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ABSTRACT The smart grid environment, which emphasizes sustainability, dependability, and efficiency
through smart components such as Intelligent Electronic Devices (IEDs), communication networks, and
control systems, marks a revolutionary change in the way traditional power distribution is carried out.
As smart grids grow and are integrated into energy distribution networks, these systems become more
vulnerable to cybersecurity threats due to their increased connectivity, usage of IEDs, and reliance on
digital communication channels. This study presents an edge computing-based, threat behavior-aware smart
prioritization framework with binary and multidimensional classification and detection of cybersecurity
intrusions through modified machine learning methods. The proposed framework has the potential to
improve smart grid cybersecurity by offering a comprehensive defense against intrusion threats. The
proposed framework enhances smart grid cybersecurity by utilizing a multi-criteria approach. It implements
edge-computing technology for data storage and processing in smart grids. It applies machine-learning
models for cybersecurity intrusion detection in IEDs and provides prevention by assigning priorities to the
threats based on their behavior. In order to show the effectiveness of the proposed framework, we modified
and implemented twomachine-learning models, i.e., LGBM and One Class-SVM, as proposed models in the
framework. For multidimensional classification and detection of cybersecurity intrusions in IEDs of smart
grids, we used LGBM. Whereas, for binary classification and detection of cybersecurity intrusions, we used
One Class-SVM. We simulated the detection and classification of cybersecurity intrusions in IEDs using
a power system intrusion dataset. The results show that the LGBM model provides an accuracy of 93%,
precision of 94%, recall of 93%, and F1 score of 93% in the detection and classification of cybersecurity
intrusions in IEDs of smart grids. The implementation of One Class-SVM with binary classification yields
an accuracy of 85%, precision of 89%, recall of 85%, and F1 score of 86%. We implemented the benchmark
machine-learning models, i.e., Gradient Boosting Machine and Support Vector Machine, for performance
comparison with the proposed modified machine-learning models. The performance comparison shows that
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the modified machine learning models implemented in the proposed framework outperformed the benchmark
machine-learning models.

INDEX TERMS Smart grids, cyberattack detection and prevention, IEDs, LGBM, One Class-SVM, intrusions.

I. INTRODUCTION
The ‘‘smart grid environment’’ is a paradigm shift in the
conventional electrical supply network that produces a more
sustainable, dependable, and efficient electrical infrastruc-
ture [1]. In order to maximize the production, distribution,
and consumption of electricity, this updated grid includes a
variety of innovative components, such as intelligent elec-
tronic devices (IEDs), communication networks, control
systems, and data analytics tools [2]. The smart grids focus on
information and communication technology in the operation.
Smart meters, as an example of IEDs, have a huge role to play
by providing detailed information on energy usage. Smart
meters enable the provision of communication from the utility
providers to the customers and vice versa in an efficient man-
ner to enhance the control of power usage. Another part of
the smart grid is the connectivity of communication networks
and sensors [3]. In order to gather information on several
characteristics including voltage, current, and power quality,
these sensors are placed throughout the grid. The grids com-
munication networks enable information sharing amongst its
various components, facilitating prompt reactions to chang-
ing circumstances and enhancing overall grid reliability. One
important feature of the smart grid is automation, which is
made possible by sophisticated control systems [4]. These
systems automate the grids that are operating in real-time
by employing AI and data analytics. For example, they can
better manage production and consumption, manage power
distribution in case of an outage, and incorporate renewable
energy into the grid seamlessly. The smart grid puts a lot of
emphasis on the use of renewable energy. Managing these
intermittent energy sources is made easier by the smart grid
that is being adopted with the increased use of solar panels,
wind turbines, and other distributed energy resources (DERs).
Batteries and other energy storage devices are integrated into
the grid to provide an additional source of energy during
periods of low demand and to discharge it during periods of
high demand [5], [6].

Smart grid ecosystems rely greatly on IEDs for their
evolution and functionality [7]. The embedded intelligence,
communication capabilities, and function-specific aptitude
are the important characteristics of these devices inside the
larger smart grid infrastructure. IEDs are widely used in the
smart grid to measure andmonitor a variety of characteristics.
This entails keeping an eye on power quality, voltage levels,
current flows, and other critical parameters [8]. Common
examples of IEDs are smart meters, which give users access
to real-time data on energy consumption at the consumer
level [9]. This information helps utility companies and con-
sumers make educated decisions. IEDs also play a major role
in smart grids automation. These devices allow for automated

reactions to changing grid conditions. For example, IEDs
can rapidly isolate the impacted region, reroute power, and
restore service without the need for human intervention in the
event of a breakdown or outage. This lowers downtime and
increases the resilience of the grid. IEDs have communication
capabilities in order to facilitate smooth data interchange
within the smart grid. These gadgets are in communication
with utility operators, with central control systems. Decision-
making, coordination, and grid operation optimization have
been done in real time [10]. IEDs make it easier to integrate
and manage distributed energy resources, such as solar and
wind power, which are becoming more and more common in
smart grids. They facilitate the seamless integration of clean
energy into the grid, improve power flow, and assist balance
the fluctuation of renewable supply [11].

Unauthorized access, manipulation, or disruption of the
infrastructure’s components and communication within a
smart grid is referred to as an intrusion attack [12]. The
smart grids operation, security, and dependability are seri-
ously threatened by these attacks. The penetration in smart
grids by these attacks include denial-of-service (DoS), unau-
thorized access, data manipulation and ransomware [13],
[14]. DoS is referred to as putting too much strain on the
control or communication networks of the smart grid to pre-
vent regular operations. Unauthorized access means entering
the smart grid infrastructure without authorization, thereby
jeopardizing control systems or private information. Data
manipulation is represented by changing or fabricating data in
the smart grid, which could cause erroneous decisions to be
made and jeopardize the system integrity. The introduction
of ransomware or malicious software into the smart grid
can result in extortion attempts, data breaches, and system
outages. The target components of these attacks in a smart
grid environment include IEDs, communication networks,
and control systems [15].

