
Received 27 June 2024, accepted 24 July 2024, date of publication 29 July 2024, date of current version 7 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3435362

Efficient and Generalized Image-Based CNN
Algorithm for Multi-Class Malware Detection
YAJUN LIU , HONG FAN, JIANGUANG ZHAO, JIANFANG ZHANG, AND XINXIN YIN
Information Engineering College, Hebei University of Architecture, Zhangjiakou, Hebei 075000, China

Corresponding author: Yajun Liu (lyj2100@hebiace.edu.cn)

This work was supported in part by the Research on Data Acquisition and Integration Based on Deep Learning under Grant 2221008A,
in part by the Research on Data Acquisition and Integration of Tobacco Material Inspection under Grant ZY012022E001, in part by the
Non-Invasive Monitoring Research of Office Building Electrical Equipment Based on Machine Learning under Grant 2022CXTD09,
in part by the Science Research Project of Hebei Education Department under Grant QN2024148, and in part by the Deep Learning
Behavioral Recognition Fall Detection Research under Grant 2022CXTD04.

ABSTRACT With the popularity of electronic devices, the number of malware has increased dramatically,
posing a serious threat to the digital world. Accurately identifying malware has become a research focus.
However, there are many difficulties in the research, such as insufficient algorithm generalization ability,
unbalanced datasets, and long processing and identification times. To address these problems, this study
proposes a malware detection framework (VBDN) based on a convolutional neural network (CNN). The
framework incorporates data visualization, balanced adoption, data augmentation, and convolutional neural
network techniques to achieve over 90% accuracy in classifying malware on all four open-source datasets.
The experimental work has two other contributions: first, it not only focuses on the overall recognition effect
of the algorithm during the research process, but also on the recognition effect of each category with the help
of a confusionmatrix, which provides useful information for cybersecurity personnel, researchers, and others
to carry out subsequent targeted research. Secondly, the balanced approach adopted in this paper has the
following advantages: no need to construct a new dataset, consumes fewer hardware resources, automatically
evaluates the sampling weights, etc. Additionally, to enhance the generalization ability of the algorithm and
alleviate the overfitting problem, this paper employs data augmentation techniques to improve the adopted
method. By comparing with several state-of-the-art algorithms, it can be observed that the VBDN framework
proposed in this paper achieves the desired results in time with acceptable accuracy.

INDEX TERMS Malware detection, convolutional neural network (CNN), data visualization, balanced
adoption, data enhancement.

I. INTRODUCTION
With the popularity of computers, cell phones, tablets,
and other electronic devices, people’s lives are becoming
more and more convenient. Electronic devices and computer
networks have become an inseparable part of people’s daily
lives. With the popularity of these devices and technologies,
security issues have gradually emerged, especially the
widespread spread of malicious code, which has caused
major threats to the digital world. These threats include

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramakrishnan Srinivasan .

the loss of user files, malicious extortion, information
theft, telecommunication fraud, company shutdowns, and
other issues, causing significant concern among scholars,
enterprises, financial institutions, and governments.

The amount of malicious code has been increasing in
the long term. In early 2020, AV-Test [1] predicted that the
number of malware would reach 160 million samples that
year, reaching a new scale. SonicWall [2] reported a doubling
of cybersecurity risk from mid-2020 to 2021, with global
cybersecurity spending reaching twice as much by the end of
the year as it did in 2020. SonicWall Threat experts at Capture
Labs say global malware attacks reached 2.8 billion in the

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 104317

https://orcid.org/0000-0002-2698-9473
https://orcid.org/0000-0002-8224-4812

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

first half of 2022, an 11 percent increase over the same period
in 2021 [3]. According to Kaspersky [4], the number of global
mobile banking Trojan detections has increased significantly,
with more than 55,000 attacks in the second quarter of
2022 alone. According to Rising’s ‘‘2022 China Network
Security Report’’ [5], Rising’s ‘‘Cloud Security’’ system
intercepted a total of 73.55 million virus samples in 2022,
with 45.15 million new Trojans and 1,520,500 cell phone
virus samples, which makes the number of malicious codes
frightening and has caused considerable harm to economic
and social activities.

Malicious code attacks in 2022 were very numerous, some
of the more representative ones are: on January 19, 2022, the
International Committee of the Red Cross suffered a cyber
attack in which the data of more than 515,000 people were
written into. on January 19, 2022, Global Affairs Canada
(GAC) faced a network outage and was unable to operate
normally after an attack on its systems. on February 8, 2022,
international telecommunications The Portuguese company
of giant Vodafone said that it suffered a malicious attack
that led to the complete disruption of its 4G/5G, fixed-line,
and TV networks, which caused inconvenience and even
disruption to millions of users in Portugal. On November
2, 2022, Jeppesen experienced an attack that forced the
disruption of some of its flights, which was released after the
attack.

In short, with the popularity of computer hardware devices
and technology, the number of malicious codes has been
growing rapidly for a long time in the past and will continue
to grow in the foreseeable future. As the number of malicious
codes increases dramatically, it poses a significant security
threat to organizations and individuals. Malicious code
attacks are frequent and threaten governments, enterprises,
healthcare, finance, education, and other fields; ransomware,
data leaks, hacking, and other attacks are continuous and
far-reaching, seriously affecting the construction of critical
information infrastructure and the economic and livelihood
of countries. Network security research is working hard to
defend against malware threats, while malware developers
are evading these defense techniques. Traditional static
and dynamic analysis methods have disadvantages such
as low recognition efficiency, time-consuming, and large
memory consumption. It is also difficult to circumvent
these techniques by training traditional machine learning
classification algorithms based on manual feature training,
and feature engineering requires more human and material
resources to mine potential features. The world is facing a
great challenge for countries, enterprises, and finance due to
the frequent incidents caused by malicious code spread on the
Internet. How to accurately identify malicious codes with the
times is not only of theoretical research significance but also
of very important practical value.

Themain contributions of this paper are highlighted below:
(1) This paper is based on the proposed VBDN framework

which provides efficient detection and identification of
malware.

