =
Lr
Rr

rotor is time constant. According to (7), the
rotor flux value 9r is driven by stator flux direct axis current
Isd . The electrical torque of the motor can be illustrated by the
interface between the rotor flux and Iq current as expressed
in the following equation:

Te =
3
2
P
2
L2
m

Lr
9rdIsq (9)

The slip frequency, ωsl depends on the quadrature axis
of the stator current Isq. The rotor flux 9rd depends on the
d-axis current, and can be considered as a constant value in a
steady state condition. Thus, the electrical torque in (9) can be
simply controlled by controlling the q- axis stator current, Isq.

The rotor flux position, θe for coordinate transform is
generated from the integration of rotor speed, ωr and slip
frequency, ωsl as follow:

θe =

∫
ωr+ωsl (10)

Equation (10) is used to estimate the position of the rotor
flux in IFOC methods indicated as theta calculation in Fig.3.

In IFOC based on IM drive system, as shown in Fig. 3, the
reference flux current I∗ds is constant. The measured speed
of the motor ωr is compared with a reference speed ω∗

r .
The comparison produces an error that becomes an input
for the speed controller. The output of the speed controller
is the q-axis current reference component I∗qs. The I

∗
qs and

I∗ds d-q rotating frame is converted into two orthogonal sta-
tionary frames (I∗α , I∗β ) by using inverse park transformation
with the help of a theta. Then, two-phase stationary frame
quantities (I∗α , I∗β ) are transformed into three-phase reference
quantities (I∗a , I∗b , I∗c ) by using inverse Clark transformation.
The three-phase reference currents are compared with the
three-phase stator currents (Ia, Ib, Ic) using hysteresis current
controller. The comparison produces switching signals to
control the three-phase Voltage Source Inverter (VSI). Three-
phase voltages (Va,Vb,Vc) are produced to drive the IM at
any demand speed.
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FIGURE 3. Sensor-based IFOC of IM drive.

III. SPEED CONTROLLER
Speed controller plays a significant role in the overall drive
system performance effectiveness. FLCs enhance the speed
control adaptiveness and outperform traditional controllers
in systems with varying conditions. Yet, standard FLCs with
fixed SFs and a large number of rules can still limit the drive
performance and contribute to a huge computational burden
on the system. This section discusses the design of standard
FLC, fuzzy rules simplification and self-tuning mechanism.

A. STANDARD FLC
FLC is an intelligent controller that has proven to be effective
in controlling the speed of induction motors. The FLC’s
basic structure comprises three stages: fuzzification, rule-
base, and defuzzification. Fuzzification involves mapping the
crisp inputs into fuzzy sets, rule-base is where the fuzzy
logic rules are defined, and defuzzification converts the fuzzy
output into crisp control signals. The FLC has demonstrated
good performance in various IM drive systems and is a
popular choice for controlling motor speed. For FLC speed
controller, two crisp inputs are considered, speed error and
change of error (e, 1e), and one output (1u).

The FLC operation involves converting the crisp input
variables to a fuzzy variable (fuzzification), calculating the
fuzzy output based on designed rules (rule-base), and con-
verting the fuzzy output variable to a crisp output variable
(defuzzification). The design of FLC includes selecting MFs,
designing fuzzy rules and selecting SFs. Various types ofMFs
can be used, such as triangular, trapezoidal, Gaussian, and
sigmoidal. In this research, triangular and trapezoidal MFs
have been chosen due to their less computational requirement
compared to other types of MFs. The use of these MFs

reduces the processing time and computational cost of the
FLC, making it more efficient for real-time applications [75].

The number of MFs can be selected depending on the
knowledge of system operations. However, for AC motor
speed control, there are three standard MF numbers that have
been validated to work effectively, (3 × 3), (5 × 5), and
(7×7) equally distributed MF numbers. Bigger numbers and
/or unequally distributed MFs may be specifically designed
for a certain type of machine based on the designer’s knowl-
edge and experience [37]. In this research, 7 × 7 MFs are
considered, as shown in Fig.4.

FIGURE 4. Standard FLC 7 × 7 MFs.