In order to improve the cybersecurity of smart grid
infrastructure machine learning techniques have been imple-
mented [16], [17], [18], [19], [20], [21], [22]. This approach
is especially effective when combined with a new pro-
cessing and storage technology i.e., edge computing [23],
[24], [25], [26], [27]. Machine learning techniques have
the ability to identify typical behavior patterns in the smart
grid [13], [15], [28], [29], [30], [31]. Labeled datasets includ-
ing instances of both benign and malignant conduct can be
used to train machine-learning algorithms. Guided learning
techniques such as Support Vector Machines (SVMs) [32] is
useful in intrusion detection. Edge computing reduces latency
by processing data closer to the source. Edge computing
allows real-time data analysis, facilitating quick detection
and response to possible intrusions without depending on
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centralized processing. To lessen the reliance on a single
point of failure, edge computing divides computational duties
among devices in the smart grid. Pre-trained models for
intrusion detection have the ability to be installed on edge
devices to facilitate local decision-making [16]. This is espe-
cially helpful in situations where quick response is needed to
decrease the effects of an intrusion. Edge devices that have
been trained to detect intrusions analyze data locally without
transferring it to a central server by immediately deploying
the models onto the devices.

A. RESEARCH MOTIVATION
The requirement of safeguarding advanced electrical infras-
tructure is the motivation behind creating a smart prioritizing
framework for intrusion detection and prevention of IEDs
inside a smart grid environment [2], [7], [8], [33]. As smart
grids become more integrated into the energy distribution
systems, these systems become more exposed to cyber-
security threats because of the high connectivity, use of
IEDs, and reliance on digital communication. Smart grids
are vulnerable to infiltration attacks, and their consequences
range from power outages, alteration of data, and potential
risks to public safety [34]. It is important that these vul-
nerabilities be addressed with creative and flexible security
solutions. Given the real-time nature of smart grid operations,
the proposed framework’s integration of edge computing,
behavior-aware techniques, and modified machine-learning
methods intended to improve the effectiveness and respon-
siveness of intrusion detection. The proposed research aims
to strengthen smart grid environment cybersecurity defenses
with insightful observations and useful solutions, guarantee-
ing the ongoing dependability and resilience of our changing
energy infrastructure against new cyber-threats.

B. MAIN CONTRIBUTIONS
There are following main contributions of the proposed
research work:

• The study proposes a framework to enhance the cyberse-
curity of IEDs in smart grids by utilizing a multi-criteria
approach. The proposed framework integrates edge-
computing technology, modified machine-learning
models and a threat behavior-aware approach to offer an
enhanced protection mechanism against cybersecurity
intrusion attacks on IEDs.

• The framework incorporates edge computing as a
major advancement in real-time intrusion detection. The
research addresses the need for quick and indepen-
dent decision-making, lowering the response time to
any threats within the dynamic and networked smart
grid landscape, by processing data locally at the edge
devices.

• A smart prioritization mechanism has been added to the
proposed framework to rank the sensitivity of intrusions
found, allowing resources to be allocated more effec-
tively and security incidents to be handled more quickly.

• A holistic approach to cybersecurity in smart grids is
proposed by the integration of intrusion behavior-aware
approache, machine learning, and edge computing under
a unified framework. Taking into consideration the com-
plexities of the interconnected systems in a smart grid,
this comprehensive method aims to provide a multi-
faceted defense against intrusion threats.

C. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows: Section II
presents the related work in connection with smart grid
environments, IEDs, machine-learning techniques used for
cybersecurity intrusion detection, and the use of edge com-
puting in data processing and analysis. Section III presents the
system design and model with an explanation of the various
components of the proposed framework. Section IV provides
an edge computing-based preventive framework for cyber-
security intrusion detection in smart grids with pseudocode.
Section V presents the performance evaluation methodology.
Section V provides experiments, results, and discussions.
Section VI concludes the article with future directions.

II. RELATED WORK
The related work has been studied in connection with smart
grid environments, machine learning techniques used for
cybersecurity intrusion detection and use of edge computing
in data processing and analysis.

Advanced Smart Grid (SG) ecosystems has been made
possible by the prominence of the SG-to-Cloud continuum.
Legacy Intelligent Electron Devices (IEDs) has been con-
sidered while designing future Smart Grid ecosystems. As a
result, their complete integration into the Internet of Smart
Grid Things (IoSGT) is a constant challenge. The authors
in [33] presented the old Smart Grid to IoT Integration
Approach (SG2IoT) to address this difficulty. This approach
automates the integration of numerous old IEDs in a scalable
and adaptable environment, made feasible by the IoSGT.
In addition, a SG-to-Cloud continuum is established by the
SG2IoT to provide architectural modular components for
distributed operation at cloud facilities dispersed throughout
edge and central datacenters. The SG2IoT effect estimation
involved using a prototype that was operating on a testbed
located in a lab that included real-world technologies. The
SG2IoT lightweight approach feasibility is demonstrated by
outcome analysis, which establishes an SG-to-Cloud contin-
uum to enable quick response times and reasonably priced
IoSGT scalability [33].

Smart grids have greatly reduced the contingencies of dis-
tribution networks and helped in their operation, control, and,
most importantly, protection. The first phase of integrating
smart grid switching devices into distribution networks is
covered in [2]. At this point, conventional protection com-
ponents (like fuses, reclosers, and sectionalizers) must be
used with smart grid technologies. Due to the two different
ideologies, this fact may present issues for the protection
methods. In certain businesses, particularly thosewithmodest
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resources, these two protection concepts can coexist for a
long time. The most widely used IEDs on the market are
examined to confirm their features and see whether methods
may be added to enable the two ideologies to coexist. The
suggested method then demonstrates how the current IEDs
can communicate with the conventional equipment. The sug-
gested method converts the IEDs into intelligent agents. The
effectiveness of the suggested methodology is demonstrated
through the presentation and discussion of real-world exam-
ples utilizing distribution networks [2].