(2) Focusing on the dataset imbalance problem, balanced
sampling, and data augmentation techniques are used to
ensure the generalization ability of the algorithm.

(3) More satisfactory experimental results are achieved in
the multi-classification task, and the results do not only focus
on the accuracy of the final algorithm for all data recognition
but also focus on the recognition effect of each class of
malware, which is analyzed and believed to be instructive for
cybersecurity researchers and related scholars.

The rest of this paper is organized as follows: In Section II
related work is presented on related malicious code detection
and how it differs from our work; in Section III malicious
code visualization, balanced adoption, GLCM, and CNN
are introduced; in Section IV data enhancement, CNN
architecture, and the VBDN framework are introduced; and
in Section V the dataset, evaluation metrics, and so on
are introduced, and based on this, we validate the VBDN
framework effectiveness of the VBDN framework. Finally,
we summarize our work and make an outlook for the future.

II. RELATED WORK
Malicious code refers to programming code or scripts
designed to corrupt and interrupt normal operations in order
to gain unauthorized access to a system. These codes are
used for purposes such as stealing data, deleting files,
and more. Common operating systems such as Windows,
Android, and iOS, as well as applications such as booking,
hotel management, and student management, are subject to
malicious code attacks.

After the first public virus Brain appeared in 1986, Until
now, malicious code identification and development have
been in a continuous race to catch up with each other. To date,
common malicious codes include viruses, worms, Trojan
horses, ransomware, and spyware. The traditional methods
for identifying this malware include signature identification;
behavioral analysis; heuristic analysis; and sandbox analysis.

Signature recognition: This method analyzes and extracts
features from known malware samples, saves these features
into a database, and when the features of a new file are highly
consistent with the features of a certain type of malware
in the database, the file is judged to be malware, and the
set of samples in the database is updated. For example,
Yang et al. [6] used signature recognition to analyzemalicious
apps in Android. weight Zhang et al. [7] proposed the
DAMBAmodel to compare with signature-based recognition
Mcafee [8] in terms of time and accuracy and achieved
better results. Behavior analysis: This method analyzes
the behavior of software by monitoring its operations on
files, networks, etc. to determine whether it is malware.
It’s commonly used to detect unknown malware and the
misclassification is more serious. For example, Rosli et al. [9]
use unsupervised learning K-means algorithm for clustering
analysis of malware behavior. Ding et al. [10] perform
behavior analysis on a control flow-based approach and
use algorithms such as KNN and SVM for classification.
Heuristic analysis: This method will analyze the dynamic

104318 VOLUME 12, 2024

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

and static features of the software, and determine whether
the software is malware by evaluating the behavior and
core features of the software. It can be used to detect some
unknown malware but has the disadvantage of taking a long
time and requiring a lot of computational resources. For
example, the SigMal [11] framework is a heuristic that uses
PE structure information to optimize feature-based signal
processing and thus similarity detection of malware. Sandbox
analysis: This method is used to identify malware by running
software in a secure environment, such as virtual machines,
containers, etc. Similar to behavioral analysis, malware is
identified by observing its behavior and activities, but it
also has the disadvantage of requiring a large amount of
computational resources and time.Moreover, as time evolves,
the emergence of methods such as anti-virtualization and
hook evasion may allow malware to bypass such detection
methods, and related simulations are complementing their
drawbacks [12], [13].

Earlier malware was mostly written by simple code,
so traditional methods of identification were sufficient to
cope with it. Nowadays, most malware is designed to
execute based on the kernel, which makes identification
much more difficult, and traditional methods cannot meet the
requirements of malware detection [14]. The emergence of
technologies such as machine learning and deep learning [15]
provides a feasible solution to the problem, and their methods
are more efficient.

Earlier classification of malware generally used n-gram
and other extracted text feature extraction, which in turn
combined with machine learning algorithms to complete
the classification task [16], [17], or used CNN to classify
features extracted from malware [18]. In contrast, today
malware shows family features when found, and some of
them execute in the kernel, which makes it difficult to
detect malware and also more challenging to classify it.
The current use of deep learning to identify and classify
viruses from various operating systems. Kim et al. [19]
used strings, APIs, and permissions for feature extraction
of Android malware, trained multi-modal deep learning, and
evaluated 41,260.DroidDetector [20] correlated features from
static and dynamic analysis using deep learning techniques to
analyze malware for Android. Huang et al. [21] use software
visualization combinedwith convolutional neural networks in
visualization, use sandboxes to analyze samples dynamically
and use designed algorithms to convert them into visual
images, and then train neural networks. Cui et al. [22] convert
executable files of malicious code into grayscale images, and
use Convolutional neural networks and intelligent algorithms
were used to identify the malicious code, and the problem
of data set imbalance was noticed during the identification
process. Hemalatha et al. [23] used data visualization and
the DenseNet algorithm to complete the classification task
and used a reweighted class balance loss function in the
classification layer, which in turn improved the performance
of the algorithm.

Research in the last two years has demonstrated the wide
range of applications of deep learning in the field of malware
detection, from Internet of Things (IoT) security [24], [25] to
malware detection under adversarial attacks [26], [27], [28],
as well as the use of multimodal deep learning in Android
malware identification [29], [30] to malware identification on
Windows platforms. Specifically, the DCEL model proposed
by Xu et al. [29] improves the detection accuracy of
Android malware through classifier fusion. the system devel-
oped by Sathyaraj et al. [30] effectively detects industrial
environment with QR code based attacks.Poulomi et al.
utilised the ExtraTreeClassifier() function module to select
relevant features for binary classification, which in turn
accomplished malware identification [31]. Maniriho et al.
introduced API- MalDetect, an automatedWindows malware
detection framework based on API calls and deep learning
techniques [32]. In addition, a review conducted by Gopinath
and Sethuraman evaluated the application of deep learning in
various malware detection scenarios, including the Windows
platform [15]. In addition, Twardawa et al. [33] and
Sadhwani et al. [34] developed efficient threat detection and
monitoring systems.The dynamic analysis data preprocessing
technique explored by Kim and Kim ([35] provides a new
approach for deep learningmodels to process time series data.

