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ABSTRACT The significance of resiliency, reliability, and equity in the pharmaceutical supply chain is often
overlooked but becomes evident in the wake of disastrous events. Disruptive incidents underscore the critical
importance of these concepts, necessitating the development of innovative frameworks to effectively address
the challenges that emerge in their aftermath. This paper introduces a framework specifically designed to
address the issues arising from disruptions within the pharmaceutical supply chain. A novel mixed-integer
nonlinear programming (MINLP) model is proposed to formulate the pharmaceutical supply chain that
encompasses the distribution of both cold and non-cold pharmaceuticals and vaccines. The abundance of
diverse pharmaceuticals and vaccines, each with its distinct characteristics, presents a formidable planning
obstacle. A noteworthy contribution of this study lies in innovatively applying AI-driven methodologies
to pharmaceutical supply chain, employing five pioneering unsupervised learning algorithms for improved
inventory management and control. The model’s uncertainty is effectively addressed through an innovative
joint chance constraint (JCC) formulation. By employing JCC, the model ensures a high level of reliability in
satisfying uncertain patient demands. TheMINLP formulation with JCCs presents significant computational
complexities and intractability. To alleviate these issues, state-of-the-art reformulation algorithms are
provided to transform the model into its equivalent mixed-integer linear programming form. The results
indicate the efficiency of the equivalent reformulation techniques and illustrate the capabilities of the model
to alleviate the resiliency, reliability, and equity concerns.

INDEX TERMS Pharmaceutical supply chain, equity, resiliency, mathematical optimization, stochastic
programming, unsupervised learning.

I. INTRODUCTION
The COVID-19 pandemic has underscored the importance
of a resilient and reliable supply chain for vaccines and
pharmaceuticals. One of the most significant takeaways from
the recent COVID-19 pandemic is that the time required to
achieve mass immunization is not determined by the time
it takes to develop a vaccine, but rather by the time it
takes to scale production and distribute vaccines through the
supply chain [1]. The COVID-19 vaccines were developed,
tested, and granted emergency use authorization within
11 months, which is a remarkable achievement given that

The associate editor coordinating the review of this manuscript and
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the development of a completely new vaccine traditionally
takes an average of approximately 10 years [2]. However, this
remarkable scientific achievement can be easily undermined
if the supply chain system does not comply with standards
related to product conservation, resiliency, reliability, and
equity. The pandemic has demonstrated that the supply
chain should be capable of withstanding any contingencies,
including lockdowns or blockades, ensuring an equitable
distribution of vaccines and pharmaceuticals.

With the considerable subsiding of the pandemic, it is
now imperative to translate the knowledge gained from this
emergency situation into actionable strategies for effective
mitigation. These strategies hold immense value in the
assessment of risks during the planning stages and feasibility
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studies of the supply chain. Apart from the pandemic
itself, there exist various other factors that can potentially
disrupt supply chain, such as natural disasters, issues with
suppliers or vendors, financial instability, and more. Geopo-
litical events, stemming primarily from political instability,
economic sanctions, border closures, or blockades, also
contribute to contingencies in supply chain. Risks associated
with these situations are typically classified as high-impact
low-probability (HILP) risks and often occupy a high
position in Failure Mode and Effects Analysis (FMEA)
tables.

During the COVID-19 pandemic, extensive research has
been conducted to analyze the effectiveness of large-scale
strategies implemented by governments. These studies have
focused on various aspects, including the assessment of
vaccination facility locations [1], government interventions
and their non-pharmaceutical policies [3], [4], [5], as well
as forecasting pandemic behavior to ensure the provision of
adequate healthcare services [6], [7]. In the realm of supply
chain planning, factors such as resiliency and reliability play
a pivotal role, particularly in the face of disruption risks [8],
[9], [10], [11]. These factors have been emphasized in
optimizing supply chain performance during contingencies.
Furthermore, the consideration of equity factors has gained
significant importance in the analysis of supply chain under
disruptive conditions. However, only a limited number of
studies have examined this aspect within the context of
COVID-19 supply chain [12], [13], [14], [15], [16], [17].
In the majority of the aforementioned studies, there

is either a limited consideration of specific types of
pharmaceuticals for supply chain planning or a lack of
explicit mention of the pharmaceutical types altogether. This
represents a limiting assumption prevalent in the majority
of articles examining pharmaceutical supply chain. However,
[18] takes a different approach by considering various types
of pharmaceuticals and incorporating them into the model
through the application of ABC analysis for grouping.
Furthermore, most articles address the inherent uncertainty in
the optimization models by utilizing conventional stochastic
programming (SP) [19], [20], robust optimization (RO)
[21], [22], or chance constraints [23], [24], [25]. However,
there is a paucity of studies that explore the use of
joint chance constraints to ensure system reliability in the
provision of commodities amidst the risks of disruption.
This represents a significant gap in the existing literature.
To advance the existing body of research, this paper
introduces novel insights into the planning of pharmaceutical
supply chain during unpredictable HILP contingencies. The
key contributions of this study can be summarized as
follows:

1) Comprehensive consideration of various pharmaceu-
tical types, including vaccines, to establish a holistic
framework for supply chain planning.

2) Simultaneous utilization of cold and non-cold chain
approaches to accommodate pharmaceuticals with
conflicting preservation temperatures.

3) Integration of multiple characteristics, such as priority,
shelf life, and transportation modes, into the planning
model.

4) Utilization of unsupervised learning-based approaches
for pharmaceutical grouping, highlighting their
advantages over traditional methods like ABC analysis.

5) Emphasis on equity and reliability, ensuring equi-
table access to pharmaceuticals and studying the
framework’s resiliency.

6) Introduction of a joint chance-constrained model.
Compared to single chance constraints (SCCs) which
ensure reliability for each constraint independently,
JCCs enforce reliability over the set of defined
constraints.

7) Proposal of a state-of-the art equivalent reformula-
tion methodology for efficient solution of the joint
chance-constrained model.

The article is structured as follows. Section II presents
a comprehensive literature review, highlighting the current
research gap in the field. Section III proposes problem
description and model formulation. The equivalent refor-
mulation of the model and the AI-driven algorithms are
presented in Section IV, while the numerical results are
provided in Section V. Finally, Section VI concludes the
paper.

II. LITERATURE SURVEY
This section provides a detailed exploration of the existing
literature in pharmaceutical supply chain planning. The
studies are evaluated and assessed according to their con-
ceptual frameworks and methodologies utilized for modeling
and analyzing supply chain systems within the context of
disruptions and pharmaceutical procurement. On one hand,
an evaluation is conducted regarding the concepts associated
with ensuring the resilience of the supply chain amidst
disruptions, the reliability of the procurement system, and
the equitable distribution of commodities. On the other hand,
the methodological aspects of the articles are examined,
including the formulation of uncertainty in mathematical
models and the inclusion of various pharmaceutical products.
Subsequently, the identified research gap is highlighted.