Many security concerns are currently ravishing Internet of
Things (IoT) systems and harming information as a result
of recent advancements in wireless communication that have
led to a surge in IoT systems. Given the wide range of
applications for IoT devices, it is important to make sure that
hacks are comprehensively identified to prevent damage [35].
Algorithms for machine learning (ML) have shown a high
capacity to reasonably accurately assist in mitigating assaults
on IoT devices and other edge systems. One of the prob-
lems with IoT systems is that the dynamics of how hackers
operate in IoT networks necessitate more advanced intrusion
detection systems (IDS) models that can identify numerous
attacks with a greater detection rate and less computational
resource requirement. To propose IDS models for IoT con-
texts, a variety of ensemble methods have been applied with
various ML classifiers, such as decision trees and random
forests. One method for creating an ensemble classifier is
the boosting method. Based on boosted ML classifiers, the
research in [35] suggests an effective technique for identify-
ing network breaches and cyberattacks. The authors proposed
BoostedEnML as their model. First, they train one ensem-
ble with a majority voting strategy and another using the
stacking method on six different machine-learning classifiers
(DT, RF, ET, LGBM, AD, and XGB). The IDS model was
trained, assessed, and tested using two distinct datasets that
contained well-known assaults, such as botnets, infiltration,
web attacks, distributed denial of service (DDoS), denial of
service (DoS), heartbleed, portscan, and botnets. The authors
build their proposed BoostedEnsML model utilizing Light-
GBM and XGBoost based on the top two models because the
two classifiers together produce a lightweight yet effective
model, which is one of the goals of this study. According to
experimental results, using the chosen datasets for multiclass
classification, BoostedEnsML performed better than previ-
ous ensemble models in terms of accuracy, precision, recall,
F-score, and area under the curve (AUC).

The necessity for cybersecurity has grown in importance
over the past few years due to the quick development of
network technologies. An intrusion detection system (IDS) is
supposed to serve as the key defense mechanism, adapting to
the ever-changing complex threat landscape and safeguarding
computing infrastructures. Recently, a lot of deep learning
algorithms have been developed [36]. However, because of
network traffic imbalances and insufficient aberrant traffic
samples for model training, these techniques have a hard

time identifying all forms of assaults, especially infrequent
ones. The unsupervised deep learning approach for intru-
sion detection presented in [36] aims to address these issues
and enhance detection performance. This paper [36] intro-
duces a novel single-stage IDS approach that integrates a
one-dimensional convolutional autoencoder (1D CAE) and a
one-class support vector machine (OCSVM) as a classifier
into a joint optimization framework, in contrast to the current
IDS model that extracts features and trains a classifier in
two separate stages. By creating a unified objective function
integrating reconstruction error and classification error, the
technique simultaneously optimizes the 1D CAE for compact
feature representation and the OC-SVM for classification
using only the normal traffic samples.

The expansion of IoT into the industrial domain is known
as Industrial IoT, or IIoT. It seeks to enhance industrial sec-
tors’ operations by integrating embedded devices. That being
said, IIoT security flaws are more dangerous than IoT ones.
Intrusion detection systems (IDS) are therefore designed to
stop some extremely dangerous incursions. IDS keeps an
eye on the surroundings to quickly identify intrusions. The
research in [37] develops a machine learning-based intrusion
detection method for IIoT security. The machine learning
models’ detection rate and accuracy (ACC) are enhanced
by the feature selection and dimensionality reduction tech-
niques. In order tomitigate the high complexity of the dataset,
the authors suggest utilizing isolation forest (IF) and Pear-
son’s correlation coefficient (PCC). Outliers are eliminated
using the IF, and the feature selection procedure is carried
out using the PCC [37]. The authors examined the effect of
our suggested model on the unbalanced dataset known as the
Bot-IoT using the Matthews correlation coefficient (MCC).
To improve IDS performance, the RF classifier is used. Find-
ings show that, in comparison to other models, the suggested
strategy performs better and has several advantages.

The authors in [38] provide a thorough analysis of recent
research efforts aimed at identifying and preventing attacks
that take advantage of IEC-61850 substations. Their primary
contribution is a unique taxonomy that includes elements
of both design and evaluation for IDSs that are specific to
substations. IDS architectures, detection techniques, analysis,
actions, data sources, detection range, validation strategies,
and metrics are all included in this taxonomy. They also
provide an overview of the detection rules used by the most
advanced intrusion detection systems and evaluate how resis-
tant they are to five different kinds of attacks. Their analysis
shows that while some attacks are addressed by IDSs that are
currently in use, more development is especially required to
address masquerade attacks.

The work in [39] presents a hybrid deep learning model
that is semi-supervised and combines several anomaly detec-
tion algorithms (such as Isolation Forest, Local Outlier
Factor, One-Class SVM, and Elliptical Envelope) with a
Gated Recurrent Unit (GRU)-based Stacked Autoencoder
(AE-GRU). In order to effectively capture temporal pat-
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terns and dependencies, GRU units are used in both the
encoder and decoder sides of the stacked autoencoder. This
facilitates dimensionality reduction, feature extraction, and
precise reconstruction for improved anomaly detection in
smart grids. The suggested method makes use of unlabeled
data to track network activity and spot erroneous data flows.
In particular, the anomaly algorithms are used to identify
possible cyberattacks after the AE-GRU is used to reduce
the amount of data and extract pertinent features. The authors
assess the suggested framework with the commonly used IEC
60870-5-104 traffic dataset.

In [40] paper, the authors use the throughput of OT (opera-
tional technology) communication network traffic to propose
a new graph-based forensic analysis approach for anomaly
detection in power systems. It uses a hybrid deep learn-
ing model that combines a convolutional neural network
with graph convolutional long short-term memory. The sug-
gested approach helps SOC (Security Operations Center)
with post-mortem and ongoing OT security monitoring. The
suggested approach can locate cyberattacks on power grid OT
networks, according to the results, with an AUC score higher
than 75%.

In order to mitigate cyberattacks on the GOOSE message
virtual LAN (VLAN), a non-observable strongly connected
biography, the work in [41] presents a study on deception
technology (decoys). By defining observable subgraphs in
the VLAN, the deployment of defender decoys is proposed.
With the defender acting as the leader, the defender-attacker
interaction is modeled as a single-leader, single-follower
game. Then, a bi-level optimization problem is formulated to
determine the best decoy allocation for asset protection and
attack detection. Defender resource allocation considers both
the sequential and simultaneous allocation of detection and
protection decoys. It is established that the defender-attacker
game is in equilibrium. In the PSRC-I5 protection relay
report, the model is demonstrated in a 3-IED VLAN, and
performance is assessed in a 12-IED VLAN system. Based
on the results comparisons, it was found that the pro-
posed model is capable of mitigating attacks in the GOOSE
VLAN.

