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ABSTRACT Biometric recognition has become essential for secure and reliable access control in high-
security systems such as surveillance, law enforcement, and smart cities. While deep learning models
offer exceptional performance in biometric recognition, they are susceptible to security challenges such
as adversarial attacks. Current research addresses the vulnerability of single modalities systems. However,
there is a gap in understanding the impact of adversarial attacks on fusion levels in multimodal biometric
systems. This research aims to fill this gap by thoroughly assessing the vulnerability of multimodal biometric
systems to adversarial attacks to enhance their security in real-world high-security applications. This
research investigates the most secure fusion level for combining behavioral and biological biometric traits in
multimodal biometric authentication systems under adversarial attacks. We assess the security of different
fusion levels by employing the Fast Gradient Sign Method (FGSM). Also, our study contributes to the field
by evaluating the extent of perturbations needed to generate effective adversarial attacks and identifying
the fusion level that offers the highest security under different perturbations. Our experiments thoroughly
analyze multimodal fusion levels using attack success rate, accuracy, precision, and recall under clean and
adversarial data conditions. According to our results, the input fusion level offers themost secure level among
the three fusion levels. In various adversarial attack settings, it demonstrates an average attack success rate of
16.62% on DenseNet201 and 32.30% on ArcFace architectures. This research presents an important analysis
to support further investigations into the security of multimodal biometric systems and building defense
methods for such systems.

INDEX TERMS Adversarial attacks, FGSM, fusion levels, multimodal biometric recognition, surveillance.

I. INTRODUCTION
Biometrics recognition explores and analyzes human traits
to provide secure, reliable, and accurate access control to
reduce the reliance on less secure and traditional methods
such as passwords. Such traits are unique and measurable for
each individual. It ranges from biological that rely on static
physical characteristics (e.g., face, iris, and fingerprints) to
behavioral traits that identify individuals based on activity
patterns (e.g., gait and keystrokes). As biometric systems
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have a wide range of applications across various sectors such
as law enforcement [1], education [2], healthcare [3] smart
cities surveillance [4], and banking [5].
With the widespread use of deep learning, it is becoming

increasingly common and used in different applications.
It has significantly improved the performance of biomet-
ric systems. Convolutional neural networks (CNNs) have
improved the feature extraction for image-based biomet-
rics. Multimodal biometric systems that combine multiple
biological and behavioral characteristics for identification
offer improved performance over single-modality systems,
especially in environments where a single biometric might be
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affected by environmental conditions or insufficient. Recent
research has demonstrated that these systems enhance bio-
metric authentication performance and strengthen resilience
against security limitations that makes them essential for
high-security settings [6], [7].

While biometric recognition provide enhanced perfor-
mance and overall better security compared to traditional
measures, they are vulnerable to adversarial attacks. Recent
research shows that machine learning and deep learning
models are exposed to new vulnerabilities, known as
adversarial attacks. Adversarial attacks add a slight and often
imperceptible modification of the original data that alters the
data to deceive systems in critical ways. These attacks pose
serious security threats by undermining the reliability and
integrity of biometric authentication systems. Adversarial
attacks craft inputs designed to cause the model to make a
mistake [8]. These inputs exploit how models process data by
using the model’s parameters against it. For example, subtle
perturbations in facial recognition data can make a recogni-
tion system misidentify. As noted in foundational research by
Szegedy et al. and Goodfellow et al., these vulnerabilities can
be exploited to bypass security systems discreetly. It makes
investigating the development of adversarial defense a critical
area of future research [9], [10]. It is important to balance
security with privacy concerns. Due to the sensitivity of
biometric data, its protection from unauthorized access is a
top priority [11], [12].

This research focuses on face and gait modalities because
they non-intrusively capture data from a distance without
direct contact. Such modalities suit continuous authentication
in public or work settings. They cover biological and
behavioral traits (i.e., rich facial features and unique walking
patterns).

Despite the advancements inmultimodal biometric authen-
tication, a significant research gap remains in understanding
the vulnerabilities associated with the fusion levels. Current
literature extensively covers the susceptibilities of individual
biometric traits to adversarial attacks but pays limited
attention to how these vulnerabilities affect the fusion levels.
This gap is essential to investigate because the fusion process
on different levels (i.e., input, feature, or decision levels)
can introduce unique security challenges such as adversarial
attacks, spoofing, and evasion attacks specifically designed
to exploit the fusion logic of multimodal authentication not
present in single-modal systems.