These advances not only improve the detection accuracy
but also enhance the ability of the models in dealing with
emerging threats. However, it can be observed that most
of these research methods, which are specific to a certain
system and platform, are very restrictive and cannot be
generalized. In view of this, this research adopts malicious
code visualisation to achieve maximum uniformity for
subsequent extension.

III. ALGORITHM AND DESIGN
This section introduces malware visualization, balanced
sampling, GLCM, and neural networks.

A. MALWARE VISUALIZATION
Malicious code is generally an executable binary file on a
computer, divided into 8 bits, each assumed to be b7 to b0
from high to low, and converted to decimal using Equation 1,
corresponding to a value in the grayscale image [0, 255].

D =

7∑
i=0

(bi · 2i) (1)

In Equation 1, D represents the final decimal value
obtained from the binary digits. bi represents the binary digit
(either 0 or 1) at position i. i is the index of the binary digit,
ranging from 0 to 7 in this case. 2i represents 2 raised to the
power of i, which is the positional value of the binary digit bi.

The process of convertingmalicious code to image features
is illustrated in Figure 1.

Similar to extracting grayscale map features from mali-
cious code, the malicious code is feature extracted from

VOLUME 12, 2024 104319

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 1. Malware converted to grayscale feature map.

different dimensions and mapped to RGB three channels
to obtain the characteristic map, as shown in Figure 2.
Commonly used methods for feature extraction of malware
in different dimensions include PE view, assembly view,
byte view, character information, byte stream information,
PE structure letter, etc.

B. BALANCED SAMPLING
In the following sampling diagram, the left side represents
the original dataset, and the right side represents the balanced
dataset obtained after processing. As shown in Figure 3,
balancing the number of sample categories can be achieved
through both up-sampling and down-sampling methods.
However, its drawbacks are also quite evident. Upsampling
is achieved through replication to achieve a balance in
the number of samples, which makes it very easy for the
algorithm to overfit in subsequent processing; Downsampling
refers to deleting samples with a large number of samples,
which may cause information loss. Moreover, these two
methods require the additional creation of new balanced
datasets, which consumes hardware resources.

C. GLCM AND NEURAL NETWORKS
The commonly used methods for feature extraction
from malicious code feature maps include Gray Level
Co-occurrence Matrix (GLCM) and deep learning.

1) GLCM
The principle of the core of the GLCM is illustrated in
Equation 2.

P(i, j|d, θ) = {(x, y)|f (x, y) = i, f (x + dx, y+ dy)

= j; x, y = 0, 1, . . . ,N − 1} (2)

In Equation 2, P(i, j|d, θ) represents the joint probability
of pixel pairs having gray levels i and j at a distance d and
direction θ , where f (x, y) is the gray level of the image at
coordinates (x, y). i is the gray level of a pixel in the image, j
is the gray level of a pixel that is at a distance d and direction
θ from a pixel with gray level i. (x, y) are the coordinates of
a pixel in the image. dx and dy are the offsets in the x and
y directions respectively, depending on the distance d and
direction θ . N is the size of the image, assuming the image is
an N × N square image.

Using Equation 2, we obtain the gray-level co-occurrence
matrix of malware feature images. Based on this, this paper

utilizes six texture features, namely contrast, dissimilarity,
homogeneity, angular second moment, correlation, and
energy, to extract gray-level co-occurrence matrix features
and combines them with traditional machine learning algo-
rithms to complete multiple classification tasks.

2) NEURAL NETWORK
A neural network is a computational algorithm that mimics
biology and is now widely used in machine learning and
deep learning tasks. Neural networks consist of multiple
layers, each layer contains many neurons that are connected
by weights to achieve information transfer and processing
between inputs and outputs. The composition formula is
shown in Equation 3.

a = g

(
n∑
i=1

wixi + b

)
(3)

where a denotes the output, g(·) denotes the activation
function (e.g., ReLU, Sigmoid, or Tanh), wi denotes the
weight of the i-th input signal, xi denotes the i-th input signal,
and b denotes the bias.

In the training process, the input data is first passed to the
neural network and the output of the network is calculated.
Then, the loss function (e.g., mean square error or cross-
entropy loss) is calculated by comparing the network output
with the actual target value. Next, the gradient of the loss
function with respect to the weights is calculated using a
backpropagation algorithm and the weights are updated using
a gradient descent method to minimize the loss function.

Neural networks are now used in several fields such as
image classification, speech recognition, natural language
processing, and reinforcement learning. With the develop-
ment of neural network structures, such as CNN, Recurrent
Neural Networks (RNN), and Transformers, neural networks
have achieved significant performance improvements in
various fields, and this paper will also use CNN for feature
extraction of feature maps of malicious codes, the details of
which are described in detail in subsection IV-C.

IV. PROPOSED ALGORITHM
As described in Section V-A, four datasets with grayscale
and RGB color image features and varying image sizes
are used in this study. To facilitate uniform learning of
the algorithm, the neural network structure in Section IV-C
is designed for three channels, allowing the algorithm to

104320 VOLUME 12, 2024

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 2. Malware converted to RGB feature map.

FIGURE 3. Up and down sampling.

perform feature extraction for grayscale images. To address
the issue of algorithm overfitting due to repeated sampling
of small samples in Section IV-B, the data enhancement
technique in Section IV-A is introduced.

A. DATA ENHANCEMENT
The data enhancement technique used in this article is
implemented using the compose method in Python. The core
data enhancement process is shown in Figure 4.

B. BALANCEDDATASETSAMPLER ALGORITHM
OPTIMIZATION
When dealing with category-imbalanced datasets, four
common methods are SMOTE (Synthetic Minority Over-
sampling Technique), ADASYN (Adaptive Synthetic
Sampling Approach), SMOTE-IPF (Synthetic Minority
Over-sampling Technique with the Inverse Probability of
Failure), and BalancedDatasetSampler. Unlike SMOTE,
ADASYN, and SMOTE-IPF, which generate new samples,
the BalancedDatasetSampler algorithm balances the dataset
by weighted sampling. It samples according to the sample
weights of each category, allowing the model to focus more
on the minority class samples, thus enhancing the ability
to learn from them. This method works directly during
the data loading phase and adjusts the sampling of the
samples. It also works directly on the dataset indexing,
saving hardware space. However, since the algorithm does
not generate new samples, data enhancement techniques are
introduced to mitigate overfitting and improve generalization
capability.