The literature review reveals that smart grids are increas-
ingly susceptible to cybersecurity attacks due to the rising
number of connections, the use of IEDs, and the reliance
on digital communication channels. Existing studies have
not explored the complexities of integrating edge computing
within the framework of smart grid cybersecurity. There is a
lack of a thorough assessment of the potential of edge com-
puting with modified machine-learning models to enhance
cybersecurity and prevent IEDs in smart grids. Binary and
multidimensional classifications of cybersecurity intrusions
in IEDs have not been made previously with specifically
selected and modified machine learning models. The existing
intrusion detection system has not significantly focused on
the behavior of the intrusions and has not taken preventive
measures based on the behavior of the intrusions. The goal of
the proposed study is to improve the cybersecurity defense of

IEDs in smart grids with edge computing technology, mod-
ified machine-learning models, and a threat behavior-aware
smart periodization approach.

III. SYSTEM DESIGN AND MODEL
This research work proposes an edge computing-based and
threat behavior-aware smart prioritization framework with
modified LGBM and One Class-SVM methods for cyberse-
curity intrusion detection and prevention of IEDs in a smart
grid environment as shown in Figure 1. Information has been
gathered from multiple smart grid sources. These sources
include data from sensors, communication networks, and
intelligent electronic devices (IEDs). To train and run the
intrusion detectionmodel, data includes system logs, network
traffic patterns, and device activity. To provide a baseline of
typical behavior inside the smart grid, the model makes use
of threat behavior-aware approach.

The proposed approach makes use of edge computing
to process data locally close to where it is generated or
consumed. Locally, edge devices implanted in IEDs or
communication nodes perform intrusion detection and pre-
liminary analysis. As a result, less raw data needs to
be transmitted in bulk to a centralized server, improving
real-time processing and lowering latency. Modified machine
learning methods i.e., LGBM and One-Class SVM models
have been implemented for intrusion detection in the smart
grid environment. Based on the seriousness and urgency of
detected intrusions, the proposed model incorporates a smart
prioritization structure that ranks alerts. The implementation
of this prioritizing technique guarantees the effective allo-
cation of resources and timely actions, particularly in cases
of serious security incidents. The criticality of the impacted
devices and the possible effects on the smart grid functional-
ity has been taken into consideration during setting priorities.
The following are the main components of the proposed
framework.

A. SMART GRID ENVIRONMENT
A smart grid environment is a high-tech electrical infras-
tructure that optimizes electricity generation, delivery, and
consumption. The integration of diverse components, includ-
ing sensors, communication networks, IEDs, and advanced
control systems, aims to improve the sustainability, depend-
ability, and efficiency of energy distribution. The smart grid
environment is aimed to optimize energy consumption. The
smart grid energy optimization is mathematically represented
by equation 1.

Poptimized =

n∑
i=1

Pi −
m∑
j=1

Lj (1)

where, Poptimized is the optimized power, Pi is the power
generated by each source and Lj is the power loss at each
transmission line.
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FIGURE 1. An edge computing-based and threat behavior-aware smart prioritization framework for cybersecurity intrusion detection in IEDs inside smart
grid infrastructure.

The efficiency of the smart grid is mathematically repre-
sented by equation 2.

Efficiency =
Useful power output
Total power output

× 100 (2)

Smart grid infrastructure also incorporates renewable energy
sources. The integration efficiency of renewable energy
sources is mathematically represented by equation 3.

Integration Efficiency

=
Energy ouput from Renewable Sources

Total Energy output
× 100 (3)

B. INTELLIGENT ELECTRONIC DEVICES (IEDS)
Intelligent Electronic Devices are essential parts of smart
grid environment, serving as key components in applica-
tions related to protection, control, and monitoring [2], [7].
These components have communication features, embedded
intelligence, and frequently have unique features like smart
metering. IED integration is common in industries like power
systems, where it improves operational safety, dependability,
and efficiency. Functionality of protective relays of IEDs is
mathematically represented by equation 4.

Vout = f (Vin, θin, t) (4)

where, Vout represents relay output, Vin is input voltage and
θin is input phase angle. IEDs have capabilities to communi-
cate with each other and to the base station or to the main

grid station. The communication capability is measure by
throughput and is given in equation 5.

Throughput =
Data Size

Transmission Time
(5)

IEDs continuously gather data from the monitor system and
have also been used for protection and control purposes. The
protection mechanism is represented by equation 6.

Trip Decision = h (Measured Value,Thresholds) (6)

IEDs are integrated in smart grid for monitoring and control
purpose and mathematically represented by equation 7.

Integration Efficiency=
Number of IEDs Integrted
Total number of Devices

× 100

(7)

C. INTRUSION ATTACKS ON IEDS IN SMART GRID
ENVIRONMENT
The implementation of the IEC-61850 standards for com-
munication among Intelligent Electronic Devices (IEDs)
presents new security issues in the domain of digital electrical
substations in Smart Grids [42], [43]. Strong security mea-
sures are required for the implementation of these standards
in order to protect the integrity and operation of digital sub-
station services. Themasquerade, replay attacks and injection
attacks are the major cybersecurity threats that present unique
difficulties in IEDs of smart grids.
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Masquerade attacks are a kind of cybersecurity threat
in which a hacker impersonates a trustworthy user or sys-
tem component in order to obtain unauthorized access to a
network or system. Impersonation or identity spoofing are
alternative terms used to refer to these attacks. A masquer-
ade threat attack on IEDs within smart grids has severe
consequences. Masquerade attacks allow attackers to gain
unauthorized control over IEDs, potentially leading to the
manipulation of grid parameters including voltage levels,
frequency, or power flow. If these attacks are not properly
identified or there is no prevention mechanism, there is a
probability of disruptions to the power supply or damage to
connected devices. Equation 8 mathematically represents the
probability of successful masquerade attacks.