The number of MFs in standard FLC determines the num-
ber of fuzzy rules; for instance, (3 × 3), (5 × 5), and (7 × 7)
MFs produce 9,25, and 49 fuzzy rules [42]. With the standard
(7 × 7) MFs (Fig.4), the rule base of (49) can be designed
accordingly [76]. Based on the IF-THEN principle, these
rule bases generate fuzzy output. FLC (MFs) are typically
represented as NL, NM, NS, ZE, PS, PM, and PL, corre-
sponding to negative large, negative medium, negative small,
zero, positive small, positive medium, and positive large,
respectively. With two fuzzy inputs, speed error and change
of speed error (e,1e), and one output (1u), the 49 fuzzy rules
are designed as presented in Table 1.

TABLE 1. FLC rule-base of 7 × 7 MFS.

For faster convergence of FLC, the MFs range is nor-
malized in the range [−1,1] to cover forward (positive) and
reverse (negative) speed operations. However, the fuzzy input
speed error (e) can be in the range [−1400,1400] rpm. Thus,
SFs are required to normalize the fuzzy inputs and output
to the desired range suitable for MFs coverage. In FLC


Vqs
Vds
Vqr
Vdr

 =


Rs+ρLs Lsωs
−Lsωs Rs+ρLs

ρLm Lmωs
−Lmωs ρLm

ρLm Lm (ωr − ωs)

−Lm (ωs − ωr ) ρLm
Rr+ρLr Lr (ωr − ωs)

−Lr (ωs − ωr ) Rr+ρLr




iqs
ids
iqr
idr

 (1)
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speed controller, three SFs are used, namely error SF (Ge),
change of error SF (Gce), and output SF (Gcu). The values
of these SFs typically in standard FLC are determined based
on a trial-and-error process. The overall FLC speed controller
architecture is depicted in Fig.5.

FIGURE 5. Standard FLC architecture.

B. FUZZY-RULE SIMPLIFICATION
FLC rule-base design essentially depends on engineering
knowledge and experienced operation of the controlled sys-
tem [77]. Based on [42], the fuzzy control rules of IM drives
or any similar second order system can be determined from
the general dynamic step response of the system. From the
system step response, the system behavior aspects can be
anticipated, and the phase plane trajectory can be mapped as
shown in Fig.6. The rule-base table can be formed from the
area and points of the phase plane which includes all possible
step responses.

In trajectory mapping of the step response of the sys-
tem (Fig.7 (b)), the route of the rules starts from the outer
area of the phase plane and continuously moves toward the
equilibrium point, where the error (E) and change of error
(1E) are zero. The rules route usually passes through all
step response areas (A1-A4), two cross-over points (b1, b2),
and two peak-valley points (c1, c2), which creates a longer
rules route. However, as the rules take a shorter route to
the equilibrium point, system stability increases. Shortening
the rules route reduces the number of rules required. The
49 rules of (7 × 7) MFs can be reduced by selecting only
the rules that form the shortest route to the equilibrium point.
Nine rules out of 49 create a short route to the equilibrium
point, where the error (E) and change of error (1E) are
zero. The simplified 9 rules are presented in Table 2, where
the selected rules are highlighted. The FLC of (7 × 7) MFs
has a very high output accuracy, but it utilizes 49 rules that
increase the online computation of the fuzzy system and/or
the hardware cost. In this simplified rule method, only 9 rules
are considered, while the remaining 40 rules are deleted. This
reduces the computation capabilities required by the fuzzy
system. Thus, system hardware can be constructed with a
high output accuracy of FLC and without requiring additional
processing capabilities.