In a broader context of disruptions, scholarly studies delve
into the difficult decisions that decision-makers encounter
while addressing the disturbances [26], [27]. During the
recent pandemic, there has been a notable focus on evalu-
ating the swift decision-making of healthcare policymakers
in their response to the COVID-19 outbreak. Numerous
articles have specifically examined the policies pertaining
to non-pharmaceutical interventions (NPIs). Notably, several
articles [4], [5] have highlighted the efficacy of implementing
lockdown policies as an effective measure in reducing the
fatalities.

Various articles have explored risks and assessed the
resiliency of systems under contingencies from different
perspectives. For instance, [10] presents a bi-objective robust
model that optimizes delivery costs and costs associated

VOLUME 12, 2024 107985



F. Kochakkashani et al.: Innovative Applications of Unsupervised Learning

with the supply chain network, specifically focusing on
perishable products and disruptions in distribution centers.
Their findings underscore the advantages of utilizing mobile
warehouses. In [9], a distributionally robust optimization
framework is examined to enhance resilience in the health-
care supply chain during the COVID-19 pandemic. The
authors propose a model focusing on personal protective
equipment (PPE) and worst-case scenarios, highlighting
the importance of emergency stockpiles in mitigating con-
tingencies. Similarly, [8] investigates the distribution of
non-cold pharmaceuticals during the COVID-19 pandemic,
considering resiliency characteristics. The authors illustrate
the impact of the infectious virus on hospital service providers
and emphasize the efficacy of their model in mitigating
disruptions.

Equity is a crucial factor in pharmaceutical supply chain
during contingencies, and several studies have focused on
addressing this aspect. In [12], a humanitarian supply chain
planning framework is proposed to tackle the issue of
equitable pharmaceutical procurement. The authors develop
a mixed-integer nonlinear programming model considering
demand uncertainties and demonstrate promising results
in addressing equity concerns in pharmaceutical distri-
bution. In another study [13], the authors address the
COVID-19 vaccine procurement problem in Europe using
a mixed-integer linear programming (MILP) model. They
incorporate deprivation cost into the objective function to
ensure unbiased vaccine distribution across the network. The
concept of equity is enforced through specific constraints.
Sensitivity analysis and managerial insights are provided
to emphasize the significance of equity and fairness in
the vaccine supply chain. Additionally, [16] highlights the
equity characteristics of the vaccine supply chain through
patient prioritization. Susceptible patients are categorized
based on their healthcare records and clinical information,
and the uncertainty in patients’ demand is managed using
a multi-stage stochastic programming model. The results
demonstrate the effectiveness of the prioritization and uncer-
tainty management approaches in achieving equity in vaccine
distribution.

The pharmaceutical supply chain encompasses multiple
commodities, making it essential to consider this variety
in the planning process. Each pharmaceutical product has
distinct features, such as specific preservation temperature
requirements. In addressing this complexity, [18] introduces
an optimization model aimed at minimizing total cost
and product shortage in supply chain. The model incor-
porates the conventional ABC classification of inventory
items. Furthermore, it is important to note that there
are numerous perishable pharmaceuticals that necessitate
temperature control. Examples of temperature-sensitive
pharmaceuticals include some eye and ear drops, insulin,
vaccines, and HIV test kits. Recent research conducted
by [28] highlights the significant impact of product per-
ishability on the emergence and amplification of various
risk factors within supply chain networks. Also, [29]

explore the optimal operations in managing sustainable
warehouse.

In modeling pharmaceutical supply chain during disrup-
tions, it is inevitable to encounter uncertainty in various
parameters, particularly in demand. Reference [20] adopts a
stochastic programming approach to optimize operations in
hospital pharmaceutical supply chain. Although disruptions
are not explicitly considered in their problem, the authors
acknowledge uncertainty as a key component in their model.
The study’s results are validated by comparing them to a
real case study, highlighting improvements in the supply
chain process. In [22], a robust optimization framework is
proposed to address uncertainties in demand and cost when
designing a vaccine supply network. The results demonstrate
the variability in optimal solutions when different levels
of uncertainty are taken into account. Another approach
to incorporate uncertainty in pharmaceutical supply chain
during the COVID-19 pandemic for high-demand commodi-
ties is presented in [23]. The article introduces a chance
constraint formulation to handle uncertainty in disruptions.
Furthermore, the research extends to develop recovery
strategies for pharmaceutical supply chain in the face of
contingencies.

A. RESEARCH GAP
According to the analyzed studies, several research gaps can
be identified in the field of pharmaceutical supply chain.
These include:

• The existing body of research on hospital supply chain
falls short in adequately capturing the multifaceted
challenges encountered by healthcare institutions in
procuring essential medical commodities.

• The current literature on pharmaceutical supply chain
lacks comprehensive investigations into the imple-
mentation of a pharmaceutical supply chain encom-
passing both cold and non-cold components. Fur-
thermore, there is a noticeable dearth of research
on cold chain logistics, particularly in developing
countries. Moreover, the integration of diverse phar-
maceuticals within hospital supply chain remains
an unaddressed aspect, calling for a more holistic
approach.

• The utilization of unsupervised learning methods within
the domain of pharmaceutical supply chain management
is still in its nascent stages, with significant room for
further development and exploration. The prevailing
literature predominantly relies on conventional and
outdated techniques, such as ABC analysis, for catego-
rizing pharmaceutical products, neglecting the potential
benefits of more advanced methodologies.

• To the best of the authors’ knowledge, the study of
joint probabilistic constraints within the pharmaceuti-
cal supply chain remains unexplored. This innovative
concept allows for the incorporation of a global prede-
termined reliability level, as opposed to relying solely
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TABLE 1. An examination of the pharmaceutical supply chain model put forth in this study in relation to the existing body of literature.

on per-constraint levels, thereby enhancing the overall
conservativeness of the supply chain.

This article endeavors to address the aforementioned gaps
in the existing literature by proposing a comprehensive
framework that takes into account contingencies within the
system. Table 1 illustrates the distinctive features of the
proposed framework in comparison to contemporary studies.

III. PROBLEM DESCRIPTION
The issue at hand pertains to the formulation of a comprehen-
sive framework for the pharmaceutical supply chain, which
encompasses operational costs and essential considerations
pertaining to equity, reliability, and resiliency in the face
of HILP disruptions. In order to address this, a systematic
approach is taken in developing a distribution plan for
groups of pharmaceuticals, referred to as pharmaceuti-
cal clusters (PhCs). This approach strives to achieve a
desirable balance between equity, resiliency, and reliabil-
ity, while simultaneously minimizing operational expenses.
Furthermore, in order to mitigate the adverse effects of
temperature-sensitive pharmaceuticals, the proposed supply
chain problem incorporates the cold chain into its framework.
As a result, a supply chain is established, encompassing both
cold and non-cold items.