P (Masquerade success)

=
Number of sucessful masqurade attempts

Total number of attempts
(8)

The analysis of the data concerning the behavior of devices
can be used for identification of the signs that point at a
masquerade attack. The preventivemeasures that can be taken
are that the access controls should be strict, and privileges
should be granted according to the roles and responsibilities
of the users to prevent the masquerade attacks.

Replay attack is a type of cyberattack where the hacker
intercepts the communication between two parties and then
retransmits the messages back to the same parties. Replay
attacks on IEDs within smart grids has dire consequences; it
has severe impacts on the smart grid’s electricity distribution
system’s integrity, reliability, and security. Replay attacks
result in unauthorized access to the IEDs in the smart grid.
The attackers could replay the captured messages or com-
mands to take control of the devices like relays or switches
and control the grid operations. The main threat that attackers
can implement is the replay of legitimate data packets within
the smart grid. This will lead to wrong measurement values,
changed sensor data, or false status information, and thus
wrong decisions of the grid management systems. Malicious
replay attacks are capable of interfering with normal grid
operations by feeding in wrong or out-of-date control signals.
This will lead to unwanted operations, for instance, load
shedding, wrong voltage corrections, or even failure progres-
sion, affecting the stability of the whole system. If attackers
replay billing information or transactions, they will be able
to manipulate billing systems or steal electricity, and it will
be unnoticed. This could eventually reduce the income of the
utility providers and, in turn, may also impact the consumers
through wrong tariffs. Equation 9 mathematically represents
the probability of successful replay attacks.

P (Replay success) =
Number of sucessful replay attempts

Total number of attempts
(9)

In order to mitigate the risks of replay attacks, smart
grid operations are required to implement robust secu-
rity measures such as secure communication, authentication

FIGURE 2. Workflow of the components of the proposed framework.

mechanisms and intrusion detection systems. Implementation
of multi-factor authentication adds an extra layer of security
beyond simple data transmission, making replay attacks more
challenging.

Injection attacks are a type of cybersecurity threat in which
malicious data or commands are inserted into data streams
in an application or system. Injection attacks on IEDs within
smart grids involve the unauthorized insertion of malicious
data or commands into the communication channels of the
grid. Injection attacks have the ability to manipulate data
transmitted between IEDs, leading to false measurements,
altered sensor readings, or inaccurate status reports. This will
influence decision-making processes within the smart grid.
Compromising the data integrity of the smart grid data and
control systems affects the trustworthiness of information
and leads to cascading failures. Equation 10 mathematically
represents the probability of success rate for injection attacks.

P (Injection success)

= Vulnerability level

× Effectiveness of Security Measures (10)

where vulnerability level reflects the existing vulnerability
in smart grid IEDs and effectiveness of security measures
indicates how well security measures are implemented.

In order to mitigate injection attacks, robust authentica-
tion mechanisms are required to be implemented to ensure
that only authorized entities can access and control IEDs.
Deployment of intrusion detection systems will provide a
better solution to monitor network traffic and detect abnormal
patterns indicative of injection attacks.

IV. AN EDGE COMPUTING-BASED AND THREAT
BEHAVIOR-AWARE SMART PRIORITIZATION
FRAMEWORK FOR CYBERSECURITY
INTRUSION DETECTION IN IEDS
This study proposes a framework with the integration of edge
computing, threat-aware smart prioritization, and machine
learning models. The workflow of the components of the
proposed framework is shown in Figure 2. The proposed
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Algorithm 1 An Edge Computing-Based and Threat Behavior-Aware Smart Prioritization Framework
Input: ID (IEDs Data), SD (Sensors Data) and CND (Communication Networks Data)
Output: Prioritized Alert-based Intrusion Detection and Prevention
Procedure: Threat behavior-aware smart prioritization framework (ID, SD, CND)
1. Parameter Initialization

i. α, β & γ : Weights for prioritization
ii. Sthreat , Sbehavior , Sedge : Scores for severity, behavior and proceeding and edge node
iii. Priority: Calculated priority
iv. Alerts: List of prioritized alerts

2. Data Collection
i. Data Collection = (IEDs, Sensors,Communication Networks)
ii. Di : Store the collected data in a local buffer

3. Edge Computing Processing
a) for each computing node i

Pi = Local_Processing (Di)
4. Machine Learning Model Integration

i. Train and deploy machine learning methods
ii. MLGBM = TrainLGBM (P1,P2, . . . ,PN )
iii. MOneClass−SVM = TrainOneClass− SVM (P1,P2, . . . ,PN )

5. Prioritize Alerts
Priority =

(
α.Sthreat + β.Sbehavior + γ.Sedge

)
6. Cybersecurity Intrusion Detection

i. For each edge computing node i
ALGBM (i) = ApplyLGBM (Pi,MLGBM )
AOnceClass−SVM (i) = ApplyOneClass− SVM (Pi,MLGBM )

ii. If intrusion detected on node i
SmartGRid_Safetyi = Trigger {PreventiveActions (Priority, threat behavior), Alert, SafetyMeasures}

7. Result Generation
PA− IDP = Prioritized Alert based Intrusion Detection and Prevention

8. Return PA − IDP

framework utilizes edge computing technology for data
processing and analysis at local nodes. Modified machine
learning models, i.e., LGBM and One Class-SVM have been
used to detect intrusions in IEDs. A threat behavior-aware
smart prioritization preventive mechanism has been defined
for proactive prevention of cybersecurity intrusions in smart
grid environment. Mathematically, smart prioritization is rep-
resented by equation 11.