In this article, the BalancedDatasetSampler algorithm
based on PyTorch is used, and the algorithm diagram is shown

in Figure 5. The implementation of the code can be accessed
through the link at the end of the article.

As shown in Figure 5, the sampling implemented by the
BalancedDatasetSampler has the same features as upsam-
pling. However, when using the Python implementation,
the index implementation of the returned data avoids
creating a new balanced dataset. Additionally, due to the
presence of oversampling, the data enhancement technique in
Section IV-A is introduced during feature extraction to reduce
algorithm overfitting and enhance generalization capability.

C. STRUCTURE OF CNN
Neural networks have achieved excellent results in recent
years, especially in feature extraction and recognition of
graphical images. In this paper, CNN is used for feature
extraction of feature maps of malicious codes. Its core
structure is shown in Figure 6.

The network structure is a convolutional neural network
composed of multiple layers, including convolutional layers,
pooling layers, linear layers, and activation functions. The
input data is 3-channel image data. After passing through the
first convolution layer, the number of channels becomes 32,
the convolution core size used is 3 × 3, and the step size is
1. Next, it passes through the pooling layer, with a size of
2×2 and a step size of 2, to perform dimensionality reduction.
The number of convolutional channels in the second layer
becomes 64, and a 3×3 convolutional core is used again, with
a step size of 1. Continue pooling, with a size of 2 × 2 and a
step size of 2. The number of channels in the third layer of the
convolutional layer becomes 128, and the convolutional core
of 3×3 is also used with a step size of 1. Pool again, 2×2 in
size, in step 2. After that, perform global average pooling, and

VOLUME 12, 2024 104321

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 4. Malicious code feature map data enhancement steps.

FIGURE 5. BalancedDatasetSampler algorithm.

the output size is 28 × 28. Finally, two linear layers are used
for classification, with the output size of the first linear layer
being 64 and the output size of the second linear layer being
a number, which is the number of categories classified. The
activation function uses the ReLU function.

D. VBDN
Based on code visualization, balanced sampling, data
enhancement, and neural network techniques, the core
framework for malicious code (VBDN) detection proposed
in this study is shown in Figure 7.
The framework enables the visualization of malicious

codes, as well as the determination of whether the dataset
is balanced, and imbalance calls ImbalancedDatasetSampler
to complete the balancing process of the dataset. To improve
the generalization ability of the algorithm, data enhancement
techniques are introduced, while the heat map of the
confusion matrix is used to analyze the identification of
each category in the classification task. Understanding the
algorithm learning to better help will technicians focus on
those malicious codes that are difficult to identify.

In terms of hyperparameter tuning, we use cross-validation
and grid search to find the best hyperparameter combinations.
We tuned each hyperparameter within a certain range, and
chose the hyperparameter combination that achieves the best

TABLE 1. Dataset statistics.

performance on the validation set.Batch Size: We set the
batch size to 64 for training and 32 for testing.Epochs: We
chose to train 200 epochs in order to adequately train the
algorithm and observe its convergence.Learning Rate: We set
the learning rate to 0.01, which is a common initial learning
rate. We found through experiments that this learning rate
can balance the convergence speed and performance of the
algorithm to a certain extent.Momentum: We choose the
momentum parameter of SGD to be 0.5, which can help
the algorithm to converge to a better local optimal solution
faster during the training process. Random Seed: We set
the random seed to 50 to ensure the repeatability of the
experiment and the stability of the results.

V. EXPERIMENTAL EVALUATION
A. DATASETS
In this article, four datasets (Malimg dataset, Big2015 dataset,
Malevis dataset, and Blended dataset) are used to evaluate the
algorithm.

The histograms of the test sets of the datasets are shown in
Figure 8.

It can be found that the Malevis dataset is a balanced
dataset, but during the experiment, we found that the other
class is not balanced on the test set, and we conducted the
experiment again after doing the corresponding processing.
The other three data sets are non-balanced data sets. In this
article, the algorithm in Section IV-B is used for balancing,
and after data enhancement, algorithm training and evaluation
are conducted.

Statistics were collected from the training and test sets of
the four datasets, as shown in Table 1.

104322 VOLUME 12, 2024

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 6. Malicious code feature extraction and classification.

FIGURE 7. Malicious code detection framework(VBDN).

Since there is no test set for the Big2015 dataset,
we divided 30% of the original dataset to use as a test set.

Further analysis of the datasets revealed that Malevis was
a balanced dataset on the training set, and the other category
appeared as 1482 samples on the test set, while the other
category was roughly in the range of 120-150 samples, so the
other category was correlated.

The Blended dataset is a combination of the Malimg
and Malevis datasets. The dataset uses all the data from
Malevis and 5 categories fromMalimg to form a dataset with
31 categories, which has more categories and both grayscale
and RGB color images in the dataset, making classification
more challenging.

B. EVALUATION CRITERION
In machine learning and deep learning classification tasks,
common metrics used to evaluate algorithms include Accu-
racy (Acc), Precision (Pr), Recall (Re), and F1-score (F1).
Accuracy, Recall, and F1-score are commonly used in the
case of unbalanced categories, but in this paper, the data set is
balanced after processing, so using accuracy can really reflect
the effect of the algorithm. The formula for calculating the
accuracy is shown in Equation 4.

Acc =
TP+ TN

TP+ FP+ TN + FN
(4)

where TP denotes the number of correctly classified positive
cases; FP denotes the number of incorrectly classified
positive cases; TN denotes the number of correctly classified
negative cases; and FN denotes the number of incorrectly
classified negative cases.

Additionally, to better demonstrate the improvement
effect of the models, we calculated the time improvement

percentage for each model on different datasets, as shown in
Equation 5.