C. SELF-TUNING MECHANISM
In standard FLC, error SF (Ge), change of error SF (Gce),
and output SF (Gcu) are determined based on trial-and-error,
which is time-consuming and reduces FLC adaptiveness to

FIGURE 6. (a) Dynamic behaviour of step response for second order
system, (b) Phase-plane trajectory mapping.

changes in operating conditions. The error SF (Ge), change
of error SF (Gce) can be computed based on the maximum
speed and maximum torque per ampere of the machine,
as shown in [37], [41]. However, the output SF (Gcu) cannot
be computed directly and has a significant impact on the
performance compared to input SFs [38], [40]. Thus, it is
very essential to develop a self-tuning mechanism to adap-
tively update the value of Gcu online during operation. In this
research, a simple technique is employed to tune the output
SF based on the relationship between the FLC input (e) and
FLC output ((1u). Based on the obtained simplified rules, the
condition of FLC input (change of error) has less impact on
FLC output. Therefore, the relationship between FLC input
speed error (e) and FLC output ((1u) can be summarized into
the following:

i. When the speed error is very big positive or negative
(transient start-up), higher gain multiplication for the
output ((1u) is required to ensure faster rise time.

ii. When speed error is positive small or negative, lower
gain multiplication for the output ((1u) is required to
ensure faster settling time and lower overshoot.

iii. When the speed error is zero (steady state), medium
gain multiplication for the output ((1u) is required to
prevent oscillation due to lower or zero gain.

Based on these relationships, a gain multiplication, β, can
be used to tune the FLC output SF. The gain β can be
expressed based on FLC input of speed error (e) as follows

β =

(
1
M

+ |e|
)
K (11)

The variable β is the non-linear gain online updating factor
for the output scaling factor (Gcu). It is formulated based on
the relationship between FLC input speed error (e) and FLC
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output ((1u). For instance, if the value of, e, is small, then
,Gcu, need to be reduced, and if, e, is big, then, Gcu, need to
be increased. Hence, the β value is formulated based on this
concept by adding, |e| , to the fraction ( 1

M ) to avoid lower
gain multiplication (βGcu) when, e, is very small. The value
of M is chosen based on the number of uniform input fuzzy
partitions (number of MFs), which is 7 in our case. The value
of K is chosen to make the possible variation in β, which is
set to 1.3 based on the tuning process. The proposed ST-FLC
mechanism shown in Fig.7 utilizes a simple mathematical
algorithm to adaptively update the output SF based on the
input speed error. This can enhance the adaptiveness of FLC
with no additional computational requirement.

FIGURE 7. Self-tuning mechanism.

TABLE 2. Simplified 9 rule-base of 7 × 7 MFS.

IV. SENSORLESS-RL BASED SPEED ESTIMATION
Sensorless techniques for machine drives are gaining atten-
tion across both research and industrial sectors due to their
capacity to estimate machine variables indirectly without
the need for sensing instruments. However, existing sensor-
less methods face challenges such as inaccurate estimation
during low and zero-speed operations, system instability,
and complexity. These limitations have prompted the explo-
ration of alternative approaches, including speed estimation
methods that leverage motor mathematical models and mea-
sured variables (currents and voltages) to estimate motor
speed indirectly, such asMRAS and observer-based methods.

While these techniques eliminate the use of sensor, they are
susceptible to inaccuracies due to varying motor parameters
and computational burdens.

To address these issues, machine learning-based
approaches, notably neural networks (NN), have been
employed to enhance speed estimation methods. However,
these approaches often rely on offline pre-collected data for
training, leading to challenges in acquiring sufficient and
representative datasets. In contrast, this paper proposes a
Reinforcement Learning (RL) based sensorless approach for
IM drive speed estimation. RL facilitates online interaction
with the environment, allowing the learning of a policy to
estimate motor speed without the need for extensive data col-
lection. Here, a deep deterministic policy gradient (DDPG)
agent, a model-free, online, off-policy RL is used.

FIGURE 8. RL learning diagram.

The 49 rules of (7 × 7) MFs can be reduced by selecting
only the rules that form the shortest route to the equilibrium
point. Nine rules out of 49 create a short route to the equilib-
rium point, where the error (E) and change of error (1E) are
zero. The simplified 9 rules are presented in Table 2, where
the selected rules are highlighted. The FLC of (7 × 7) MFs
has a very high output accuracy, but it utilizes 49 rules that
increase the online computation of the fuzzy system and/or
the hardware cost. In this simplified rule method, only 9 rules
are considered, while the remaining 40 rules are deleted. This
reduces the computation capabilities required by the fuzzy
system. Thus, system hardware can be constructed with a
high output accuracy of FLC and without requiring additional
processing capabilities.