Priority =
(
α.Sthreat + β.Sbehavior + γ.Sedge

)
(11)

where, α, β & γ are weighting factors, threat severity is
represented by Sthreat , behavior analysis is represented by
Sbehavior and edge processing is represented by Sedge.
The proposed framework improves smart grid cyber-

security by integrating several components, as shown in
Algorithm 1. It implements edge-computing technology
for data storage and processing in smart grids, applies
machine-learning models for cybersecurity intrusion detec-
tion in IEDs, and provides prevention by assigning priorities
to the threats based on their behavior. In order to show
the effectiveness of the proposed framework, we modified
and implemented two machine-learning models, i.e., LGBM

and One Class-SVM, as proposed models in the framework.
For multidimensional classification and detection of cyber-
security intrusions in IEDs of smart grids, we used LGBM.
Whereas, for binary classification and detection of cyberse-
curity intrusions, we used One Class-SVM. We simulated
the detection and classification of cybersecurity intrusions
in IEDs using a power system intrusion dataset. Data from
sensors, communication networks, and intelligent electronic
devices (IEDs) are among the inputs. Making an ordered
list of alerts according to intrusion detection and severity is
the main goal. The procedure starts with the initialization of
parameters, with weights (α, β & γ ) for scoring definition
and prioritization (Sthreat , Sbehavior , Sedge). Information from
IEDs, sensors, and communication networks are gathered
for data collection, and it is then stored in a local buffer
(Di). The processing of edge computing is achieved next,
in which every computing node processes its local data (Pi).
The framework incorporates machine learning models that
have been trained on the processed data, namely LGBM
and One-Class SVM. Then, with the established weights and
scores, the warnings are prioritized according to a determined
priority. Using the trained models, the algorithm moves on
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to cybersecurity intrusion detection on every edge computing
node. Safety precautions, alarms, and preventive actions are
initiated for the individual node in the event that an intrusion
is found. The algorithm returns the Prioritized Alert-based
Intrusion Detection and Prevention (PA-IDP) result after cre-
ating the prioritized alerts based on intrusion detection and
prevention.

V. EXPERIMENTS, RESULTS & DISCUSSIONS
We perform the simulations and evaluate the performance of
proposed framework.

A. EVALUATION METRICS
We use the evaluation metrics of Accuracy, Precision, Recall
and F1 score for evaluating the efficiency of the proposed
framework [12]. These values are calculated based on the
following terms True Positives (TP), True Negatives (TN),
False Positives (FP) and False Negatives (FN) [15]. TP is the
number of tuples that are really found to be intrusive at the
end of the process. TN is the number of valid tuples that are
found at the end of the detecting process. FP is the number
of safe tuples that, at the conclusion of the detection process,
are identified as intrusions. FN is the quantity of dangerous
tuples that, at the conclusion of the detection process, are
found normally.

Accuracy is an employed metric for evaluating the per-
formance of classification models [15]. Mathematically, it is
calculated with the help of Equation 12.

A =
TP+ TN

TP+ TN + FP+ FN
(12)

Precision is a metric used to assess the efficacy of a clas-
sification model [15]. Mathematically, it is represented by
Equation 13.

Precision =
TP

TP+ FP
(13)

Recall is a metric used to assess a classification model’s
performance [15]. Mathematically, it is given by Equation 14.

Recall =
TP

TP+ FN
(14)

The F1 score is a way to measure how well classification
models work, especially when they are asked to choose
between two options [15]. Mathematically, it is calculated
with the help of Equation 15.

F1 Score = 2 ×
Precision× Recall
Precision+ Recall

(15)

B. DATASET
In order to evaluate the proposed framework, ‘‘Power System
Intrusion Dataset’’ [43], a publicly available dataset on a
Kaggle website has been used. Digital electrical substations
form the backbone of Smart Grids, and the implementation
of IEC-61850 standards for communication among IEDs
introduces new security challenges. Ensuring the proper oper-
ation of digital substation services requires effective intrusion
detection and preventionmechanisms, which were previously

lacking for attacks such as masquerade and replay in smart
grid environments. The dataset includes data on faults, injec-
tions, replay, and masquerade attacks. The distribution of
components in the dataset is illustrated in Figure 3. Key
variables in the dataset are as follows:

• sqNum and stnum are IDs or counters representing
sequence or status numbers.

• state_cb indicates the binary state.
• Differences in status or sequence numbers (sqDiff,
stDiff) indicate changes over time.

• timeLastMsg provides the duration since the last event
or message.

• recentChange is a binary indicator of a recent occurrence
or change.

• MU1Cs, MU2Cs, etc., are measurements from multiple
units (MU).

• MU4VoltageAngleA, MU4VoltageAngleB, and
MU4VoltageAngleC represent voltage angles in a three-
phase system.

• Additional readings, such as current measurements for
CMU4, IED4_iA, IED4_iB, and IED4_iC, are included.

• MU4Log indicates the engagement of a relay or similar
component.

The class variable, indicating system status, includes cate-
gories such as ‘Normal’, ‘Fault’, ‘Injection’, ‘Masquerade’,
and ‘Replay’. ‘Normal’ is the most prevalent class. The vari-
able distribution, as shown in Figure 4, highlights the class
disparity used for modeling. The dataset size is relatively
small; however, it contains sufficient instances that are highly
relevant to our study and meet the requirements of our pro-
posed framework. The main limitation of the dataset is its
specific focus on IEDs, which aligns with the targeted scope
of our study on IEDs in smart grids. In the future, our aim is
not only to expand the dataset with additional relevant entries
but also to integrate it with other smart grid datasets.

C. EXPERIMENTAL DESIGN
A power system intrusion dataset has been used for evalua-
tion, and it is divided into two parts: the training set and the
test set. The training set comprised 80% of the total records in
the dataset. It was used to train the proposed models. On the
other hand, the test set comprised 20% of the total number of
records. It was used to test and validate the proposed model.
Cross-validation was also performed for LGBM through the
‘‘cross_val_score’’ function from scikit-learn. However, for
One Class-SVM, we validated the model using a train-test
split with an 80:20 ratio since cross-validation is not applica-
ble due to its unsupervised learning nature. We implemented
all experiments in Python on a GPU-based system with a
1.8 GHz CPU and 12 GB of RAM. Predefinedmachine learn-
ing packages and libraries, namely Pandas, Numpy, Seaborn,
Sklearn and Matplotlib, have been used.

D. RESULTS AND EVALUATION
We modified and implemented two machine-learning mod-
els, i.e., LGBM and One Class-SVM, as proposed models
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FIGURE 3. Distribution of components in a dataset.