Improvement =

(
Tmodel − TConvNet

Tmodel

)
× 100% (5)

where Tmodel represents the testing time (in seconds) of
a certain model on a specific dataset, TConvNet represents
the testing time (in seconds) of the ConvNet model on the
same dataset, and Improvement represents the percentage
improvement in time.

C. EXPERIMENT AND ANALYSIS
Hardware used in this study includes: Intel(R) Core(TM) i5-
10600KF, 32GB RAM, 3060 graphics card, etc. Software
includes:Python 3.10, PyTorch, cuDNN, Jupyter Notebook,
etc.

In Section III-C.1 GLCM is used for feature extraction
of malicious code feature maps and combined with machine
learning algorithms to accomplish the classification task. The
CNN network structure in subsection IV-C and the malicious
code detection framework(VBDN) in subsection IV-D are
used in subsection V-C.2 to complete the feature extraction
and classification tasks.

1) ANALYSIS OF GLCM EXPERIMENTAL RESULTS
Based on Section III-C.1, we extracted the feature map
dataset of malicious code by using BalancedDatasetSampler
in Section IV-B after balancing the dataset extracted six
texture characteristics, namely contrast, dissimilarity, homo-
geneity, angular second moment, correlation, and energy.
And Logistic Regression(LR), Naive Bayes(NB), K-Nearest
Neighbor(KNN), Decision Tree(DT), Random Forest(RF),
Gradient Boosting Decision Tree(GBDT), Extreme Gradient

VOLUME 12, 2024 104323

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 8. Training set sample data statistics.

Boosting Decision Tree (XGBoost), Light Gradient Boosting
Machine(LightGBM), Support Vector Machine(SVM), and
Multilayer Perceptron Classifier(MLPC) were used to com-
plete the classification task, and the experimental structure
was obtained as shown in Table 2.

The importance of the six features in different models was
further analysed and feature_importance was used to view
the importance of different features in the tree models and
it was found that the main features affecting the tree models
(RF, DT, GBDT,XGBoost) were: ‘contrast’ and ‘correlation’.
The features of the non-tree models were visualised using
the SHAP library and it was found that the main features
affecting the features of the non-tree models were ‘contrast’
and ‘dissimilarity’. It can be found that contrast plays a very
big role in the model, which means that the difference in grey
level of malicious code is more pronounced.

After comparing the data in Table 2, it is found that DT, RF,
GBDT, XGBoost, and LightGBM achieve over 90% accuracy
on the Malimg and Big2015 datasets, and perform relatively
poorly on the Malevis and Blende datasets. The traditional

TABLE 2. Classification results based on GLCM features.

machine learning algorithms of LR, NB, KNN, SVM, and
MLPC perform poorly overall, and the individual algorithms
perform similarly to the accuracy of random guesses.

2) ANALYSIS OF CNN EXPERIMENTAL RESULTS
The CNN network algorithm in subsection IV-C and the
VBDN framework in subsection IV-D are used to complete
the experiments on four datasets.

In order to visualize more how well the algorithm predicts
each category, here we use accuracy as a metric and also
use a confusion matrix to see how well each category is

104324 VOLUME 12, 2024

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 9. Experimental results for the Malimg dataset.

predicted.In this confusion matrix, the rows represent the
true categories, and the columns represent the predicted
categories. The diagonal line represents the percentage
of correct categorization by the algorithm. Through the
confusion matrix and its visualization, it is possible to

intuitively find out which categories the algorithm is prone
to confusion, which facilitates a deeper understanding of
the algorithm’s performance and shortcomings, and at
the same time provides some guidance for cybersecurity
researchers.

VOLUME 12, 2024 104325

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 10. Experimental results for the Big2015 dataset.

Figure 9 shows the results of the algorithm training
evaluation for the Malimg dataset. The accuracy reached
94.22%, which is an improvement of 1.85% compared to
the best-performing XGBoost algorithm in Table 2. A high
similarity between Autorun.K and Yuner.A categories was

also found, and the Swizzor.gen!E categorywas not identified
very well.

Figure 10 shows the results of the algorithm training
evaluation for the Big2015 dataset. Its accuracy reaches
96.19%, and the algorithm’s overall accuracy is 1.09% higher

104326 VOLUME 12, 2024

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 11. Experimental results for the malevis dataset(with other categories).

than that of the random forest with the best recognition effect
in Table 2. At the same time, it can be found that the algorithm
is relatively less effective in recognizing viruses of Simda
class, with an accuracy of only 83.9%.

Figure 11 contains the Other category, whose accuracy
reaches the highest 83.22%, and the heat map shows that
the accuracy of the Other category is only 58.1% on
this Malevis dataset. The analysis of the dataset reveals

VOLUME 12, 2024 104327

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 12. Experimental results for the malevis dataset(without other categories).

two possible reasons for the poor results: 1. The training
sample of the ‘Other’ category in the training set has
only 350 data points, while there are 1482 in the test set,
so the algorithm cannot learn the features of this category
well; 2. The software features in the ‘Other’ category are

more complex and have similarities with other malicious
codes.

After removing the ‘Other’ category, the algorithm was
retrained to obtain Figure 12, which shows a significant
improvement in the Malevis dataset, with an accuracy of

104328 VOLUME 12, 2024

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

FIGURE 13. Experimental results for the blend dataset.

96.76%. This is 7.64% higher than the best-performing
random forest in Table 2.

Figure 13 shows the results of the algorithm training
evaluation for the Blend dataset. Its accuracy reaches 91.39%,
and the overall accuracy of the algorithm is 1.69% higher

compared to the random forest with the best recognition in
Table 2. And it is found that the recognition of four categories,
Agent, Expiro, Neshta, and Sality, is poor.

Through the experimental comparison of the four datasets
using machine learning and deep learning algorithms, it can

VOLUME 12, 2024 104329

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

TABLE 3. Deep learning algorithm comparisons.

be found that the random forest algorithm performs better
than the traditional machine learning algorithms (except
on the Malimg dataset where it is slightly weaker than
GBDT and XGBoost). The overall accuracy of the clas-
sification tasks done with CNN is above 90%, and the
accuracy is improved by 1 to 2 percentage points compared
with traditional machine learning algorithms. In particu-
lar, the accuracy on the Malevis dataset was improved
by 7.64%.