The primary focus of this research endeavor is the analysis
of a supply chain network composed of four distinct echelons:
suppliers, a Demand Hub (DH), hospitals’ pharmacies, and
hospitals’ care units. The underlying network related to this
supply chain is depicted in Figure 1. It is important to note
that in our case the hospitals are geographically proximate
to each other within a city. This idea is prevalent in specific
situations, as hospitals frequently cooperate for research
endeavors and willingly share resources [35]. To facilitate
seamless operations and efficient inventory management,
an integrated real-time hospital information system (HIS) is
employed, overseen by a third-party logistics provider (3PL).
The responsibility for inventory control and management
predominantly lies with the 3PL, ensuring a well-defined

FIGURE 1. Underlying supply chain network.

division of tasks and the involvement of skilled professionals.
Consequently, hospitals can devote their undivided attention
to delivering high-quality care, thereby maximizing the
service level.

The foundation of the network design is rooted in the
Supply-Demand Hub in Industrial Clusters (SDHIC) model,
as originally proposed by [36] and [37]. The subsequent
development in [34] presents a modified network design
that refines the previously proposed framework for the
pharmaceutical supply chain. The hub adoption displays
benefits in other studies as well [38]. The modified
framework specifically caters to the unique requirements
of the pharmaceutical industry. As depicted in Figure 1,
the demand side of the network comprises patients and
hospital pharmacies. To accommodate the diverse range of
PhCs offered by different suppliers, a Demand Hub (DH)
is implemented within the system, strategically located in
close proximity to the hospitals, thereby facilitating efficient
stockpiling of pharmaceuticals. This supply chain network
design, drawn from our case study, is widely applicable,
with similar approaches being employed in various regions,
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such as South West England [35]. The network design
proposed in the aforementioned studies offers numerous
advantages, such as reduced capital investments, lower
holding costs, decreased labor costs, enhanced efficiency, and
risk mitigation. For a comprehensive understanding of the
supply chain network, readers are referred to [34].

A. ASSUMPTIONS
The present study operates under a set of underlying
assumptions which are presented below.

• The pharmaceutical supply chain is susceptible to HILP
disruptions, particularly on the supplier side.

• A global reliability level of 95% is taken into account for
the JCCs in terms of fulfilling the patients’ demands.

• The model incorporates a deprivation cost to mitigate
the risk of pharmaceutical shortages during emergency
situations. This cost imposes strict conditions for
meeting the affected hospital’s demands.

• The proposed approach includes equity considerations
to ensure a fair and balanced distribution of PhCs.

• A disruption, lasting from day 1 to day 15, is considered
to take place, leading to suspension of some suppliers.

• This study analyzes the supply chain system over a time
span of 90 days, corresponding to a season.

• The lead time for all orders in this study is deterministic
and fixed at one day, with the exception of emergency
orders, which are considered negligible. Due to the close
proximity of hospitals, emergency orders have a lead
time of zero.

• The patient demand is characterized by uncertainty and
is modeled using a Gaussian random variable [39].

• The expiration rate is known for each PhC, and
prolonged storage leads to degradation of the products.

• The proposed model incorporates priority considera-
tions, where PhCs with higher priorities are associated
with elevated deprivation costs to mitigate the risk of
vital pharmaceutical shortages.

• Each supplier has limitations in providing specific
pharmaceutical groups, and orders are consolidated and
settled on a monthly basis.

B. MODEL FORMULATION
The present study introduces the pharmaceutical supply chain
model (PSCM) tailored specifically for PhCs, incorporating
joint chance constraints. The formulated model is classified
as a mixed-integer nonlinear programming (MINLP) prob-
lem. Subsequently, an equivalent reformulation is proposed,
leading to the transformation of the model into an MILP
formulation in the successive section.

Indices
s Index of suppliers.
d Index of pharmacies.
u Index of care units.
p Index of PhCs.
m Index of transportation means (TMs).

t Index of days.
Parameters
T The last time period.
chDHp Fixed holding cost of PhC p at DH.
chPp Fixed holding cost of PhC p at pharmacies.

cdepp Deprivation cost for PhC p.
csupp PhC p price at suppliers.
cDHp PhC p price at DH.
cPp PhC p price at pharmacies (emergency

purchasing).
ctSDp,m PhC p transportaion cost from suppliers to

DH with TM m.
ctDPp,m PhC p transportaion cost from DH to

pharmacies with TM m.
ctPUp,m PhC p transportaion cost from pharmacies

to care units with TM m.
ceDHp PhC p expiration cost at DH.
cePp PhC p expiration cost at pharmacies.
dsSDs Distance between supplier s and DH.
dsDPd Distance between DH and pharmacy d .
dsPUd,u Distance between pharmacy d and care

unit u.
to Time between DH orders.
to′ Time between pharmacy orders.
dmdp,u,t Demand for PhC p at care unit u at time t .
scDHp DH capacity for PhC p.
scPp,d Capacity for PhC p at pharmacy d .
v Volume of PhC p.
tep Length of time until initial degradation of

PhC p.
ld Lead time.
vcm Capacity of TM m.
φp Expiration rate of PhC p.
bpp,s Binary indication related to procurement

ability of PhC p at supplier s. Equals
1 if PhC p can be supplied by supplier s;
0 otherwise.

capp,s,t Supplier s provision capacity for PhC p at
time t .

M A sufficiently large number.
η Pre-defined reliability level.
ϵ Equity parameter.
r(t) Deprivation cost coefficient function.
Variables
IDHp,t (∈ R+) Stock level of PhC p at DH at time

t .
IPp,d,t (∈ R+) Stock level of PhC p at pharmacy

d at time t .
Xp,m,s,t (∈ R+) Shipped PhC p from supplier s to

DH with TM m at time t .
Yp,m,d,t (∈ R+) Shipped PhC p from DH to

pharmacy d at time t with TM m.
Zp,m,d,u,t (∈ R+) Shipped PhC p from pharmacy

d to care untit u with TM m at time t
(emergency orders).
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Shp,u,t (∈ R+) Shortage in PhC p at care unit u at
time t .

ρp,s,t (∈ B) Order placement indicator. Equals
1 when an order for PhC p is placed by DH
from supplier s at time t; 0 otherwise.

ρ′
p,d,t (∈ B) Order placement indicator. Equals

1 when an order for PhC p is placed
by Pharmacy d from DH at time t;
0 otherwise.

δp,s,t (∈ B) Binary variable indicating procure-
ment of the uth affected care unit. Equals
1 if the affected care unit is supplied with
PhC p at time t; 0 otherwise.

TrSDp,m,s,t (∈ Z+) TMs m required for PhC p delivery
from supplier s to DH at time t .

TrDPp,m,d,t (∈ Z+) TMs m required for PhC p delivery
from DH to pharmacy d at time t .

TrPUp,m,d,u,t (∈ Z+) TMs m required for PhC p delivery
from pharmacy d to care unit u at time t .

The objective function of the joint chance constrained
pharmaceutical supply chain model (JCC-PSCM) reads as
follows.