FIGURE 4. Class variable distribution.

in the framework. For multidimensional classification and
detection of cybersecurity intrusions in IEDs of smart grids,

we used LGBM. LGBM is suitable for real-time data analysis
due to its efficiency and speed with constrained resources.
In edge computing environments, LGBM has the ability
to handle large datasets quickly with constrained comput-
ing resources as compared with cloud computing. LGBM
employs a parallel learning technique, and it is best suited
for distributed computing environments to execute a large
number of tasks concurrently. LGBM has the ability to han-
dle imbalanced datasets for accurate analysis, and intrusion
detection datasets often exhibit imbalanced class distribu-
tions. For binary classification and detection of cybersecurity
intrusions, we used One Class-SVM. As reflected in the
name, One Class-SVM has the ability to train only on a
single class, i.e., normal instances and then it identifies devi-
ations from normal behavior as anomalies. In smart grids, the
majority of the data represents normal operations; therefore,

VOLUME 12, 2024 104957



A. Algarni et al.: Edge Computing-Based and Threat Behavior-Aware Smart Prioritization Framework

TABLE 1. Classification report generated by LGBM and GBM.

FIGURE 5. LGBM and GBM performance metrics.

this approach is best suited for the detection of intrusions.
Intrusion detection datasets often exhibit imbalanced class
distributions, and thus, in such situations, One Class-SVM is
best suited as it focuses on modeling the normal class while
identifying deviations.

We made modifications to LGBM to enhance its perfor-
mance in addressing the specific problem of intrusion detec-
tion in IEDs of smart grids.We enhanced the sensed feature of
LGBM in its data inputs with unusual network activities and
unexpected access patterns. We performed multidimensional
detection and classification, including masquerade attacks,
replay attacks, injections and normal instances. We also
incorporated the features of IED behavior and communica-
tion patterns, performed hyperparameter tuning and selected
parameters specific to intrusion detection in IEDs. On the
other hand, we modified and implemented One Class-SVM
for binary classification since it has the ability to recognize
normal instances in the dataset. However, not all the other
activities or instances in the dataset are intrusions. Therefore,
in order to enhance accuracy and perform better analysis,
we redefined the normal instances and anomalies in the power
system intrusion dataset. We also tailor the sensitivity of One

Class-SVM by modifying the fine-tuning parameter value
‘nu’ to precisely identify deviations that are significantly
potential security breaches for IEDs in smart grids.

We implemented the benchmark machine-learning mod-
els, i.e., Gradient Boosting Machine (GBM) [44], [45] and
Support Vector Machine (SVM) [46], [47], for performance
comparison with the proposed modified machine-learning
models. The evaluation results are highlighted below:

1) LGBM AND GRADIENT BOOSTING
Light Gradient Boosting Machine (LGBM) is a powerful
machine learning algorithm that has the ability to been used
in a number of domains, including smart grid systems for
intrusion detection [35]. LGBM is a member of the gradient
boosting framework within the ensemble learning family. It is
renowned for its effectiveness, speed, and capacity to manage
huge, highly dimensional datasets. As LGBM can effec-
tively manage massive amounts of data produced by sensors,
communication networks, and Intelligent Electronic Devices
(IEDs), therefore, it is best suitable for intrusion detection in
smart grids. Numerous data points are present in the smart
grid environment, and LGBM speedy data processing makes
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TABLE 2. Classification report generated by One Class-SVM and SVM.

it useful for real-time threat detection. The gradient boosting
framework used by LGBM is especially useful for enhancing
intrusion detection model accuracy. The program creates a
chain of inexperienced learners, fixing each other’s mistakes
as it goes. The model overall forecast accuracy is improved
by this sequential learning technique, which is important
for spotting emerging and subtle cyber threats in smart grid
systems. When it comes to smart grid security, datasets is
unbalanced, withmost cases showing typical system behavior
and very few potentially intrusive instances. As LGBM is
adept at handling unbalanced datasets, it can detect infrequent
occurrences of cyber threats without favoring the dominant
class. Edge computing is frequently used in smart grid appli-
cations to process data locally. As LGBM is able to be
installed on edge devices and is adaptable to this computing
paradigm, it identify intrusions more quickly and locally
without depending entirely on centralized processing.

Table 1 shows the classification report generated by
LGBM, GBM and it is further visualized by Figure 5. High
efficacy is shown by the outcomes of using the LGBM for
intrusion detection in a smart grid infrastructure. The preci-
sion values show how well the model classified instances of
each sort of intrusion. The high level of precision attained
for the ‘Injection’ class, which suggests a low false posi-
tive rate. The model, however, overlook certain occurrences
of this kind of intrusion, as indicated by the low recall
for ‘‘Injection.’’ The ‘Masquerade’ class demonstrates out-
standing recall and precision, indicating that the model can
correctly detect and distinguish between masquerade attack
cases. The ability of model to accurately classify occurrences
across all sorts of intrusions is demonstrated by its overall
accuracy of 93%. The performance is consistently resilient,
as evidenced by F1-scores above 0.89 for both the weighted
average (which takes into account class imbalance) and the
macro-average (which gives equal weight to each class).
This shows that the LGBM model is capable of dependable
intrusion detection in the intricate and dynamic smart grid
environment by effectively striking a compromise between
decreasing false positives and false negatives. The findings
suggest that the LGBM model is a useful tool for preserving
the integrity and dependability of vital infrastructure since it
is well suited for protecting smart grid systems against a range
of intrusion scenarios.

The confusion matrix produced by the LGBM model is
shown in Figure 6 that provides a summary of its performance

FIGURE 6. LGBM confusion matrix.

across several classes—Fault, Injection, Masquerade, Nor-
mal, and Replay. A diagonal entry of eight in the first row
indicates that the model properly recognized every occur-
rence of the ‘Fault’ class. This shows that there are neither
false positives nor false negatives for the Fault class, indicat-
ing flawless precision and recall. While the ‘Injection’ class
shows a respectable 14 true positives, the existence of 3 false
positives and 7 false negatives points to potential problems.
While the model accurately detects injections, it also misclas-
sifies certain injections and ignores others. As indicated by
the high true positives (81) the model does remarkably well in
identifying instances of ‘‘Masquerade’’. For this class, there
are neither false positives nor false negatives, showing almost
flawless precision and recall. The ‘Normal’ class performs
admirably as well, yielding a high percentage of true positives
(85). Notwithstanding, the existence of false negatives (3)
implies that the model might overlook a small number of
‘Normal’ activity occurrences. The ‘Replay’ class, like the
‘Fault’ and ‘Masquerade’ classes, achieves flawless recall
and precision with 16 true positives and 0 false negatives or
false positives.