RL methods are categorized into value-based and policy-
based algorithms. The value-based methods learn the
Q-function that estimates the Q-value of state-action pairs
(s, a) ∈ S × A. Policy gradient methods directly learn the
parameterized policy based on feedback from the environ-
ment. The actor-critic (AC) structure is common in policy
gradient RL methods, with two ANN models that optionally
share parameters: i) Critic updates the parameters of value
functions; ii) Actor updates the policy parameters under the
guidance of the critic. Under the AC structure, policy func-
tion can be either stochastic or deterministic. The stochastic
policy is modelled as a probability distribution: a ∼ πθ (a|s),
while the deterministic policy is modelled as a deterministic
decision: a = πθ (s).
The deterministic policy gradient (DPG) method first used

deterministic policy [77]. Then, the deep deterministic policy
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TABLE 3. Training and DDPG hyper parameters.

gradient (DDPG) was developed by combining the DPG and
DQN [38]. The DDPG extends the discrete action space of
the DQN to continuous space while learning a deterministic
policy. The gradient of deterministic policy a = πθ (s) is
expressed as:

∇J (θ) = Es ∼ µθ

[
∇aQπθ (s, a) |a=πθ (s) ∇θ∇θ (s)

]
(12)

where J (θ ) represents the objective function that the agent is
trying to maximize, θ symbolizes the parameters of the pol-
icy, denoted as πθ (s).µθ represents the distribution of states s
under the policy πθ (s), and the expectation Es ∼ µθ , is taken
over this distribution. Qπθ (s, a) is the action-value function,
representing the expected cumulative reward of taking action
a in state s under the policy πθ (s) .∇aQπθ (s, a) |a=πθ (s)
the gradient of the action-value function with respect to
the action, evaluated at the action chosen by the policy,
and ∇θ∇θ (s) the gradient of the policy with respect to its
parameters.

The selection of appropriate observations, rewards and
action is very crucial to ensure effective training of RL and
obtain optimum policy. For speed estimation of IM drives,
standard observations are measured dq currents, measured dq
voltages, estimated speed at a previous time step, ωk−1

est , and
reference speed which can be expressed as:

ok =

[
ω∗, ωk−1

est , ikd , i
k
q, v

k
d , v

k
q

]T
(13)

The error between estimated and reference speed, along
with a penalty term are set as reward function as follows:

rk = −

(
w1ekω + w2Pk

)
(14)

where w1 and w2 are the reward gains; Pk is a penalty term
to ensure safe operation and discourage the agent from high-
speed and/or overcurrent region by penalizing the agent if
the estimated speed ωk

est or measured current exceeds the
maximum values.

The overall block diagram of sensorless IM drives with
sensorless-RL is illustrated in Fig. 9. Similar to the MRAC
speed estimation, the inputs for the sensorless-RL algorithm
consist of the observed currents and voltages. However,
in sensorless-RL, the parameter-dependent MRAC models
are substituted with a computationally efficient RL policy.
This policy is trained and reinforced through rewards to effec-
tively map actions. The training process involves a maximum

TABLE 4. Quantitative comparison of standard FLC 49-rule and the
proposed ST-FLC sim 9-rule with/without sensorless sensorless-RL.

of 4000 episodes, each comprising sufficient trajectories
(time steps) for the agent to grasp the dynamics associated
with it. The termination condition for training is based on
the average rewards obtained, which is set to a value of −50
to ensure sufficient training episodes and convergence of the
episode reward to the long-term reward.

During the 4000 episodes, the DDPG agent aims to max-
imize cumulative episode rewards by avoiding low-reward
actions until both cumulative and average rewards stabilize at
lower values, as shown in Fig. 11. The training and DDPGRL
hyperparameters utilized are detailed in Table 3. Finally, the
trained RL policy is deployed and tested at different operating
conditions, which will be discussed in the next section.

V. SIMULATION RESULTS
The performance of the proposed ST-FLC sensorless-RL
of IM drives is validated through numerical simulation in
MATLAB/SIMULINK based on 1.5 kW IM with parameters
presented in Table 5 (appendix). To show the effective-
ness of the proposed method, performance comparisons are
conducted with the conventional control method.

