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ABSTRACT Dempster-Shafer evidence theory (DSET) stands out as a mathematical model for handling
imperfect data, garnering significant interest across various domains. However, a notable limitation of
DSET is Dempster’s rule, which can lead to counterintuitive outcomes in cases of highly conflicting
evidence. To mitigate this issue, this paper introduces a novel reinforced belief logarithmic similarity
measure (RBLSM), which assesses discrepancies between the evidences by incorporating both belief and
plausibility functions. RBLSM exhibits several intriguing properties including boundedness, symmetry,
and non-degeneracy, making it a robust tool for analysis. Furthermore, we develop a new multisensor
information fusion method based onRBLSM. The proposed method uniquely integrates credibility weight
and information volume weight, offering a more comprehensive reflection the reliability of each evidence.
The effectiveness and practicality of the proposedRBLSM-based fusion method are demonstrated through
its applications in target recognition and pattern classification scenarios.

INDEX TERMS Dempster-Shafer evidence theory, belief logarithmic similarity, information fusion, target
recognition, pattern classification.

I. INTRODUCTION
Multisensor information fusion, a critical technique for lever-
aging varied levels of data for decision-making, has gained
persistent focus and found applications across various fields
like fault diagnosis [1], [2], [3], image processing [4], [5],
target recognition [6], [7], [8] and pattern classification [9],
[10], [11]. However, dealing with incomplete or uncertain
data from multiple sensors poses a significant challenge
in this area. To tackle this issue, several theories have
been introduced, such as including fuzzy sets [12], [13],
[14], intuitionistic fuzzy sets [15], [16], [17], Dempster-
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Shafer evidence theory [18], [19], [20], rough sets [21],
[22] neutrosophic sets [23], [24], [25] and Z-number [26],
[27]. These theories play a pivotal role in enhancing the
effectiveness and accuracy of multisensor information fusion.

Dempster-Shafer evidence theory (DSET) [28], [29] is a
versatile mathematical framework for managing uncertain
and imprecise information, and it has found extensive appli-
cations across various fields [30], [31], [32], [33], [34], [35].
As an advancement of traditional probability theory, DSET
uniquely quantifies uncertainty and imprecision by allocating
a mass function to elements within a power set [36], [37].
Additionally, it introduces belief and plausibility functions,
which act as the upper and lower probability bounds,
offering a more nuanced representation of uncertainty and
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imprecision [38]. Importantly, Dempster’s rule of combi-
nation, obeying both commutative and associative laws,
provides an efficient approach for fusing information from
multiple sensors. These qualities have made DSET a focal
point of interest in the field.

While Dempster’s rule is a cornerstone in Dempster-Shafer
evidence theory (DSET), it encounters limitations in dealing
with highly conflicting evidence, often leading to counter-
intuitive outcomes [39]. Addressing this, researchers have
explored two main strategies: modifying Dempster’s rule
of combination [40], [41], [42] and altering the evidence
itself [43], [44], [45], [46]. The first type, despite its
effectiveness in certain scenarios, sometimes compromises
key properties of Dempster’s rule, such as commutativity
and associativity, and can lead to increased computa-
tional complexity as the discernment framework expands.
Consequently, an increasing number of researchers are
focusing on preprocessing the evidence prior to applying
Dempster’s rule. Notable contributions in this area include
Murphy’s average rule [43], which averages the belief
masses from different pieces of evidence, and Deng et al.’s
enhancement of this method using the Jousselme distance
to measure differences between the evidences [44]. Other
significant methods include Jiang’s introduction of a novel
correlation coefficient [45], Xiao’s belief-based Jenson-
Shannon divergence [46], and Zhao et al.’s subsequent
divergence measures based on harmonic mean and square
mean [47], [48]. Kaur and Srivastava [49] presented a new
logarithmic function-based divergence for two pieces of
evidence. Interestingly, there are also other ways to deal
with the problem, see [50], [51], [52], and [53]. Despite
these advancements, challenges persist, such as the tendency
of some methods [46], [47], [48], [49] to oversimplify
the complexity of evidence by treating multiple subsets as
singletons, thereby overlooking the influence of varying
subsets. This revealed a gap in the effective measurement of
evidence for differences, which is also the motivation for this
study. Furthermore, in the field of multi-sensor information
fusion, most existing methods mainly rely on credibility
weights to determine the importance of each evidence. These
methods, while useful, may not be sufficient for some
applications, suggesting the need for more comprehensive or
alternative measures.

In this study, we first introduce a belief logarithmic
similarity measure (BLSM) to address scenarios involving
single subsets. To enhance the difference in influence
between different subsets, we subsequently propose the
reinforced belief logarithmic similarity measure (RBLSM).
This measure is an integration of the belief and plausibility
functions, which are recognized for encapsulating extensive
informative content in DSET, thereby providing a more
fine-grained assessment of differences between the evi-
dences. A distinctive feature of RBLSM is its adaptability.
In the case where the framework of discernment only
consists of single subsets, RBLSM is reduced to BLSM.
Furthermore, we demonstrate that RBLSM embodies

several advantageous properties, emphasizing its practicality
and effectiveness. Furthermore, we propose a multi-sensor
information fusion method within the DSET framework,
which effectively exploits the advantages of RBLSM and
provides an advanced solution for managing the complexities
associated with multisensor information fusion.