Based on our previous research that implements three
fusion levels on the face and gait modalities using ArcFace
and DensNet201 deep learning architectures. This research
aims to assess the security of multimodal biometric authen-
tication systems against adversarial attacks. Additionally,
we will conduct thorough evaluations of the three fusion-
level performances using a variety of metrics to establish
a baseline performance. Moreover, we will generate and
analyze adversarial images to identify the most secure fusion
level. Finally, the research assesses the impact of the attacks’

perturbations on each fusion level’s behavior to distinguish
adversarial attacks. This paper extends our research to shed
light on the resilience of the three fusion levels (input, feature,
and decision).

Our contributions are summarized as follows:
1) Identify the most secure fusion level for combining

face and gait modalities in multimodal biometric
authentication systems. By employing FGSMadversar-
ial attacks to uncover vulnerabilities to different fusion
levels.

2) Assessing and identifying the range of perturba-
tions that make adversarial attacks highly successful
and imperceptible to users and detection methods.

II. LITERATURE REVIEW
Adversarial attacks involve creating input data modified
from the original data to fool the deep learning model
into misclassification or mispredictions. The modifications
on the input can be imperceptible to the human eye but
lead to significant errors in the deep learning models’
outputs. An adversarial image refers to the modified version
of an original image by altering the image through, e.g.,
the addition of calculated perturbation to deceive machine
learningmodels. An impersonation attack is a type of security
threat where the attacker manipulates the biometric images
to mimic another person’s identity (person with authorized
access) to trick biometric recognition systems into granting
access to the impersonated person. Adversarial attacks can
be classified using different aspects, such as attack capacity
and specificity. The attack capacity refers to the attacker’s
knowledge of the target model under attack. In attack
capacity, the attacks are either white-box where the attacker
has in-depth knowledge of the model’s architecture and
parameters. White-box attacks enable the attacker to tailor
their inputs to exploit specific weaknesses. On the other hand,
black-box attacks occur when the attacker lacks insight into
the model’s parameters and details. This leads to attacks
being based on the observable outputs of the model. Attack
specificity refers to the attack’s objective. It is categorized
into targeted and non-targeted attacks. Targeted attacks
focus on manipulating the model to produce a particular
incorrect result (impersonation attack). Non-targeted attacks
generate errors that lead the model to misidentification [8]
and [13].

This section reviews the adversarial attacks, specifically
on the face and gait separately, and the security challenges
of fused modalities on different fusion levels. Additionally,
we shed light on current research’s limitations and potential
investigation areas and present our contribution relative to the
research gap.

A. ADVERSARIAL ATTACKS ON FACE RECOGNITION
The investigation of deep learning vulnerability started
with Szegedy et al. [9] pointing out that deep learning
models can be deceived into misclassifying images with
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high confidence by adding perturbation to images without
disrupting the original appearance of the image. Moreover,
this misclassification happens across different classifiers with
different architectures and is trained on various datasets.
Goodfellow et al. [10] further investigated the deep neural
network susceptibility to adversarial samples in relation to
the linearity of the models. They proposed FGSM, a one-
step algorithm that leverages the gradients of the models
to create adversarial images. Since this discovery, other
researchers have proposed various ways to craft adversarial
attacks. Ryu et al. [14] proposed generating adversarial
examples by attaching noise markers and adjusting their
colors and locations to facial modalities with the aim of
fooling deep learning models. Additionally, they investi-
gated the attack’s transferability on two face recognition
models. They measured the attack’s effectiveness using
attack success rates with variations to the generation method
settings, such as the marker’s location and color adjustments.
Massoli et al. [15] generate two classes of adversarial attacks.
employing various methods to determine which group of
adversarial attacks poses a significant threat to the face
recognition model. In addition, the authors investigated the
generalizability of the detection method to different groups
of attacks. The first type of attack is a classification attack
targeting the class labels generated using three algorithms:
Momentum Iterative Fast Gradient Sign Method [16], Basic
iterative method [10], Carlini-Wagner [17]. Moreover, this
attack assesses the detection method proposed in their
previous work in [18]. The other type is the deep rep-
resentation attack; unlike the classification type, this type
targets the representation to deceive the face recognition
generated using the distance between the feature extracted
by ResNet50 with the assistance of the KNN algorithm in
the optimization process. Kakizak and Yoshida [19] address
generating adversarial examples with large perturbations to
deceive the current defense techniques focused on small
perturbations. The authors use image translation to translate
the source image to an unrestricted adversarial example
(i.e., not restricted to small perturbation and not noticeable
to the human eye), which was first proposed by [20].
Zhu et al. [21] employ GANs as a generation method
with large distortion. Using CycleGan [22], the authors
transfer makeup effects on face images. Moreover, they use
a designated adversarial attack GAN subnetwork to generate
the examples after the makeup transfer. The research focus on
the balance between maintaining the source image identifia-
bility and adding sufficient perturbations. Another research
that exploits GANs by Yang et al. [23] in impersonation
attacks. The proposed method Attentional Adversarial Attack
Generative Network (A3GN) generates images similassr to
the source while holding the feature representation of the
target images. Lin et al. [24] propose adversarial attack
generation for the adversarial images with perturbations that
are imperceptible to human eyes and can fool deep learning-
based face recognition models. The proposed generation
method leverages facial landmark detection and superpixel