JCC-PSCM: min FO(X ) + FD(X ). (1a)

FO(X ) =

∑
p,t

IDHp,t ch
DH
p +

∑
p,d,t

IPp,d,tch
P
p +

∑
p,m,s,t

Xp,m,s,tcsupp

+

∑
p,m,d,t

Yp,m,d,tcDHp +

∑
p,m,d,u,t

Zp,m,d,u,tcPp

+

∑
p,t:t≥tep

φpIDHp,t ce
DH
p +

∑
p,d,t:t≥tep

φpIPp,d,tce
P
p

+

∑
p,m,s,t

TrSDp,m,s,t ct
SD
p,m dsSDs

+

∑
p,m,d,t

TrDPp,m,d,t ct
DP
p,m dsDPd

+

∑
p,m,d,u,t

TrPUp,m,d,u,t ct
PU
p,m dsPUd,u. (1b)

FD(X )

=

∑
t

r(t)
[ ∑
p,u

dmdp,u,t (1 − δp,u,t ) +

∑
p,u

δp,u,tShp,u,t

]
.

(1c)

The objective function of the model consists of two
components: (i) the operational cost of the supply chain,
denoted as FO(X ), and (ii) the deprivation cost, denoted as
FD(X ).
The operational cost in (1b) encompasses various factors

such as holding costs, expiration costs, purchasing costs, and
transportation costs. These costs reflect the expenses asso-
ciated with managing the supply chain, including inventory
maintenance, procurement activities, and transportation of

pharmaceuticals. By incorporating these operational costs
into the objective function, the model aims to optimize
the efficiency and cost-effectiveness of the supply chain
operations. On the other hand, the deprivation cost in (1c)
represents the cost incurred when the demand for a specific
pharmaceutical during a specific timeframe is not fully met.
It quantifies the economic impact or penalty resulting from
unfulfilled demand. The function r(t) = 3t is defined as
a deprivation cost coefficient function [12]. Minimizing the
deprivation cost becomes a critical objective as it helps ensure
fairness in the distribution of pharmaceuticals and mitigate
the negative consequences of unmet demand. By minimizing
the deprivation cost, the model strives to improve the overall
performance and reliability of the supply chain in meeting the
demands of the affected care units.
The model constraints are represented as follows.

IDHp,t = (1 − φp)IDHp,t−1 +

∑
m,s

Xp,m,s,t−ld −

∑
m,d

Yp,m,d,t ,

∀p, t ∈ {ld, . . . ,T } (2)

Constraint (2) maintains the balance of the PhC stock level
at the DH during period t. This constraint guarantees that
stored pharmaceuticals do not exceed their expiration date,
and it asserts that the inventory level at the DH is determined
by adding the orders received from suppliers to the stock
level from the previous period, without including the orders
dispatched to the pharmacies.

IPp,d,t = (1 − φp)IPp,d,t−1 +

∑
m

Yp,m,d,t−1 −

∑
m,u

Zp,m,d,u,t ,

∀p, d, t ∈ {1, . . . ,T } (3)

Constraint (3) serves as an inventory balance constraint
specifically for the pharmacies. Its purpose is to ensure
that the stock level at each period is equivalent to that of
the previous one. This constraint achieves this balance by
incorporating the incoming flows from the DH and excluding
the outgoing flows to the care units.

P
(∑
m,d

Zp,m,d,u,t + Shp,u,t ≥ dmdp,u,t , ∀u
)

≥ η, ∀p, t

(4)

Constraint (4) introduces JCCs for the supply and demand
balance. Symbol P denotes the probability function associ-
ated with these constraints. In general, chance constraints
enforce the selected constraints to hold with a determined
confidence level η. This limitation induces risk-averse
formulation and increases reliability. Compared to SCCs
that satisfy the confidence level for each constraint, the
JCCs impose the prerequisite that a collection of constraints
achieves a collective satisfaction of the confidence level.
In particular, JCC (4) stipulates that pharmacies fulfill the
demand of patients for PhCs during each period. However,
it acknowledges that the demand from patients may not
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always be fully met, resulting in a shortage. To account
for this shortfall, the model incorporates a high cost for
shortages. By assigning a significant cost to shortages, the
model aims to deter the accumulation of shortages and
encourages the effective allocation of pharmaceuticals to
meet patient demand as closely as possible. This JCC is
formulated to guarantee a global reliability level for the
delivery of pharmaceuticals for all affected care units [40],
[41], [42].

IDHp,t vp ≤ scDHp , ∀p, t (5)

By imposing constraint (5), the model guarantees that the
DH can effectively accommodate the PhCswithout exceeding
its designated storage size.

IPp,d,tvp ≤ scPp,d , ∀p, d, t (6)

Constraint (6) sets a defined threshold for the PhCs
stored at the pharmacies. This constraint states that collective
quantity of pharmaceuticals retained at each pharmacy should
not exceed the pharmacy’s maximum capacity pertaining to
a specific PhC.∑
m,d

Yp,m,d,t ≤ IDHp,t−1 +

∑
m,s

Xp,m,s,t−ld , ∀p, t ∈ {ld, . . . ,T }

(7)

Constraint (7) enforces a balance at the DH between the
outgoing flows to the pharmacies and the available stock of
PhCs, including those received from suppliers. Put simply,
this constraint ensures that the quantity of pharmaceuticals
leaving the DH to the pharmacies does not exceed the
available stock including PhCs inside the DH and the ones
procured by the suppliers.∑

m,u

Zp,m,d,u,t ≤ IPp,d,t−1 +

∑
m

Yp,m,d,t−ld ,

∀p, d, t ∈ {ld, . . . ,T } (8)

Constraint (8) signifies that the maximum pharmaceutical
quantities dispatched to the care units is constrained by the
available inventory. By considering this constraint alongside
the previous one (Constraint (7)), it becomes apparent that a
harmonious balance is achieved throughout the entirety of the
supply chain. ∑

m

Xp,m,s,t ≤ capp,s,t , ∀p, s, t (9)

Constraint (9) ensures that the amount of PhCs received
from suppliers does not exceed the maximum capacity of
each supplier. This restriction promotes effective supplier
management and prevents overloading of the suppliers’
capacities. ∑

m

Xp,m,s,t vp ≤ scDHp ρp,s,t , ∀p, s, t (10)

Constraint (10) governs the delivery process to the DH,
ensuring that deliveries from suppliers are accepted based

on their capability to provide a specific PhC. Furthermore,
this constraint sets a limit on the maximum volume of
procurement deliveries from each supplier during period t,
ensuring that it does not exceed the volume capacity of the
DH for the corresponding PhC.

ρp,s,t ≤ bpp,s, ∀p, s, t (11)

In essence, Constraint (11) evaluates and determines the
feasibility of each supplier to acquire a specific PhC based
on the value of the associated parameter. If the parameter is
set to 1, it signifies that the supplier possesses the capability
to procure a specific PhC at that particular period.

t+to∑
τ=t

ρp,s,τ ≤ 1, ∀p, s, t (12)

Constraint (12) outlines the ordering frequency for the DH
when procuring from each supplier and for each PhC.∑

m

Yp,m,d,t vp ≤ scPp,dρ
′
p,d,t , ∀p, s, t (13)

Constraint (13) ensures that the volume of PhCs received
by each pharmacy remains within the limitations of its storage
capacity.

t+to′∑
τ ′=t

ρ′

p,s,τ ′ ≤ 1, ∀p, s, t (14)

Constraint (14) defines a fixed time period for each
pharmacy to place orders for a particular PhC, ensuring that
orders are made every to′ days.