The standard 49-rule FLC speed controller is compared
with the proposed ST-FLC simplified 9-rule with/without
sensorless-RL speed estimation at different operating con-
ditions. The performance of rotor speed, ωr , stator phase
A current, ia, and torque, Te are captured at rated speed
1400 rpm, 700 rpm, 300 rpm and 100 rpm as shown in
Figs. 12 and 13. In addition, both control schemes are tested
against load disturbance by applying 10 Nm load torque at 1s
during forward operation and 3.5s during reverse operation,
as depicted in Fig.14.

VOLUME 12, 2024 136493



Q. Abdullah et al.: Sensorless Speed Control of Induction Motor Drives

FIGURE 9. Overall block diagram of the proposed sensorless-RL
self-tuning simplified rules FLC of IM drives.

FIGURE 10. Proposed sensorless-RL speed estimation.

FIGURE 11. Training states of sensorless-RL.

The comparison results show that the proposed ST-FLC
Sim 9-rule, with and without sensorless-RL speed estima-
tion, performs effectively. The ST-FLC Sim 9-rule maintains
performance comparable to the standard 49-rule FLC across
different speeds and load conditions. The estimated speed
accurately tracks the desired reference speed, even at low
speeds (100 rpm), demonstrating the effectiveness of the
proposed sensorless-RL method in estimating motor speed.

Typically, FLC with a big number of rules (49-rule) can
perform better than a small number of rules (9-rule) during
simulation evaluation since the computation effect is not an
issue. However, with the help of the self-tuning mechanism,
the proposed ST-FLC Sim 9-rule has shown comparable per-
formance to the standard FLC 49-rule. To get a deeper insight
into the performance comparison, quantitative analysis is
conducted by computing some transient and steady-state per-
formance characteristics. The property of settling time (Ts),
Overshoot (OS%), and speed, current and torque steady-state

FIGURE 12. Performances of speed and current with and without
sensorless-RL speed estimation for (a) 49-rule FLC and (b) ST-FLC Sim
9-rule.

ripples are computed for the standard and proposed controller
with both sensored and sensorless-RL speed estimation.

At start-up speed from 0 to 1400 rpm, Ts and OS% are
obtained. The speed, current and torque steady-state ripples
are computed for 0.5s (N =10000) of steady-state signals at
1400 rpm with 2 Nm. generally, a steady-state ripple of a
signal can be computed based on the following:

xripple =

√
1
N

∑N

i=1
(x∗
i − xi)

2 (15)

where N is the number of samples, x∗
i and xi are the reference

and actual signals which can be the speed, current and torque
signals.

The resultant quantitative comparison between the stan-
dard and the proposed method with both sensored and
sensorless-RL speed acquisition is presented in Table 4. Both
controllers maintain fast settling time (Ts) and low over-
shoot (OS%) for the drive system. The proposed method
with sensorless-RL demonstrates better transient results than
the sensored method. Additionally, both the standard and
proposed methods exhibit slightly higher speed ripples with
sensorless-RL. However, the torque and current ripples are
approximately the same or better than those in sensor-based
IM drives. The higher speed ripples in sensorless-RL com-
pared to sensor-based IM drives are due to the absence
of sensor measurement errors in the simulation, as the
measurements are considered ideal.
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FIGURE 13. Performances with and without sensorless-RL speed
estimation at different speed operation, 700rpm, 300rpm and 100rpm for,
(a) 49-rule FLC, and (b) ST-FLC Sim 9-rule.

VI. EXPERIMENTAL RESULTS
To verify the simulation results and effectiveness of the pro-
posed ST-FLC Sim 9-rule-based sensorless-RL IM drives,
experimental validation is conducted based on 2 HP IM and
dSPACE DS 1104 control board. The overall experimental
setup shown in Fig.15 incorporates dSPACE DS 1104, gate
drive, three phase inverter and PC. The control algorithm is
implemented inMATLAB/SIMULINK and loaded as C-code
into the DS 1104 board. The dSPACE receives sensor feed-
back signals and processes them to generate switching pulses
and send them to the gate drives. The three-phase output
voltages of the inverter are connected to the motor to operate
accordingly. Additionally, the DC input voltage (537.3 V) to
the inverter is generated through a three-phase rectifier and
capacitor filter.