segmentation to target several deep learning models at
different attack capacities, such as white-box and black-box
attacks. Bisogni et al. [25] explore the vulnerabilities of deep
learning models against cross-spectral adversarial attacks,
which sheds light on their limitations against attacks that are
not limited to the spectral domain in which they were trained.
Massoli et al. [26] examine adversarial attacks on face recog-
nition in cross-resolution tomimic real-world conditions. The
research shows that the success rate of adversarial attacks
varies with image resolution. Lower-resolution images are
more susceptible to attacks. Cross-resolution model demon-
strates greater resilience to attacks compared to the base
models.

B. ADVERSARIAL ATTACKS ON GAIT RECOGNITION
Maqsood et al. [27] proposed a new detection approach
for deep learning-based gait recognition against adversarial
attacks using reinforcement learning (Q-learning). Moreover,
it targets patch-based black-box adversarial attacks. The
authors leverage reinforcement learning to determine the
optimal placement of an image patch that fools the model.
He et al. [28] exploit GANs to target sequence-based gait
recognition using state-of-the-art models. They generate
adversarial attacks by inserting a few adversarial gait silhou-
ettes into the original sequence to balance imperceptibility
and achieve high attack success rates. Meijuan et al. [29]
proposed a novel GAN-based attack generation approach
that generates realistic videos and preserves discriminative
details to deceive gait recognition systems. The proposed
method renders new adversarial samples combining the
source foreground and silhouette with the target’s background
by applying mask R-CNNs. The evaluation uses two
protocols for the target scene and background from the
same dataset or cross datasets. The authors measure the
attack’s recognition rate (i.e., attack success rate) in which
the model is deceived into misidentification to identify the
target individual. Honghao et al. [30] use the shadow model
to mimic the target gait with the goal of deceiving the
recognition model to misclassifying the gait of an attacker
as that of a legitimate user (increasing false acceptance rate)
or to failing to recognize a legitimate user’s gait (increasing
false rejection rate).

Table 1 provides an overview of the modalities, attack gen-
eration, datasets, targetedmodels, and evaluation key findings
in the discussed studies with the aim of understanding the
varied approaches applied in adversarial attack generation for
deep learning face and gait recognition.

C. SECURITY CHALLENGES OF MULTIMODAL BIOMETRIC
FUSION
This section broadly explores the security challenges asso-
ciated with biometric fusion across various modalities,
extending beyond face and gait. Jomaa et al. [31] explore the
fusion of fingerprint and heart signal to improve the security
of biometric systems at the decision level against presentation
attacks. The authors utilize a multilayer authentication
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approach by employing a fine-tuned CNN to distinguish
between real and spoofed biometrics. Their novel method
combines these two modalities to effectively decrease false
match rates and false non-match rates. It demonstrates
improved performance in preventing various presentation
attacks.

Cui et al. [32] investigate the resilience of large multimodal
models at feature and decision levels to image-based adver-
sarial attacks across various tasks like image classification,
image captioning, and Visual Question Answering. It shows
vulnerability to visual adversarial inputs.