TrSDp,m,s,t ≥
Xp,m,s,t vp

vcm
, ∀p, s, t (15)

Constraint (15) ensures that a sufficient number of vehicles
are allocated for transportation based on the volume of PhCs
being supplied. It accounts for the capacity constraints of
each vehicle type, ensuring that the volume of PhCs does not
exceed the capacity of a single vehicle. By adhering to this
constraint, the model guarantees the efficient transportation
of PhCs from suppliers to the DH, optimizing the utilization
of vehicles while respecting their capacity limits.

TrDPp,m,d,t ≥
Yp,m,d,t vp

vcm
, ∀p,m, d, t (16)

Constraint (16) outlines the necessary quantity of vehicles
to transport deliveries from the DH to the pharmacies, similar
to Constraint (15).

TrPUp,m,d,u,t ≥
Zp,m,d,u,t vp

vcm
, ∀p,m, t, d, u : (d ̸= u) (17)

Constraint (17) ensures that sufficient TMs are available
to facilitate the urgent and time-sensitive transportation of
PhCs from pharmacies to care units at other hospitals when
emergency situations arise.∑

m,d

Zp,m,d,u,t ≤ M δp,u,t , ∀p, u, t (18)
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By checking the delivery status in Constraint (18), the
model ensures that the care units receive the necessary
pharmaceutical supplies. This information is essential for
calculating the deprivation cost, which reflects the impact or
cost associated with the lack of deliveries to the care units.

∣∣∣∣
∑
m,d

Zp,m,d,u,t

dmdp,u,t
−

∑
m,d

Zp,m,d,u′,t

dmdp,u′,t

∣∣∣∣ ≤ ϵ ∀p, u ̸= u′, t (19)

Constraint (19) imposes the condition that distinct affected
care units should strive to achieve the highest possible
similarity in terms of rates of demand satisfaction. This
constraint enforces horizontal equity and it is designed to
ensure a fair and equitable distribution. By employing the
equity constraint, it is ensured that the disparity in meeting
the demands of different care units remains below or equal to
a small predetermined threshold, denoted as ϵ.

IV. SOLUTION APPROACH
This section entails the development of an equivalent
reformulation for the suggested MINLP model, followed
by the transformation of the model into its MILP counter-
part. Additionally, the application of unsupervised learning
methodologies for clustering pharmaceutical products is
introduced. These procedures are essential to guarantee the
achievement of an optimal solution with high accuracy for
the pharmaceutical supply chain model. The accuracy is
dependent on the number of generated scenarios.

A. EQUIVALENT REFORMULATION
The mathematical model presented in the previous section
comprises certain terms that exhibit nonlinearity or non-
convexity, thereby requiring reformulations to transform the
problem into a convex optimization framework. Specifically,
equation (1c) includes a bilinear term with multiplication of
binary and continuous variables, requiring a reformulation
to handle its nonlinearity. Moreover, chance constraint (4) is
both nonconvex and nonlinear, posing challenges in model
tractability. Furthermore, constraint (19) includes an absolute
function, which necessitates appropriate reformulation to
ensure convexity in the optimization problem. In order to
address nonlinearity in equation (1c), a continuous relaxation
is provided by introducing a new vector of variables 1.
Accordingly, the formulation is given below [43], [44]:

1p,u,t ≤ M δp,u,t , ∀p, u, t (20a)

1p,u,t ≤ Shp,u,t , ∀p, u, t (20b)

1p,u,t ≥ Shp,u,t −M (1 − δp,u,t ). ∀p, u, t (20c)

FD(X ) =

∑
t

r(t)
[ ∑
p,u

dmdp,u,t (1 − δp,u,t ) +

∑
p,u

1p,u,t

]
.

(20d)

Accordingly, an equivalent reformulation of constraint (19)
is presented in the following form.

−ϵ ≤

∑
m,d

Zp,m,d,u,t

dmdp,u,t
−

∑
m,d

Zp,m,d,u′,t

dmdp,u′,t
≤ ϵ, ∀p, u ̸= u′, t

(21)

In order to reformulate the JCC (4), a proposed approach
utilizes Boolean programming, as presented by [42], while
highlighting its advantages in comparison to the traditional
scenario-based reformulation technique [40]. Although the
suggested formulation demonstrates satisfactory reliability
performance across the entire system, alternative reformula-
tion approaches are necessary due to the inherent difficulty
of obtaining numerical solutions using standard optimization
solvers. The convexity of the feasible set significantly
affects the computational complexity of stochastic problems
related to JCCs. Consequently, to solve chance constrained
problems, researchers explore three main solution methods:

1) Reference [45] outlines the first approach, which
centers on p-efficiency. This approach provides two
options for problem-solving: the utilization of an
equivalent mixed-integer programming (MIP) prob-
lem or the adoption of a decoupled reformulated
problem derived from the stochastic model. Various
techniques, such as convexification, primal-dual algo-
rithms, or the augmented Lagrangian algorithm, can
then be employed to address the reformulated problem.

2) The second approach involves replacing the orig-
inal high-dimensional stochastic problem with a
mixed-integer programming (MIP) problem. This is
achieved by assigning a binary variable to each possible
realization of the random vector, as outlined in [46].

3) The third approach involves deriving safe convex
approximations, acknowledging that the optimal solu-
tion may not necessarily be in close proximity to
the exact and globally optimal solution, as discussed
in [47].

The Boolean reformulation method, as presented in [42],
offers an effective solution to overcome the aforemen-
tioned challenges and enables a rapid solution to the
stochastic optimization model. The general form of a
probabilistically-constrained optimization model is shown
below:

min qTX (22a)

s.t. AX ≥ b (22b)

P(hjX ≥ ξj, ∀j ∈ J ) ≥ η (22c)

X ≥ 0 (22d)

In the general JCC formulation presented above, X is
the vector of decison variables, q is the vector of objective
function coefficients, A and h are technology matrices, and
b and ξ are the right-hand side values. The assumption
is made that the vector of random variables ξ follows a
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random distribution of |J | dimensions with a finite support,
while the other parameters are deterministic values. It is
worth mentioning that |J | represents the cardinality of
set J . As mentioned before, the symbol P represents the
probability measurement, while η represents the reliability
level. Constraint (22c) represents a JCC that is non-convex
and poses significant computational intricacy.

1) BOOLEAN PROGRAMMING REFORMULATION
The proposed approach introduces a methodology that
involves binarizing the probability distribution function
(PDF) of the random variable vector ξ . The Boolean
algorithm for JCC reformulation consists of three main steps:
constructing the recombination set, binarizing the Probability
Density Function (PDF), and representing the feasible region
using partially-defined Boolean functions. A summary of
the Boolean algorithm can be found in [42], and for a
comprehensive understanding of the algorithm, readers are
referred to it and the cited references therein. A brief overview
of the algorithm is presented accordingly.