In order to further validate the effectiveness of the
model, here the current advanced deep learning models
(VGG16, AlexNet, DenseNet-121, MobileNetV2, ResNeXt-
50 (32 × 4d), ShuffleNet V2 × 1.0) are introduced to
complete the classification task and compared by three
dimensions: accuracy, time and improvement. Due to the
different sizes of different models, in order to uniformly test
the running time of the models, here we then modify the
batc_size to 8 uniformly, and test the four datasets to obtain
Table 3.

Through Table 3, we can find that we are the design of
the neural network structure (ConvNet) compared with the
current state-of-the-art often deep learning models, it can
be found that in terms of accuracy is not weaker than the
current more advanced models (only slightly weaker than the
Malimg, and Big2015 dataset DenseNet-121), but the time
spent on top of the time spent is significantly reduced, and
can be applied to the just-in-time tasks.

As seen in Table 3, our model on the Malimg dataset
uses 89.15% shorter time compared to VGG16, and still
24.18% shorter compared to ShuffleNet V2 × 1.0, which is
the shortest time to use. On the Big2015 dataset, our model
is 45.65% shorter than DenseNet-121 and 39.11% better
than the shortest-used AlexNet model. The Malevis dataset
is 82.00% shorter than the longest-used VGG16 and 11.92%
better than the shortest-used AlexNet. On the Blende dataset,
there was an 82.69% improvement compared to the longest
used model, VGG6, and a 9.42% improvement compared to
the shortest-used AlexNet.

An in-depth analysis of the reasons for this reveals that
the network (ConvNet) used in this paper is simpler and has
fewer layers than the current state-of-the-art deep learning
models, so the training time is shorter. And due to the
simple structure of the network, it has better performance in
tasks that require timely processing with limited hardware
resources. How to test (ConvNet) alone can be adjusted
batch_size parameter to 64, I believe the time will be further
reduced.

VI. CONCLUSION AND OUTLOOKS
In this paper, we optimize the BalancedDatasetSampler
algorithm using data augmentation techniques and propose
a malicious code detection framework (VBDN) based
on malicious code visualization, balanced sampling, data
enhancement, and neural network techniques. The framework
is applied to four malicious code detection datasets that
are currently open-source, and all of them achieve an
accuracy of over 90%. It is also compared with traditional
machine learning classification algorithms, and the higher
accuracy rate verifies the superiority of VBDN. The excellent
experimental results obtained on multiple datasets verify its
robustness. Meanwhile, we further compare with advanced
deep learningmodels, and we can find that the neural network
structure we designed has a great improvement in training and
recognition speed with acceptable accuracy, and we believe
that we can achieve desirable results in some real-time tasks.

While verifying the effectiveness of VBDN, we also
use the confusion matrix to identify some hard-to-detect
malware, which we believe is of significant research interest
for cybersecurity experts and researchers.

In the future, we will conduct deeper research on the virus
types that are not well identified by the proposed malicious
code detection framework and contribute to building a more
secure cyberspace.

DATA AND CODE AVAILABILITY
BalancedDataset Sample:
https://github.com/ufoym/imbalanced-
dataset-sampler/archive/master.zip

Malimg dataset:
https://www.kaggle.com/datasets/keerthichee-
purupalli/malimg-dataset9010

Big2015 dataset:
https://www.kaggle.com/competitions/malware-
classification/data

Malevis dataset:
https://web.cs.hacettepe.edu.tr/ selman/
malevis/

Blend Dataset:
https://www.kaggle.com/datasets/gauravpendhar-
kar/blended-malware-image-dataset

REFERENCES
[1] (2019). Av-Test: Security Report 2019/2020. [Online]. Available:

https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_
Security_Report_2019-2020.pdf

104330 VOLUME 12, 2024

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

[2] SonicWall: 2022 Sonicwall Cyber Threat Report. Accessed: 2022.
[Online]. Available: https://www.sonicwall.com/resources/white-
papers/2022-sonicwall-cyber-threat-report

[3] SonicWall: 2022 Sonicwall Cyber Threat Report. Accessed: 2022.
[Online]. Available: https://www.sonicwall.com/2022-cyber-threat-
report/sonicwall-cyberthreat-report-thank-you/

[4] (2022). Kaspersky: A Look Back on the Year 2022 and What to
Expect in 2023. Accessed: 2022. [Online]. Available: https://securelist.
com/crimeware-financial-cyberthreats-2023/108005/

[5] (2022). RISING: 2022 China Network Security Report. Accessed: 2022.
[Online]. Available: https://www.wenjuan.com/s/FvYNrmw/

[6] X. Yang, D. Lo, L. Li, X. Xia, T. F. Bissyandé, and J. Klein,
‘‘Characterizing malicious Android apps by mining topic-specific data
flow signatures,’’ Inf. Softw. Technol., vol. 90, pp. 27–39, Oct. 2017, doi:
10.1016/j.infsof.2017.04.007.

[7] W. Zhang, H. Wang, H. He, and P. Liu, ‘‘DAMBA: Detecting Android
malware by ORGB analysis,’’ IEEE Trans. Rel., vol. 69, no. 1, pp. 55–69,
Mar. 2020, doi: 10.1109/TR.2019.2924677.

[8] McAfee: Mcafee Mobile Security. Accessed: 2018. [Online]. Available:
https://pccw.mcafeemobilesecurity.com/

[9] N. A. Rosli, W. Yassin, F. M. A, and S. Rahayu, ‘‘Clustering analysis for
malware behavior detection using registry data,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 10, no. 12, 2019, doi: 10.14569/ijacsa.2019.0101213.

[10] Y. Ding, W. Dai, S. Yan, and Y. Zhang, ‘‘Control flow-based opcode
behavior analysis for malware detection,’’ Comput. Secur., vol. 44,
pp. 65–74, Jul. 2014, doi: 10.1016/j.cose.2014.04.003.