Yin et al. [33] explores adversarial attacks specifically
designed for vision-language tasks at feature and decision
levels. It exploits vulnerabilities in pre-trained models. The
study demonstrates that these multimodal systems can be
compromised through carefully crafted adversarial inputs
that disrupt the model’s ability to interpret visual or textual
information correctly.

Despite the considerable advancements in developing
techniques for generating and defending against adversarial
attacks for single modalities, we still need to investigate
how these models and fusion levels perform under attacks
that combine different modalities. This limitation presents
a crucial area for highlighting the need for investigation to
ensure security across different fusion levels.

III. METHODOLOGY
This section will cover our multimodal face and gait
biometric authentication on the three commonly used fusion
levels: input, feature, and decision fusion, to help shed light
on their security issues. Additionally, we explain the attack
generation method used and its parameters.

A. MULTIMODAL FACE AND GAIT IDENTIFICATION
Multimodal biometric Identification by integrating features
face and gait has been shown to improve the authentica-
tion performance and overcome the limitations of single-
modalites [34], [35], [36], [37]. This research contributes to
filling the existing gaps in the literature by introducing fusion
at various levels to further elevate biometric authentication
systems’ reliability.

In this research, we adopted state-of-the-art architectures
for multimodal biometric authentication. Arcface [38] with
ResNet34 [39] and DensNet201 [40] are the backbone
architectures to capture necessary biometric features for
the identification. In face identification, we used CNN-
based Max-Margin Object Detection to detect facial features
due to its reliable performance [41]. It employs a margin-
based loss function that ensures the detected features are
distinctively separated in the feature space. This detection
method improves the discriminative power of the model and
aims to handle diverse environmental challenges and facial
expressions in real-world applications.

We employed Gait Energy Images (GEIs) in gait iden-
tification introduced by [42] to represent gait modality.
They are a compact representation of gait data. They are

generated by averaging silhouettes of a person captured
over a complete walking cycle. It starts by segmenting
the silhouette of the walking figure from the background
in video frames. Secondly, aligning and normalizing the
silhouettes across the gait cycle. Finally, averaging the frames
to produce a single image that captures the dynamic motion
pattern of an individual’s gait. Such representation is valuable
in gait identification due to their ability to encapsulate
motion dynamics in a highly descriptive and compu-
tationally efficient form utilized in various applications
[43], [44], [45].

Combining both face and gait modalities comprises a
improved method for augmenting the efficacy and depend-
ability of authentication systems. This following sections
will detail the three discrete fusion levels: input-level,
feature-level, and decision-level [46]. Each level maximizes
the respective modalities’ inherent advantages to optimize
identification performance.

1) INPUT FUSION
At the input-level, our fusion process merges biometric
data from disparate sources during the first stages of data
processing prior to any feature extraction. This stage involves
the creation of a dataset represnetation of the subjects
facial images and GEIs through a vertical stacking [37].
This approach is depicted in Figure 1. It demonstrates the
combined data constructs a unified representation to exploit
the complementary nature of the spatial features inherent in
each modality. The newly created unifed representation is
later fed into two distinct deep learning architectures (i.e.,
ArcFace and DenseNet201) for extracting complex features
for the identification.

2) FEATURE FUSION
Feature fusion combines multiple feature vectors from dif-
ferent modalities to create a unified data representation using
each feature set. We perform feature fusion by combining
two architectures and adopting attention methods, as shown
in Figure 1. Attention models are used in various appli-
cations and have proven effective for prioritizing essential
features such as [47]; the authors propose the Multiattention-
Net model. It uses modified squeezed residual blocks to
refine feature representation significantly. Zhang et al. [48]
introduce a self-attention mechanism into the convolutional
GANs (SAGAN) model. This allows the GAN to model
long-range dependencies better and improve the generated
image quality. It generates details at every image location
by considering information from the entire image. It leads
to better feature fusion in different parts of the image.
Dai, et al. [49] proposes a novel scheme called Attentional
Feature Fusion (AFF) to improve the performance of various
neural networks by addressing challenges in feature fusion
across different scales and layers. They introduce a Multi-
Scale Channel Attention Module (MS-CAM) to manage
semantic and scale inconsistencies better. In this research, the
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TABLE 1. Adversarial attack research for face and gait biometric recognition systems.