Initially, each realization ωk
j of the random variable ξj is

checked for being a cut point. This condition is expressed as
follows:

{ωk
j } ∪ Ci, if Fj(ωk

j ) ≥ η. (23)

Ci represents the set of cut points associated with the
jth random variable and Fj denotes marginal probability
distribution function of ξj. The condition examines the
univariate quantile of each realization and compares it against
the pre-defined reliability level. Subsequently, the set of
recombinations (�̃) is constructed utilizing the set of cut
points according to the following procedure:

�̃ = C1 × C2 × . . . × C|I|. (24)

In the subsequent step, realizations within the set of
recombinations are classified according to the concept of p-
sufficiency. This concept involves dividing the combination
set into two distinct sets: p-sufficient set (�+) and p-
insufficient set (�−). Realizations are categorized as follows:

ωk
j ∈ �̃ :

{
ωk
j ∈ �+

j (p-sufficinet), if Fj(ωk
j ) ≥ η

ωk
j ∈ �−

j (p-insufficinet), otherwise

(25)

The binarization process of the PDF is undertaken next to
construct the feasible region. The binarization is carried out
with respect to the cut points. In essence, each realization ωk

j
is mapped to the binary vector βkj = [βki,1, . . . , βi,nj ]. The
binarization condition is proposed as:

cij ∈ Ci :

{
βkij = 1, if ωk

j ≥ cij
βkij = 0, otherwise,

i = 1, . . . , nj, j ∈ J

(26)

Following this procedure, the JCC problem (22a)-(22d)
can be transformed into its equivalent MILP formulation,
represented as:

min qTX (27a)

s.t. A X ≥ b (27b)

hjX ≥

nj∑
i=1

ci,jUi,j, ∀j ∈ J (27c)

∑
j∈J

nj∑
i=1

βki,jUi,j ≤ |J | − 1, ∀k ∈ �−

B (27d)

nj∑
i=1

Ui,j = 1, ∀j ∈ J (27e)

U ∈ {0, 1}i×j, X ≥ 0 (27f)

where k is the index for scenarios. Thus, the JCC (4) is
reformulated as follows:

∑
m,d

Zp,m,d,u,t + Shp,u,t ≥

nu∑
i=1

ci,uUi,u, ∀u ∈ U , p, t

(28a)∑
u∈U

nu∑
i=1

βki,u,p,tUi,u,p,t ≤ |U | − 1, ∀k ∈ �−

B , p, t (28b)

nu∑
i=1

Ui,u,p,t = 1, ∀u ∈ U, p, t (28c)

U ∈ {0, 1}i×u (28d)

where |U | defines the cardinality of the set of care units.
Equations (28a)-(28d) represent an exaxt reformulation for
JCC (4) with a convex feasible region. Consequently, the
equivalentMILP counterpart of the JCC-PSCMwith Boolean
reformulation is provided below:

BR-PSCM : min (1b) + (20d).

s.t. (2) − (3); (28a) − (28d);

(5) − (18); (20a) − (20c); (21).

Based on this reformulation one can conclude that the
feasible solutions of BR-PSCM are almost indistinguishable
from JCC-PSCM for a large number of scenarios.

2) SCENARIO-BASED REFORMULATION
Another method used to reformulate the joint chance
constraints is the scenario-based reformulation [46]. This
method is used in our study to compare the capabilities
of Boolean reformulation with other methods. The main
challenge with the conventional scenario approach used
to solve chance-constrained problems is that it requires
introducing a binary variable for each scenario. This can
result in a loose relaxation when dealing with continuous
variables. Furthermore, it is evident that the inclusion of a
larger number of binary variables significantly increases the
runtime of the model and may even lead to intractability. The
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scenario-based reformulation of the problem (22a)-(22d) is:

min qTX (29a)

s.t. A X ≥ b (29b)

hjX ≥ ωk
j (1 − θk ), ∀j ∈ J , ∀k ∈ � (29c)∑

k∈�

pkθk ≤ 1 − η (29d)

X ≥ 0, θ ∈ {0, 1}k (29e)

Here, pk represents the probability associated with each
scenario and � defines the set of scenarios. Thus, the
scenario-based reformulation of the JCC (4) is given by:

∑
m,d

Zp,m,d,u,t + Shp,u,t ≥ ωk
u(1 − θk ), ∀p, u, t, k ∈ �

(30a)∑
k∈�

pkp,tθ
k
p,t ≤ 1 − η ∀p, t (30b)

θ ∈ {0, 1}k (30c)

Accordingly, the scenario based reformulation of
JCC-PSCM reads as follows.

SR-PSCM : min (1b) + (20d).

s.t. (2) − (3); (30a) − (30c);

(5) − (18); (20a) − (20c); (21).

The scenario generation process is carried out according to
amulti-variate Gaussian distribution representing the demand
for PhCs [48]. This reformulation also ensures that the
SR-PSCM yields almost the same feasible solutions as the
original JCC-PSCM for a high number of scenarios.

B. UNSUPERVISED LEARNING ALGORITHMS
This section aims to introduce clustering algorithms that
are employed to effectively group pharmaceutical products
and establish the PhCs. The grouping is a common practice
in pharmaceutical supply chain management which allows
handling similar products together. The results obtained
from these algorithms are used as an input for the defined
mathematical models. The utilization of clustering algorithms
is driven by the imperative to address the shortcomings of
current methods for commodity grouping. Scholars [49], rec-
ognize the inherent diversity within pharmaceutical products,
or formulary, and predominantly rely on techniques that are
expert driven and usually labor-intensive to devise grouping
algorithms.

Among these methods, the ABC analysis has gained
significant popularity [18], [50]. This established technique
follows the Pareto 80/20 rule and tactically categorizes
commodities according to their value and volume. Notably,
commodities with higher value but lower volume are given
a higher rank in the grouping process, highlighting their
significance and priority. Originally developed for inventory
control and management studies, this technique has found

practical applications beyond their initial scope and can
be effectively employed in mathematical modeling as well.
However, when dealing with medicines, it is important to
acknowledge that it fails to include diverse characteristics,
such as size, volume, priority, storage condition, and more.
These multiple attributes may present a challenge for
decision-makers in comprehensively analyzing medicines,
and traditional techniques often fall short in considering and
incorporating such complexities.

To address these challenges, it is essential to embrace
methodologies that can encompass the diverse features of
pharmaceuticals and leverage tools that optimize catego-
rization based on these features. Consequently, this article
introduces five unsupervised learning algorithms that possess
the capabilities required for pharmaceutical categorization.
The selected algorithms are Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), Gaussian Mixture
Models (GMM), K-means, hierarchical clustering (HC), and
spectral clustering (SC). In the interest of conciseness and
maintaining focus on the original problem proposed in this
article, the detailed explanations of GMM, K-means, and
Hierarchical clustering algorithms are deferred to [51], [52],
and [53] and the referenced sources. For the purpose of this
section, we will provide short explanations for DBSCAN and
Spectral clustering algorithms

To the best of the author’s knowledge, this article
represents a pioneering effort in utilizing various clustering
algorithms for the purpose of grouping pharmaceuticals and
vaccines.While previous research, such as [34], employed the
K-means algorithm for pharmaceutical product classification,
this study builds upon that foundation by incorporating four
additional methods and conducting a comparative analysis of
the results.