The first performance test evaluates the effectiveness of
the proposed sensorless RL for speed estimation compared to
speed encoder measurements. The ST-FLC Sim 9-rule speed
control is used in both tests. The comparison between esti-
mated and measured speeds at 1400 rpm, 1000 rpm, 500 rpm,
and 100 rpm are shown in Fig. 16. The sensorless-RL may
experience slow settling when it approaches the desired speed
due to the limitations and penalties designed during training
to prevent the RL agent from exceeding the rated speed. As a
result, the estimated speed quickly aligns with the measured
speed but slows down as it gets close to the desired speed

FIGURE 14. The load disturbance comparisons with and without
sensorless-RL speed estimation at 1400rpm and 10Nm for, (a) 49-rule
FLC, and (b) ST-FLC Sim 9-rule.

FIGURE 15. IM drive experimental setup.

TABLE 5. Training and DDPG hyperparameters.

to ensure it does not exceed the rated speed. The proposed
sensorless-RL has demonstrated accurate speed estimation
across various speeds, including a low speed of 100 rpm.
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FIGURE 16. Performance comparisons of measured speed (encoder) and
estimated speed (RL) with ST-FLC Sim 9-rule at (a) 1400 rpm,
(b) 1000 rpm (c) 500 rpm and (d) 100 rpm.

Consistent speed behaviour is maintained at both high and
low speeds, showcasing the trained RL policy’s accuracy in
estimating motor speed. The estimated speed may experience
a longer rise time compared to the measured (encoder) speed
due to the high penalty terms set during training, which
encourages the RL agent to avoid exceeding the rated speed.
For safety reasons, the estimated speed with sensorless RL
quickly tracks the measured speed and then slows down as it
approaches the desired speed to prevent high overshoot and
avoid exceeding the rated speed.

FIGURE 17. Performances of speed, current, and torque with
sensorless-RL speed estimation for, (a) 49-rule FLC, and (b) ST-FLC Sim
9-rule.

For the remaining performance tests, sensorless-RL is
used for speed estimation and incorporated into the feed-
back loop, meaning the tests were conducted as sensorless
drives without a speed encoder. Performance comparisons of
standard FLC 49-rule and proposed ST-FLC Sim 9-rule are
conducted based on experimental testing with the estimated
speed based on sensorless-RL (ω_est) is used in most of the
comparison tests for both controllers. At a rated speed of
1400 rpm with no-load condition, the performances of speed,
current and estimated torque for standard FLC 49-rule and
proposed ST-FLC Sim 9-rule are presented in Fig.17. The
graphs in Fig.17 from top to bottom are the estimated speed
based on sensorless-RL, ω_est, phase A stator current,i_a,
and estimated torque, T_e. Additionally, the controllers are
evaluated at different speeds, including 700,300 and 100 rpm,
as depicted in Fig.18.

The proposed ST-FLC Sim 9-rule demonstrated superior
performance compared to standard 49-rule FLC at different
operating conditions. Faster settling time, low toque and cur-
rent fluctuations are experienced by the proposed ST-FLC
Sim 9-rule at a rated speed of 1400 rpm. Additionally,
ST-FLC Sim 9-rule maintained a good performance at lower
speed operations (700rpm,300rpm and100rpm) compared to
standard FLC 49-rule.

Moreover, the controllers are evaluated against load dis-
turbances by applying a sudden load to the motor shaft. Two
load tests are performed: a full load test and a half load test.
In the full load test, the motor operates at a steady state of
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FIGURE 18. Performance of different speed operations with sensorless-RL
speed estimation for, (a) 49-rule FLC, and (b) ST-FLC Sim 9-rule.

1400 rpm before a rated torque of 10 Nm is applied to the
motor shaft. The response is captured in Fig. 19(a). For the
half load test, a torque of 5 Nm is applied, and the response
is shown in Fig. 19(b).