architectures extract face and gait features from both models:
ArcFace for facial features andDenseNet201 for gait features.
The extracted features are passed to the Squeeze-and-
Excitation (SE) Block introduced in [50]. By incorporating
SE blocks, we aim to contribute to a more robust biometric
identification system. Our model’s attention mechanism
applies channel-wise attention to the feature vectors. The
blocks squeeze global spatial information into a channel
descriptor and then excite the original features by reweighting
them using this descriptor. This process emphasizes the

essential features and suppresses the less useful ones.
Thus enhancing the model’s focus on relevant features.
Subsequently, the gait features are fed to global average
pooling. Both face and gait features are then enhanced using
SE blocks. The outputs from the SE blocks are concatenated
to form a single feature vector, creating a new feature set
that harnesses the detailed information from both models.
In addition, a dropout layer is used for model generalization.
Finally, a dense softmax layer consolidates the identification
process.
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FIGURE 1. All fusion Levels: Combining two facial and GEI modalities on three fusion levels (input, feature and decision).

3) DECISION FUSION
Decision fusion combines the outcomes from multiple
models. Eachmodel trained on distinct modalities contributes
to a final authentication decision. This practical application of
decision fusion is essential as it maximizes the independent
performance of each authentication model and leads to
better overall performance in real-world biometric systems.
Decision fusion is highly used in the multimodal biometric
system. For instance, the study by Sivarathinabala et al.
demonstrated the robustness of using multimodal features at
the decision level to improve system reliability by combining
face and gait data in a smart security setup [35]. Similarly,
the approach by Maity et al. demonstrates the importance
of decision-level fusion in achieving high accuracy and
resilience against spoofing attacks in complex biometric
systems [34]. In this research, we have used two separate
models for our analysis: the face data is processed using the
ArcFacemodel, andDenseNet201 handles the gait data. Once
the face and gait data are individually processed and, the
respective models generate their decisions. Next, it combines
them to achieve a final identification result. To this end,
we implement two fusion rules (i.e., maximum and average).

1) Maximum Rule: Select the decision with the highest
confidence score from the models. It is beneficial in
scenarios where one modality is significantly more
reliable than others. Thus relying on the most accurate
model available.

2) Average Rule: This rule computes the average of the
confidence scores from bothmodels. It offers a balance,
mitigating outliers, and consistent authentication.

By comparing the outcomes of these two fusion rules,
we aim to secure fusion for multimodal biometric authenti-
cation. Figure 1 visually represents the decision fusion level
as described.

B. ADVERSARIAL ATTACKS GENERATION
Adversarial attacks introduce precisely crafted perturbations
to input images leading the model to misclassification. The
attacks threaten the reliability and security of deep learning
models. Such attacks have various and evolving generation
methods. In this research, we used the Fast Gradient Sign
Method (FGSM) proposed by Goodfellow et al. [10]. FGSM
algorithm is straightforward, simple, and computationally
effective. By leveraging FGSM, we aim to quantify the
susceptibility of these models and fusion levels to adversarial
attacks. It exploits the gradients of the loss concerning the
input image. Equation 1, explains how the perturbations
are calculated. Figure 2 illustrates FGSM attack generation.
It consists of a series of images arranged as follows:

1) Original Images (a): The leftmost images depict the
initial inputs the model accurately classifies under
normal conditions. These serve as the baseline for
understanding the effect of the perturbations.

2) Perturbation Visualizations (b): The middle images
showcase the perturbations. It is calculated as per
Equation 1. These visualizations are important for
understanding the magnitude and direction of the
changes applied to the original images.

3) Adversarial Images (c): The rightmost images display
the adversarial examples. The adversarial image is
created by adding the calculated perturbations to
the original images. These images demonstrate the
significance of minimal changes that can cause mis-
classifications.

The sign function is applied to the gradient to determine
the direction of the perturbation for each pixel, ensuring the
perturbation is small and controlled by ϵ but effective in
misclassifications.

Xadv = x + ϵ · sign(∇xJ (θ, x, y)) (1)
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where x is the original image, ϵ is the perturbationmagnitude,
∇xJ (θ, x, y) the gradient of the loss, and y is the true label.
Figure 3 demonstrates the impact of increasing epsilon values
on the visibility of perturbations:

• Target vs. Imposter Images: Initially, a target image
(the genuine person intended to be recognized) and an
imposter image (a different individual) are presented.
The imposter serves as the base for adversarial example
generation.