1) DBSCAN ALGORITHM
The algorithm, originally proposed in [54], is known as
the DBSCAN algorithm. The DBSCAN algorithm starts by
selecting an unvisited point and expands a cluster around
it by identifying all reachable points within a specified
distance threshold, denoted as ϵ. If the number of points
within this distance threshold is greater than or equal to a
pre-defined minimum points threshold, referred to as MinPts,
the algorithm recursively expands the cluster to include these
points. This process continues until no more points can be
added to the cluster. Subsequently, the algorithm moves on to
the next unvisited point and repeats the process until all points
have been visited. Points that do not belong to any cluster and
do not have a sufficient number of neighboring points within
ϵ are considered noise points.

2) SPECTRAL CLUSTERING
Spectral Clustering, introduced in [55], initiates by construct-
ing a similarity matrix that captures the pairwise similarities
between data points. Subsequently, the normalized Laplacian
matrix is computed to capture the underlying structure of
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TABLE 2. Results related to centroids of the clustering algorithms.

FIGURE 2. The solution approach work flow.

the data. By computing the eigenvectors associated with
the smallest eigenvalues of the Laplacian matrix, a low-
dimensional representation of the data is obtained. The rows
of this matrix are then subjected to clustering using a standard
algorithm, such as K-means, to assign data points to clusters.

The obtained clusters using the aforementioned methods
are presented in Table 2, and a summary of the solution
approach procedure is represented in Figure 2.

V. NUMERICAL RESULTS
To evaluate the efficacy of the proposed approach, a case
study was conducted on hospitals in Tehran during the
early phases of the COVID-19 outbreak. Data from three

hospitals were collected for testing the model, with the
specific details and model parameters provided in [34].
The fundamental solution approach unfolds as follows. The
results gleaned from unsupervised learning techniques is
employed as foundational input for both the deterministic
model, and for generating scenarios within the SR-PSCM
and BR-PSCM. The deterministic model is established by
replacing the random variable by its expected value. Further,
the scenarios are generated accordingly, accompanied by
the application of necessary reformulation techniques. The
models are formulated inmathematical optimization software
AMPL, interfaced with a state-of-the-art optimization solver
Gurobi 10.0.0. The models are solved on a PC with an
Intel i7-7700 processor, 3.6 GHz core speed, and 16 GB of
RAM. The results and findings of the analysis are presented
in several sections. Section V-A offers an overview of
the general outcomes of the model and compares different
reformulation approaches. In Section V-B, the model’s ability
to absorb disruptions and enhance system resiliency is
examined. A sensitivity analysis on equity parameters is
presented in Section V-C, exploring their impact on the
model’s outcomes. Finally, Section V-D provides managerial
and practical insights derived from the study. By structuring
the findings in these sections, a comprehensive evaluation
of the proposed approach’s effectiveness in the context of
Tehran hospitals during the initial stages of the COVID-19
outbreak is presented.

A. GENERAL OUTCOMES
In this section, the results from different clustering methods
are tested on the deterministic model. The most suitable
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TABLE 3. Optimal objective values pertaining to the objective
function (1a) using various clustering algorithms for the deterministic
model.

clustering approach for the pharmaceutical commodities is
selected, and the resulting clusters are then utilized as input
for the scenario generation in SR-PSCM and BR-PSCM.
Subsequently, the stochastic model with JCCs is solved
using these clusters. The optimal results obtained after
deterministic optimization are presented in Table 3.

The results presented in Table 3 clearly demonstrate
that clustering pharmaceuticals based on the SC algorithm
yields a superior solution. However, it should be noted
that this does not necessarily imply that the SC algorithm
outperforms the other methods in all scenarios. Rather,
it indicates that for our specific case study, incorporating
the SC algorithm for clustering implementation is the most
effective approach. This observation can be attributed to the
particular structure of the pharmaceutical data utilized in
this study and underscores the ability of the SC method
to generate more homogeneous clusters. Thus, the results
obtained from the SC algorithm are utilized to implement
the SR-PSCM and BR-PSCM, leveraging the strengths
of this clustering approach in our analysis. It is worth
noting that a dedicated cluster is created specifically for
cold pharmaceuticals before constructing the remaining
clusters. This decision is based on the understanding that
the low number of cold pharmaceuticals does not warrant
further partitioning or subdivision into additional clusters.
By treating cold pharmaceuticals as a distinct cluster,
we acknowledge their unique characteristics and ensure that
they receive appropriate consideration within the clustering
process.

As mentioned earlier, both the Boolean programming and
scenario-based reformulation approaches were applied to
address the JCCs. The results obtained from the optimization
models are presented in Table 4 and Table 5. Upon initial
observation, it is evident that Boolean reformulation exhibits
a clear advantage over the scenario-based reformulation.
The Boolean algorithm outperforms the scenario-based
reformulation in terms of runtime, number of constraints,
and number of binary variables. These factors play a crucial
role in ensuring the tractability of an optimization problem.
Moreover, Boolean programming enables the utilization of
a significantly larger number of scenarios, thereby allowing
for a more comprehensive capture of the model’s uncertain
characteristics. It is worth mentioning that the scenario-based
algorithm failed to converge to the optimal solution even
after four hours of runtime for the case of 1000 and
10,000 scenarios. The optimal objective values in Table 5
are adopted from boolean reformulation as both methods
provide highly accurate reformulations for a large number of
scenarios.

TABLE 4. Results related to BR-PSCM.

TABLE 5. Results related to SR-PSCM.

B. RESILIENCE ANALYSIS
In this section, the resilience of the supply chain against
disruptions in the supplier side of the network is assessed.
The robust design of the supply chain incorporates backup
suppliers to mitigate the impact of perturbations in the
supplier side. To analyze the system’s response to supplier
unavailability, the first supplier in the case of Tehran hospitals
is assumed to be subject to a crisis. The objective is to
examine the system’s ability to maintain the service level
under such circumstances. Specifically, the first supplier is
responsible for procuring PhC-A and PhC-C. The disruption
is assumed to occur from day one to day 15.

The results depicted in Figure 5 illustrate the system’s
shortage in procuring different PhCs as a metric for the
service level. A comparison is made between the shortage
levels during normal operation and the disrupted stage
to identify the effects of the disruption. Interestingly,
Figure 5a demonstrates that PhC-A is not affected by the
disruption in the first supplier. Despite the fact that the first
supplier is responsible for procuring PhC-A, the combination
of other suppliers compensates for the first supplier’s
inability to accept orders. Consequently, the disruption
is mitigated and remains responsive in terms of PhC-A
procurement.

The system’s ability to cope with disruptions in the other
three pharmaceutical commodities (PhCs) differs from its
response to PhC-A. While the system collaboratively works
to mitigate the incurred contingencies, it struggles to meet
patient demands for the remaining PhCs. Despite the first
supplier’s failure to fulfill its share in PhC-A and PhC-C
procurement, its impact extends to lower service levels in
acquiring PhC-B and PhC-D, in addition to PhC-C.