The proposed ST-FLC Sim 9-rule demonstrated superior
load disturbance rejection capability compared to the stan-
dard 49-rule FLC in both tests. During the full load test, the
ST-FLC Sim 9-rule experienced a speed drop of 140 rpm
with a recovery time of 0.2465 seconds, whereas the stan-
dard 49-rule FLC recorded a speed drop of 155 rpm with a
recovery time of 0.3562 seconds. In the half load test, the
ST-FLC Sim 9-rule had a speed drop of 63.38 rpm and a
recovery time of 0.1012 seconds, while the standard 49-rule
FLC showed a speed drop of 94.82 rpm with a recovery
time of 0.2022 seconds. These results highlight the improved
performance of the ST-FLC Sim 9-rule in handling load
disturbances. To gain a better understanding of the effective-
ness of the proposed ST-FLC Sim 9-rule-based sensorless-RL
IM drive, quantitative evaluation and comparison with a
standard controller are conducted. The harmonics spectrum
of stator current, ia, was computed for standard FLC and
ST-FLC Sim-9-rule as depicted in Fig.20. Low total har-
monics distribution (THD) of 5.53% was produced by the
proposed ST-FLC Sim 9-rule compared to 6.50% produced
by the standard FLC 49-rule. Other transient and steady-state
characteristics, including the settling time, overshot, and the
steady-state ripples of speed, current and torque, are numer-
ically computed for both controllers as presented in Table 5.
Additionally, the numerical values previously obtained in
the simulation are added to Table 4 for comparison with

FIGURE 19. Load disturbance comparisons of 49-rule FLC and ST-FLC Sim
9-rule with sensorless-RL speed estimation at 1400rpm for, (a) Full-Load
test (10Nm), and (b) Half-Load test (5Nm).

FIGURE 20. THD spectrum comparisons of 49-rule FLC and ST-FLC Sim
9-rule with sensorless-RL speed estimation at 1400rpm.

the experimental values and to show the effectiveness of
the proposed method in the real-time application and the
advantages of reducing the computation requirement. The
proposed ST-FLC Sim-9-rule showed superior experimental
performance compared to FLC-49-rules in terms of different
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TABLE 6. Simulation and experimental quantitative analysis based on
transient and steady-state conditions.

TABLE 7. Computational time comparison of standard49-rule FLC and
ST-FLc sim 9-rule with sensorless-RL speed estimation.

TABLE 8. IM parameters.

performance measures. This is attributed to the ability of
the proposed method to significantly reduce the computa-
tion requirement as demonstrated in Table 6. The proposed
method requires approximately a third of the computational
time needed for standard FLC-49-rules.

VII. CONCLUSION
This paper proposed an integrated sensorless IM drive with a
simplified self-tuning FLC (ST-FLC) and data-driven RL for
speed estimation. Conventional sensor-based IM drives with
standard FLC may deteriorate the performance due to the
sensor measurement error and huge computational require-
ments associated with a big number of FLC rules. To deal
with these issues, the proposed ST-FLC Sim 9-rule based
sensorless-RL utilized a simplified 9-rule FLC instead of an
intensive 49-rule along with a simple self-tuning mechanism.
Furthermore, a computationally efficient sensorless-RL is
used to eliminate the encoder measurement error and reduce
the overall IM drive cost.

The proposed method offers several advantages over con-
ventional IM drives. By simplifying the FLC rules to a

9-rule set and maintaining adaptability through a simple
self-tuning method, the computational burden is signifi-
cantly reduced. The elimination of the encoder using a
computationally efficient RL policy further enhances the
system’s performance and cost-effectiveness. Unlike most
existing ST-FLC methods, the proposed approach uses sim-
ple mathematical equations for self-tuning and a pre-trained
RL policy for speed estimation, reducing the overall com-
putational resources required. This significant reduction in
computational time leads to notable improvements in several
experimental performance metrics.

For safety reasons, high penalty terms are set during
the training of sensorless-RL to discourage the agent from
exceeding the rating speed and increasing the overshot. This
explains the slow rise time of the estimated speed as it gets
close to the desired speed. In future work, a data-driven
RL-based speed controller will be developed to replace the
fuzzy-based controller, addressing performance degradation
due to changes in operating conditions and variations in
machine parameters.

APPENDIX
See the Table 8.
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