[11] D. Kirat, L. Nataraj, G. Vigna, and B. S. Manjunath, ‘‘SigMal: A static
signal processing based malware triage,’’ in Proc. 29th Annu. Comput.
Secur. Appl. Conf., Dec. 2013, pp. 89–98, doi: 10.1145/2523649.2523682.

[12] V. Vouvoutsis, F. Casino, and C. Patsakis, ‘‘On the effectiveness of
binary emulation in malware classification,’’ J. Inf. Secur. Appl., vol. 68,
Aug. 2022, Art. no. 103258, doi: 10.1016/j.jisa.2022.103258.

[13] S. Liu, P. Feng, S.Wang, K. Sun, and J. Cao, ‘‘Enhancing malware analysis
sandboxes with emulated user behavior,’’ Comput. Secur., vol. 115,
Apr. 2022, Art. no. 102613, doi: 10.1016/j.cose.2022.102613.

[14] E. Gandotra, D. Bansal, and S. Sofat, ‘‘Malware analysis and classifi-
cation: A survey,’’ J. Inf. Secur., vol. 5, no. 2, pp. 56–64, 2014, doi:
10.4236/jis.2014.52006.

[15] G. Gopinath and S. C. Sethuraman, ‘‘A comprehensive survey on deep
learning based malware detection techniques,’’ Comput. Sci. Rev., vol. 47,
Feb. 2023, Art. no. 100529, doi: 10.1016/j.cosrev.2022.100529.

[16] Y.-T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M. Chen, ‘‘Malicious
Web content detection by machine learning,’’ Expert Syst. Appl., vol. 37,
no. 1, pp. 55–60, Jan. 2010, doi: 10.1016/j.eswa.2009.05.023.

[17] Y. Lai and Z. Liu, ‘‘Unknown malicious code detection based on
Bayesian,’’ Proc. Eng., vol. 15, pp. 3836–3842, Jan. 2011, doi:
10.1016/j.proeng.2011.08.718.

[18] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, ‘‘Image-
based malware classification using ensemble of CNN architectures
(IMCEC),’’ Comput. Secur., vol. 92, May 2020, Art. no. 101748, doi:
10.1016/j.cose.2020.101748.

[19] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, ‘‘A multimodal deep
learning method for Android malware detection using various features,’’
IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 773–788,Mar. 2019,
doi: 10.1109/TIFS.2018.2866319.

[20] Z. Yuan, Y. Lu, and Y. Xue, ‘‘Droiddetector: Android malware characteri-
zation and detection using deep learning,’’ Tsinghua Sci. Technol., vol. 21,
no. 1, pp. 114–123, Feb. 2016, doi: 10.1109/TST.2016.7399288.

[21] X.Huang, L.Ma,W.Yang, andY. Zhong, ‘‘Amethod for windowsmalware
detection based on deep learning,’’ J. Signal Process. Syst., vol. 93,
nos. 2–3, pp. 265–273, Mar. 2021, doi: 10.1007/s11265-020-01588-1.

[22] Z. Cui, L. Du, P. Wang, X. Cai, and W. Zhang, ‘‘Malicious code detection
based on CNNs and multi-objective algorithm,’’ J. Parallel Distrib.
Comput., vol. 129, pp. 50–58, Jul. 2019, doi: 10.1016/j.jpdc.2019.03.010.

[23] J. Hemalatha, S. Roseline, S. Geetha, S. Kadry, and R. Damaševičius, ‘‘An
efficient DenseNet-based deep learning model for malware detection,’’
Entropy, vol. 23, no. 3, p. 344, Mar. 2021, doi: 10.3390/e23030344.

[24] S. Abbas, S. Alsubai, S. Ojo, G. A. Sampedro, A. Almadhor, A. A. Hejaili,
and I. Bouazzi, ‘‘An efficient deep recurrent neural network for detection
of cyberattacks in realistic IoT environment,’’ J. Supercomput., vol. 80,
no. 10, pp. 13557–13575, Jul. 2024, doi: 10.1007/s11227-024-05993-2.

[25] H. H. Ali, J. R. Naif, and W. R. Humood, ‘‘Deep learning algorithms
for IoT security (survey),’’ AIP Conf. Proc., vol. 2885, no. 1, 2024,
Art. no. 060002, doi: 10.1063/5.0181698.

[26] H. Li, G. Xu, L.Wang, X. Xiao, X. Luo, G. Xu, andH.Wang, ‘‘MalCertain:
Enhancing deep neural network based Android malware detection by
tackling prediction uncertainty,’’ in Proc. IEEE/ACM 46th Int. Conf. Softw.
Eng., Apr. 2024, p. 934.

[27] R. Chaganti, V. Ravi, and T. D. Pham, ‘‘A multi-view feature
fusion approach for effective malware classification using deep learn-
ing,’’ J. Inf. Secur. Appl., vol. 72, Feb. 2023, Art. no. 103402, doi:
10.1016/j.jisa.2022.103402.

[28] Y. Zhang, J. Jiang, C. Yi, H. Li, S. Min, R. Zuo, Z. An, and
Y. Yu, ‘‘A robust CNN for malware classification against executable
adversarial attack,’’ Electronics, vol. 13, no. 5, p. 989, Mar. 2024, doi:
10.3390/electronics13050989.

[29] X. Xu, S. Jiang, J. Zhao, and X. Wang, ‘‘DCEL: Classifier fusion model
for Android malware detection,’’ J. Syst. Eng. Electron., vol. 35, no. 1,
pp. 163–177, Feb. 2024, doi: 10.23919/jsee.2024.000018.

[30] P. Sathyaraj, A. S. Kumar, R. Sabitha, R. Dhanalakshmi, T. Chandrasekar,
and S. Lalitha, ‘‘Efficient detection of QR code image-based attacks
in industries through lightweight deep learning models and monarch
butterfly optimization algorithm,’’ in Industry Applications of Thrust
Manufacturing: Convergence With Real-Time Data and AI. Hershey, PA,
USA: IGI Global, 2024, pp. 280–313, doi: 10.4018/979-8-3693-4276-
3.ch012.