• Adversarial Examples Across Epsilon Values: Subse-
quent images demonstrate the progression of adversarial
examples generated from the imposter image with
increasing values of ϵ (0.001, 0.01, 0.02, 0.05, and
0.1). Each image is a result of adding the perturbations
calculated for the respective ϵ value, showcasing how
higher values make perturbations more visible but also
more effective at deceiving the model.

IV. EXPERIMENTS
This section covers the experimental setup in different
aspects, such as datasets, a multimodal identification baseline
on three fusion levels, and an adversarial attack configuration.
It also covers the evaluation metric used to measure the
vulnerability to the attacks. Finally, it covers the results and
discussion of our findings.

A. EXPERIMENTS SET-UP
This section covers datasets description and preparation.
In addition to the adversarial attack generation configuration.

1) DATASETS DESCRIPTION AND PREPARATIONS
Due to the limitation of publicly available datasets that
combine both modalities, our approach leverages distinct
datasets for each modality. To combine independent face
and gait datasets, we integrate two separate face datasets:
Cambridge Olivetti Research Lab (ORL) [51] and FEI face
dataset [52] in addition to the gait Chinese Academy of
Sciences (CASIA-B) dataset [53]. ORL includes 10 images
for each of its 41 subjects, while the FEI dataset provides
14 images for each of its 200 subjects. CASIA-B has
124 subjects under variations in viewing angles, clothing,
carrying bags, and walking speed. This approach allows us
to cover facial and gait features by producing data from
these independent sources. Each modality contributes unique
information to create a dataset in which each subject has
multiple biometric modalities. The mapping was performed
on two levels. The first was subject-level mapping, in which
we ensured a one-to-one mapping between the subjects from
face and gait datasets. The second is instance-level mapping,
where the datasets are not well-balanced enough to be
mapped, which would introduce biases and affect the overall
performance. To ensure equal representation, we used data
augmentation to help achieve a more equitable representation
of various traits across both modalities.

TABLE 2. Summary of multimodal datasets.

In preparation for creating impersonation adversarial
images, we randomly paired target subjects with corre-
sponding impersonators (target-imposter pair). The sample
size of the multimodal datasets encompasses 50% of the
available subjects. The potential impersonators are within the
same dataset as the target in this setup. The objective is to
manipulate a single image per pair.

2) ADVERSARIAL ATTACKS CONFIGURATION
This research employs a white-box attack approach in which
the attacker fully knows the target model, including param-
eters and architecture. Additionally, our focus is targeted
attacks (impersonation attacks) aiming to mislead the model
into incorrectly assigning a chosen label to an adversarial
image. As for the generation method, in our analysis of
FGSM, we experimented with varying perturbation values
(epsilons) to understand its impact on fusion levels.

B. EVALUATION METRICS
To assess the effectiveness of our multimodal biometric
authentication model under normal and adversarial condi-
tions, we employ several key performance metrics:

• Accuracy: This metric evaluates the overall correctness
of the model by measuring the proportion of true results
(both true positives and true negatives) among the total
number of cases examined.

• Precision: Measures the ratio of correct positive obser-
vations to the total predicted positives. High precision
indicates a low rate of false positives.

• Recall: Also known as sensitivity, this metric assesses
the model’s ability to correctly identify all actual
positives for each class. This highlights its effectiveness
in detecting genuine instances.

• F1-Score: The harmonic mean of precision and recall.
It provides a single measure to balance both metrics.

• Attack Success Rate: Represents the proportion of
successful adversarial attacks. It measures the model’s
vulnerability by calculating how often it incorrectly
rejects an authorized user or accepts an imposter.

These metrics collectively offer a comprehensive overview
of the model’s performance and robustness. Moreover,
it provides insights into authentication efficacy and resilience
to adversarial attacks.
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FIGURE 2. illustration of fgsm Adversarial Attack Generation.

FIGURE 3. Comparative visualization of adversarial perturbations at various epsilon values.

C. RESULTS
In the initial phase of our study, we establish the fusion level
performance baseline before the adversarial attacks to set a
comparative standard against which the impact of subsequent
adversarial attacks will be measured. Furthermore, we eval-
uate and compare each fusion level’s relative security and
performance trade-offs. Additionally, we analyze the balance
between security and performance. Moreover, we assess and
analyze the impact of the perturbations on the fusion levels.