2) ONE CLASS-SVM AND SVM
One-Class Support Vector Machine (One-Class SVM) is a
machine learning model used for anomaly identification in
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FIGURE 7. One Class-SVM and SVM performance metrics.

datasets where one class is a major or normal class [12],
[36]. The One-Class SVM is quite useful in detecting odd
or aberrant behavior that deviates from the norm and an
indication of an intrusion or a security risk when it comes
to intrusion detection within a smart grid system. One-Class
SVM is intended to identify and learn a boundary or hyper-
plane surrounding the normal data instances. By treating
them as exemplars of typical behavior within the smart grid
system, it seeks to summarize most of the data points. One-
Class SVM is used in an unsupervised learning environment,
in contrast to regular SVMs. Labeled data containing exam-
ples of both normal and intrusive conduct are not necessary.
Rather, it concentrates on learning the regular data patterns
during training, which makes it appropriate for situations in
which labeled incursion events may be hard to come by or
unavailable. The One-Class SVM frequently makes use of
the kernel trick to convert the data into a higher-dimensional
space, which enables it to more successfully identify a hyper-
plane that divides the typical cases from any possible outliers
or incursions. One-Class SVMs are good at spotting devia-
tions or outliers and have an impact on the detection accuracy
and boundary definition. The One-Class SVM is useful for
intrusion detection in a smart grid infrastructure by identify-
ing patterns of typical grid activity from data gathered from
a variety of components, including sensors, communication
networks, and IEDs.

Table 2 shows the classification report generated by One
Class-SVM, SVMand it is further visualized by Figure 7. The
classification report shows the findings of One-Class SVM
findings for intrusion detection in the smart grid environment.

With a comparatively low false positive rate, the precision of
0.96 for anomalies indicates a good accuracy in accurately
recognizing instances tagged as anomalies. Recall of 0.86,
on the other hand, suggests that the model have overlooked
some real abnormalities, highlighting the need to balance
recall and precision. Conversely, the recall of 0.74 indi-
cates that a considerable proportion of true normal examples
were accurately identified, although the precision of 0.44 for
normal instances points to a high false positive rate. The
percentage of accurately identified instances is reflected in
the total accuracy of 0.85. The weighted average F1-score
of 0.86 and the macro average of 0.73, respectively, offer a
balanced assessment of recall and precision for both groups.
There is potential for improvement in recall for both the
anomaly and normal classes, even though the model shows
good precision for anomalies, showing confidence in the
recognized occurrences.

Figure 8 shows One Class-SVM confusion matrix,
in which 552 occurrences were accurately classified as
anomalies (True Positives) by the model. This shows the
times when the unusual activity in the smart grid was cor-
rectly identified and categorized by the model. There were
87 cases when normal behavior was seen in places where
anomalies were predicted. This implies situations when reg-
ular actions were wrongly categorized as abnormal by the
model. There are 24 real abnormalities which were missed
by the model, which consequently classified them as False
Negatives. There are 67 occurrences which were accurately
classified as normal behavior by the model (True Nega-
tives). The high percentage of true positives demonstrates
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FIGURE 8. One Class-SVM confusion matrix.

the model great capacity to detect anomalies accurately,
which is consistent with the categorization of high accuracy
for anomalies. A possible area for improvement is high-
lighted by the false positives, where a significant number
of regular cases were wrongly identified as anomalies by
the model. This implies that adjustments are necessary to
improve specificity and decrease false positives. The true
negatives represent the cases in which the model accurately
detected typical behavior.

VI. CONCLUSION AND FUTURE WORK
For cybersecurity intrusion detection and prevention in
smart grid environments, we proposed edge computing-based
and threat behavior-aware smart prioritization framework.
The proposed framework uses modified LGBM and One
Class-SVM methods. The proposed framework represents
a major advancement in bolstering the dependability and
resilience of contemporary electrical infrastructures. The
study presents a comprehensive strategy that combines edge-
computing, machine learning algorithms, and behavior-aware
methodologies, with a particular emphasis on resolving the
cybersecurity issues related to IEDs in smart grids. The main

goal of the study was to improve smart grid cybersecu-
rity protocols as smart grids are becoming more and more
integrated into energy distribution networks, which has led
to an increase in cybersecurity risks. The proposed frame-
work progresses the creation of cybersecurity procedures
made especially for smart grid settings. The system offers an
improved defense mechanism against intrusion attempts on
IEDs by combining behavior-aware techniqueswithmodified
machine learning algorithms. A smart prioritizingmechanism
has been adopted in the framework that rates the urgency and
seriousness of detected incursions. This makes it possible to
allocate resources more wisely and respond to serious secu-
rity problems quickly. The priority method takes into account
the impact on the smart grid functionality as well as the
criticality of the affected devices. We simulated the detection
and classification of cybersecurity intrusions in IEDs using a
power system intrusion dataset. The LGBMmodel accurately
finds and classifies cybersecurity breaches in IEDs of smart
grids, achieving an accuracy of 93%, a precision of 94%,
a recall of 93%, and an F1 score of 93%. The implementa-
tion of One Class-SVM with binary classification yields an
accuracy of 85%, precision of 89%, recall of 85%, and F1

VOLUME 12, 2024 104961



A. Algarni et al.: Edge Computing-Based and Threat Behavior-Aware Smart Prioritization Framework

score of 86%. The models demonstrate equilibrium in both
precision and recall metrics, highlighting their dependability
in intrusion detection situations.

In the future, this work will be extended by the integration
of energy-efficient techniques for smart grid environments.
A machine-learning-based incident response and recovery
system will also be implemented in a smart grid environment.
Hybrid approaches will also be utilized for the detection and
classification of cybersecurity intrusions in the communica-
tion networks of smart grids.
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