The disruption in the first supplier causes a minor
disruption in meeting patient demand for PhC-B and PhC-
D (see Figures 5b and 5d). The shortage period for supplying
PhC-B extends by four days, while for PhC-D it increases
by two days compared to the normal condition. However, the
supply of PhC-C, shown in Figure 5d, is severely affected,
experiencing both an extended shortage period of five days
and an increased shortage amount.
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C. EQUITY AND SENSITIVITY
To demonstrate the advantages of incorporating equity met-
rics in the supply chain model, the results are presented in the
form of a sensitivity analysis, as depicted in Figures 4 and 3.
This analysis aims to highlight the contribution of equity
metrics in enhancing fairness throughout the system, while
examining their impact on fluctuation. Figure 3 illustrates
that as the constraint (19) on equity becomes less stringent
(looser), the optimal total cost decreases. However, it is
important to note that this reduction in cost comes at
a trade-off. Figure 4 demonstrates that by loosening the
constraint (19) through increasing ϵ, the level of deprivation
increases, resulting in less equity within the system.

According to Figure 3, it can be observed that as the
restriction on constraint (19) gradually relaxes, the rate of
decrease in the optimal total cost becomes more pronounced.
This suggests that loosening the constraint allows for
greater cost reduction. In contrast, Figure 4 demonstrates an
increasing rate of deprivation cost as the value of ϵ increases.
This indicates that as the constraint is relaxed, leading to
a higher tolerance for inequity, the level of deprivation
and consequently the loss of equity within the system also
increases at a faster rate.

FIGURE 3. Total cost sensitivity to equity parameter ϵ.

FIGURE 4. The change in deprivation cost with regards to varying equity
parameter ϵ.

D. MANAGERIAL AND PRACTICAL INSIGHTS
According to the elicited results four insights are captured:

1) In the context of HILP disasters, it is crucial to give
significant attention to the tradeoff between system
cost and equity. Achieving higher levels of equity can
have a substantial impact on saving lives and ensuring
fair resource allocation. The results of the analysis
highlight that even with a relatively small increase
of approximately 18% in the total cost, the equity
level can be significantly improved. Specifically, when
transitioning from a lower level of equity (ϵ = 0.7) to
a more acceptable level (ϵ = 0.1), a modest increase
in cost demonstrates the potential to bring about sub-
stantial gains in equity. This emphasizes the importance
of considering equity as a vital factor alongside cost
considerations in decision-making processes.

2) The selection of the clustering method plays a crucial
role in shaping the effectiveness of supply chain oper-
ations, particularly in terms of inventory management
and control. Decision-makers should go beyond tradi-
tional clustering methods and embrace more advanced
techniques to fully capture the unique characteristics
of pharmaceuticals and vaccines. By doing so, they
can better understand the underlying patterns and
relationships within the supply chain, leading to more
informed decision-making and improved inventory
management practices. Expanding the range of clus-
tering tools beyond conventional approaches enables
decision-makers to leverage advanced methods that
can effectively handle the complexities and specific
requirements of pharmaceutical and vaccine supply
chain. This strategic approach empowers organizations
to optimize their inventory control strategies and
enhance overall supply chain performance.

3) In the context of HILP disasters, uncertainty assumes a
critical role. Decision-makers are strongly suggested to
incorporate uncertain characteristics into their analysis
to effectively capture the exogenous risks that pose
threats to their systems. It is essential to acknowledge
that HILP disasters are characterized by their infre-
quent occurrence and high impact, making them highly
unpredictable and uncertain events. By integrating
uncertainty into their analysis, decision-makers can
account for the inherent variability and unknown fac-
tors associated with these disasters. This enables them
to develop robust strategies, contingency plans, and
risk mitigation measures to enhance the resilience and
adaptability of their systems. Embracing uncertainty as
a fundamental component of decision-making allows
for a more comprehensive assessment of risks and aids
in developing proactive measures to safeguard critical
operations in the face of HILP disasters.

4) Decision-makers should be duly advised about the
interdependencies that exist within their systems. It is
crucial to recognize that a failure in one supplier’s
ability to provide certain pharmaceuticals can have
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FIGURE 5. The increased deficit observed across various PhCs and time intervals during both normal and disrupted conditions.

ripple effects, causing additional disruptions in the
procurement of other pharmaceuticals. These inter-
dependencies within the supply chain network can
arise due to various factors such as shared resources,
common logistics routes, or dependencies on specific
raw materials. Understanding these interdependencies
is vital for decision-makers to effectively assess and
manage risks.

VI. CONCLUSION
This paper presents a pharmaceutical supply chain planning
approach for both cold and non-cold pharmaceuticals during
an HILP disruption. An innovative mathematical optimiza-
tion framework addresses multiple perspectives, such as
expenses, service level, reliability, resiliency, and equity. The
study begins with an MINLP problem and utilizes clustering
methods to group pharmaceuticals and vaccines. Reformula-
tion techniques are then proposed to convert the non-convex
MINLP problem into an equivalent MILP formulation. The
developed JCC reformulation methods are highlighted for

their advantages, and the system’s functionality is evaluated
in terms of disruption absorption and cost-equity tradeoff.

The utilization of unsupervised learning algorithms in this
study provides a valuable advantage in effectively grouping
pharmaceuticals and vaccines. Unlike traditional grouping
methods that rely on decision-maker discretion, clustering
algorithms offer an automated and data-driven approach to
forming groups. Through the assessment of five different
algorithms, the Spectral Clustering (SC) method emerges as
the optimal choice to serve as input for the optimization
model. This selection is justified by the lower total cost it
achieves for the entire system, thereby enhancing inventory
management and control. Once the pharmaceuticals are
clustered, they are utilized as input for the stochastic model,
and optimal solutions are determined accordingly. In addi-
tion, the results demonstrate that the Boolean reformulation
approach significantly outperforms the traditional scenario-
based approach. The superiority of the Boolean approach
is evident in terms of accuracy, runtime, and tractability,
offering a more precise and efficient method for solving the
optimization problem.
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The proposed framework proves to be highly effective
in mitigating the effects of HILP disruptions, offering
equitable distribution of pharmaceuticals to patients in
affected hospitals and penalizing any deprivation of necessary
medications. The results highlight the success of the backup
suppliers strategy in alleviating the disruption’s impact.
Additionally, the ripple effect of the disruption on other
pharmaceuticals should be considered as another risk. The
sensitivity analysis on equity further illuminates the tradeoff
between cost and equity levels, providing valuable insights
for decision-making.

Future studies can expand on the present research by
incorporating additional resiliency strategies into the frame-
work. Moreover, exploring alternative equity metrics beyond
horizontal and vertical equity could lead to further analysis
and enhancement of the current approach. By building
upon these aspects, researchers can advance the understand-
ing and applicability of the framework in pharmaceutical
supply chain planning, contributing to more robust and
comprehensive solutions in the face of disruptions.
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