1) BASELINE PERFORMANCE FOR MULTIMODAL
AUTHENTICATION
Figure 4 compares precision, recall, F1 score, and accuracy
across these fusion levels. it illustrates each fusion level’s

performance under normal conditions to provide a baseline
against which the impact of adversarial attacks can be
measured. It compares the baseline and sample performance
metrics across different fusion levels. The performance
is consistent across different fusion levels. All metrics
demonstrate high values. The data indicate that the system
performs well under clean data conditions for each fusion.

2) MOST SECURE FUSION-LEVEL FOR MULTIMODAL
AUTHENTICATION
In assessing the security of our multimodal authentication
system against adversarial attacks, we use the success rate
metric of these attacks across various fusion levels to indicate
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FIGURE 4. Baseline performance of the fusion models under clean data using the complete test dataset and on the sample before
attack generation.

each fusion level’s vulnerability. As depicted in Figure 5,
the FEI_CASIAB and ORL_CASIAB datasets were utilized
to evaluate the average success rates of adversarial attacks
targeting the input, decision (average and maximum), and
feature fusion levels. The input fusion level demonstrated the
lowest average success rate of adversarial attacks. This level
provides a higher resilience against such perturbations. This
robustness is attributed to the preprocessing and integration
of raw data at this stage. Thus, it hinders the attacker’s ability
to manipulate the system’s behavior effectively. Within the
decision fusion, using the maximum rule resulted in a
lower success rate of attacks compared to the average rule.
This outcome highlights the maximum rule’s ability to rely
on the most confident decisions. It reduces the influence
of adversarial changes in the data to deceive the model.
Contrarily, the feature level exhibited a significantly higher
success rate for adversarial attacks. It indicates a vulnerability
in how features are integrated and weighted. This level’s
susceptibility suggests that the attack can manipulate the
representation space where features from different modalities
are combined. Therefore, it makes it easier to affect the
authentication. The input and decision levels’ superior
security performance (maximum rule) encourages their use
in high-security scenarios.

Table 3 complements this analysis by showing the average
success rates across the studied fusion levels and datasets.

Figure 6 compares the impact of adversarial perturbations
across these fusion levels by varying the epsilon values,
which dictate the magnitude of the perturbations. Input
Level: Utilizes ArcFace and DensNet201_MLP. The graph
compares the success rates on two datasets, FEI_CASIAB
and ORL_CASIAB. Typically, the input level should show
robustness to adversarial attacks since the perturbations
would need to be significant to influence the combined
raw data effectively. Feature Level: Employs an attention-
enhanced model (ArcFace_DensNet201_Attention) and
assesses its robustness on the same datasets. Given that
feature-level fusion involves integrated feature sets, this level
might show a higher susceptibility to attacks if adversarial
perturbations manipulate the features effectively. Decision
Level (Max and Avg): This uses ArcFace_DensNet201 and

assesses attack success rates on the same datasets. Decision-
level fusion, depending on whether the Max or Avg rule is
used, might exhibit different vulnerabilities to adversarial
attacks. The Max rule tends to rely on the highest-confidence
decision, possibly reducing susceptibility to perturbations
that do not significantly affect the most confident outputs.

TABLE 3. Fusion levels attack success rate on different models and
datasets.

3) MULTIMODAL BIOMETRIC AUTHENTICATION ACCURACY
VS SECURITY TRADE-OFF
Figure 7 illustrates the trade-offs between the success rates
of adversarial attacks and clean sample accuracy across
different fusion levels within the multimodal authentica-
tion framework. The scatter plot outlines the relationship
between the average success rate of adversarial attacks
and the accuracy of clean data for each fusion level—
input, feature, and decision—employing different models.
Input Level Fusion (ArcFace, DensNet201_MLP): These
points demonstrate a strong performance on clean data
while maintaining a lower success rate for attacks. This
suggests that the input level fusion has high security due
to the complexity of merging unprocessed data. Decision
Level Fusion (ArcFace_DensNet201 for both Avg and Max):
Positioned with moderate attack success rates and reasonable
clean data accuracy. It shows a balanced fusion trade-off after
Input fusion. Feature Level Fusion: These points plot higher
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FIGURE 5. Average success rate for each fusion level.