[31] P. Deb, N. Kar, N. Das, and V. Datta, ‘‘Detecting malware in windows
environment using machine learning,’’ in Proc. Int. Conf. Commun.,
Electron. Digit. Technol.Cham, Switzerland: Springer, 2023, pp. 117–128,
doi: 10.1007/978-981-99-1699-3_7.

[32] P. Maniriho, A. N. Mahmood, and M. J. M. Chowdhury, ‘‘API-MalDetect:
Automated malware detection framework for windows based on API calls
and deep learning techniques,’’ J. Netw. Comput. Appl., vol. 218, Sep. 2023,
Art. no. 103704, doi: 10.1016/j.jnca.2023.103704.

[33] M. G. Twardawa, M. Smolik, F. Rakowski, J. Kwiatkowski, and N. Meyer,
‘‘SCADvanceXP—An intelligent Polish system for threat detection and
monitoring of industrial networks,’’ Secur. Defence Quart., Mar. 2024, doi:
10.35467/sdq/177655.

[34] S. Sadhwani, U. Modi, R. Muthalagu, and P. Pawar,
‘‘SmartSentry: Cyber threat intelligence in industrial IoT,’’ IEEE
Access, vol. 12, pp. 34720–34740, 2024. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10456888/

[35] M. Kim and H. Kim, ‘‘A dynamic analysis data preprocessing technique
for malicious code detection with TF-IDF and sliding windows,’’
Electronics, vol. 13, no. 5, p. 963, Mar. 2024. [Online]. Available:
https://www.mdpi.com/2079-9292/13/5/963

YAJUN LIU was born in Zhangjiakou, Hebei,
China, in August 1992. He received the bache-
lor’s and master’s degrees in computer science,
in June 2016 and 2019, respectively. He has been
teaching and researching in computer science,
since 2019. He is currently a Lecturer. He is
with Hebei University of Architecture. He has
published several academic papers and chaired
or participated in several projects. He also leads
students to participate in a variety of big data and

data modeling codes and win awards. His expertise lies in deep learning,
modeling, and analysis. His current main research interests include machine
learning, deep learning, image processing, and artificial intelligence.

HONG FAN was born in Qingdao, China, in 1968.
He received the master’s degree from Hebei Uni-
versity of Technology. She is currently a Professor.
She is with the Department of Mathematics and
Physics, Hebei University of Architecture. She
has led and participated in a number of national
and provincial projects and has published several
high-level articles. Her current research interests
include deep learning, scientific computing, and
optical imaging technology.

VOLUME 12, 2024 104331

http://dx.doi.org/10.1016/j.infsof.2017.04.007
http://dx.doi.org/10.1109/TR.2019.2924677
http://dx.doi.org/10.14569/ijacsa.2019.0101213
http://dx.doi.org/10.1016/j.cose.2014.04.003
http://dx.doi.org/10.1145/2523649.2523682
http://dx.doi.org/10.1016/j.jisa.2022.103258
http://dx.doi.org/10.1016/j.cose.2022.102613
http://dx.doi.org/10.4236/jis.2014.52006
http://dx.doi.org/10.1016/j.cosrev.2022.100529
http://dx.doi.org/10.1016/j.eswa.2009.05.023
http://dx.doi.org/10.1016/j.proeng.2011.08.718
http://dx.doi.org/10.1016/j.cose.2020.101748
http://dx.doi.org/10.1109/TIFS.2018.2866319
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1007/s11265-020-01588-1
http://dx.doi.org/10.1016/j.jpdc.2019.03.010
http://dx.doi.org/10.3390/e23030344
http://dx.doi.org/10.1007/s11227-024-05993-2
http://dx.doi.org/10.1063/5.0181698
http://dx.doi.org/10.1016/j.jisa.2022.103402
http://dx.doi.org/10.3390/electronics13050989
http://dx.doi.org/10.23919/jsee.2024.000018
http://dx.doi.org/10.4018/979-8-3693-4276-3.ch012
http://dx.doi.org/10.4018/979-8-3693-4276-3.ch012
http://dx.doi.org/10.1007/978-981-99-1699-3_7
http://dx.doi.org/10.1016/j.jnca.2023.103704
http://dx.doi.org/10.35467/sdq/177655

Y. Liu et al.: Efficient and Generalized Image-Based CNN Algorithm for Multi-Class Malware Detection

JIANGUANG ZHAO was born in 1978. He is
currently pursuing the Ph.D. degree. He is
a Professor. His main representative research
achievements: Presided more than eight scientific
research projects at provincial and municipal lev-
els; received One-Third Prize of Hebei Provincial
Teaching Achievements and three scientific and
technological progress prizes at municipal and
departmental levels; and presided more than three
scientific research projects at all levels under

research. He published more than 20 related academic articles, (SCI and
EI included ten) and applied for eight patents. His main research interests
include network security, pattern recognition and intelligent systems, and
computer applications.

JIANFANG ZHANG was born in Zhangjiakou,
Hebei, in July 1992. She received the bachelor’s
degree majoring in network engineering from
the Inner Mongolia University of Science and
Technology, in June 2016, and the master’s degree
majoring in electronics and communication engi-
neering from Northeastern University, in 2019.
She has been engaged in teaching and scientific
research in network engineering, since 2019.
Currently, she is with the School of Information

Engineering, Hebei University of Architecture. She is a Lecturer. She

published several academic articles and presided over or participated in
a number of horizontal and vertical scientific research topics. Obtained
a number of software copyrights. Also, she led students to participate in
various big data and data modeling specifications and won awards. Her main
research interests include elastic optical networks, network security, and data
analysis.

XINXIN YIN was born in Qingdao, Shandong,
China, in December 1993. She received the
bachelor’s degree majoring in communication
engineering, in June 2016, and the master’s degree
majoring in systems engineering, in 2019. She has
been engaged in teaching and research in computer
science, since 2021. She is currently a Lecturer.
She is with Hebei University of Architecture. Her
current main research interests include machine
learning and artificial intelligence.

104332 VOLUME 12, 2024