FIGURE 6. Detailed attack success rate for each fusion level, model and epsilon.

on clean sample accuracy and attack success rate. Despite
high performance on clean samples, the elevated success rate
of attacks indicates potential vulnerabilities.

4) IMPACT OF FGSM PERTURBATIONS ON FUSION-LEVELS
Figure 8 presents the differential impacts of increasing adver-
sarial perturbation levels (epsilon) on the success rates across
various fusion levels. Each fusion level exhibits distinct
trends that reflect its inherent robustness or susceptibility
to adversarial attacks. While some fusion levels, such as

the input fusion, demonstrate substantial resilience, others,
particularly feature, and average-based decision fusions,
reveal specific vulnerabilities that adversarial attacks could
exploit. Input Level: This level consistently declines in attack
success rate as epsilon increases, which is indicative of
high robustness. The input level fusion’s ability to learn
more complex representations that generalize effectively
across different scenarios allows it to resist even signifi-
cant adversarial perturbations effectively. This means that
preprocessing and early integration of modalities at the
input level provides a strong defense mechanism against
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FIGURE 7. Balancing performance vs. security.

FIGURE 8. The impact of epsilon values on fusion levels.

adversarial influences. Feature Level: Unlike other levels,
the feature level demonstrates an initial increase in attack
success rate with moderate epsilon values, peaking before it
plateaus. This behavior indicates a critical threshold beyond
which further increases in perturbation do not significantly
affect the system’s vulnerability. The initial increase in
susceptibility might be attributed to merging features from
different modalities, which, while enhancing performance
under normal conditions, may also streamline the attack
surface for adversarial exploits. Decision Level (max and
average): This fusion strategy exhibits an intriguing trend
where the success rate of attacks initially increases as epsilon

grows but then begins to stabilize. This suggests that while
average-based decision fusion can initially accommodate
mild perturbations, it becomes more susceptible as they
become perceptible and impactful. Both decision fusion rules
show an initial increase in success rate with epsilon, followed
by a decline. This suggests an optimal point of vulnerability
at a certain perturbation level beyond which the fusions start
to respond to the attack more effectively.

D. COMPARISON WITH PREVIOUS RESEARCH
Previous research demonstrates high success rates of adver-
sarial attacks on single-modality systems. Our research shows

VOLUME 12, 2024 106143



S. M. Alghamdi et al.: Enhancing Security in Multimodal Biometric Fusion: Analyzing Adversarial Attacks

that merging multiple biometric traits can achieve higher
robustness against adversarial attacks compared to single-
modality systems. The average attack success for input
fusion using the ArcFace model and DensNet201 ranges
between 13.23%and 31.61%. These rates are significantly
lower compared to the highest single-modality attack success
rates, such as Zhu et al.’s GAN-based attacks on VGG16
(93.75% - 100%) and Massoli et al.’s targeted attacks on
Se-Net-50 (95.6% - 96.3%). This establishes that input-level
fusion provides significant robustness against adversarial
attacks. The Feature fusion model using ArcFace_DensNet
Attention achieves an attack success rate of 84.19%. Its
performance under attack still improves over some of the
most effective attacks reported in the literature, such as the
white box targeted attacks (90%) by Kakizak et al. At this
stage of fusion, further enhancements are needed. As for
decision fusion, it achieves 84.51% (Max) and 83.87% (Avg)
success rates. These rates are comparable to high success
rates in single-modality systems like Massoli et al.’s low-
resolution attacks (nearly 100%). This indicates that while
decision-level fusion is beneficial, further improvements are
necessary to enhance robustness against adversarial attacks.

Our research stresses the vital role of multimodal fusion
in strengthening the robustness of biometric systems against
adversarial attacks. Compared to biometric systems in the
literature, our fusion levels generally achieve lower attack
success rates, indicating improved resilience.

V. CONCLUSION
This research addresses the vulnerability of multimodal
biometric recognition across three fusion levels (input,
feature, and decision) that combine behavioral and biological
characteristics. It focused on identifying the most secure
fusion levels by employing FGSM adversarial attacks to
uncover vulnerabilities. In addition to assessing the impact
of perturbations that make adversarial attacks successful. Our
findings offer insights into the three fusion levels, where
input fusion demonstrated superior performance under attack,
to aid future research in building defence methods to enhance
overall security in multimodal systems.
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