A. CONTRIBUTION
• We propose a RBLSM based on the belief and
plausibility functios to make it more suitable for
measuring differences between the evidences.

• We demonstrate and analyze several appealing proper-
ties, including bounded, symmetry and non-degeneracy,
which make it effective way to depict the differences
between the evidences.

• We also provide a novel multisensor information
fusion method based on RBLSM and belief entropy,
which can be effectively applied to target recognition
and pattern classification, verifying its efficiency and
superiority.

B. PAPER OUTLINE
Section II briefly reviews the basics of DSET. In Section III,
a new belief logarithmic similarity measure BLSM and
a reinforced belief logarithm similarity measure RBLSM
are proposed. Section IV provides a RBLSM-based multi-
sensor information fusion method. In Section V, we verify
the superiority of the proposed method on two applications.
Section VI makes the conclusion.

II. PRELIMINARIES
DSET [28], [29], as one of the most useful tools for dealing
with uncertainty and imprecision, has a unique appeal in
modeling imperfect knowledge. Here is a brief introduction
to the basic concepts of DSET.
Definition 1 (Framework of Discernment): Let 4 be the

framework of discernment, which is represented by a finite
set of elements that are exhaustive and mutually exclusive as
follows:

4 = {E1, E2, · · · , EN } (1)

In DSET, the power-set of 4 is depicted as 24:

24
= {∅, {E1}, {E2}, . . . , {EN }, {E1, E2}, . . . , 4} (2)

where {Ei} and {Ei, Ej} are the singleton and multiple subsets,
and ∅ is an empty set.
Definition 2 (Mass Function): A mass function, com-

monly referred to as a basic belief assignment (BBA),
is defined as a mapping m: 24

→ [0, 1], adhering to the
following conditions:

∑
Ei∈24

m(Ei) = 1

m(∅) = 0
(3)

where m(Ei) denotes the mass of belief to Ei.
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Definition 3 (Belief and Plausibility Functions): For any
focal element Ei, the belief function Bel(Ei) and the
plausibility function Pl(Ei) are defined as:

Bel(Ei) =

∑
Ej⊆Ei

m(Ej) (4)

Pl(Ei) =

∑
Ej∩Ei ̸=∅

m(Ej) (5)

where Bel(Ei) and Pl(Ei) represent the lower and upper
probability bounds of Ei respectively.
Definition 4 (Dempster’s Rule): Suppose that m1 and

m2 are two distinct BBAs on 4, Dempster’s rule is expressed
as:

m(Ei) =


0, Ei = ∅∑
Ej∩Ek=Ei

m1(Ej)m2(Ek )

1 − K
, Ei ̸= ∅

(6)

with

K =

∑
Ej∩Ek=∅

m1(Ej)m2(Ek ) (7)

where K denotes the conflict coefficient betweenm1 andm2.

III. PROPOSED SIMILARITY MEASURE
In DSET, accurately quantifying discrepancies or similarities
between various pieces of evidence is crucial. However,
identifying an effective method for this calculation remains
an unresolved challenge in the field. To date, some methods
have been developed to solve this issue, such as distance
measure [54], [55], divergence measure [47], [49] and
similarity measure [20], [50]. In this paper, we first attempt
to propose a new belief logarithmic similarity measure
(BLSM) to solve the above issue. In parallel, we further
define a reinforcement belief logarithmic similarity measure
(RBLSM) and demonstrate some interesting properties that
RBLSM satisfies. Finally, we demonstrate the performance
of RBLSM on some numerical examples. The details are
described below.

A. A NEW BELIEF LOGARITHMIC SIMILARITY MEASURE
Definition 5 (Belief Logarithmic Similarity Measure): Let

m1 and m2 be two independent BBAs on 4, the belief
logarithmic similarity measure (BLSM) between m1 and
m2 is expressed as:

BLSM(m1,m2) = log2

2 −

∑
Ei∈24

|m1(Ei) − m2(Ei)|
2


(8)

BLSM can use BBAs to gauge discrepancy among the
evidences. However, its capability is somewhat limited, par-
ticularly in accurately discerning the influences of multiple
subsets. To elucidate the limitations of BLSM, we present a
numerical example illustrating its shortcomings.

Example 1: Consider three BBAs m1, m2 and m3 in
4 = {E1, E2, E3}:

m1 : m1({E1}) = 0.6, m1({E2, E3}) = 0.2,

m1({E1, E2, E3}) = 0.2

m2 : m2({E1}) = 0.2, m2({E2, E3}) = 0.6,

m2({E1, E2, E3}) = 0.2

m3 : m3({E1}) = 0.2, m3({E2, E3}) = 0.2,

m3({E1, E2, E3}) = 0.6

In DSET, a BBA can be characterized by Bel and Pl.
Hence, these BBAs can be converted to Bel and Pl as follows:

m1 : Bel1({E1}) = 0.6, Bel1({E2}) = 0, Bel1({E3}) = 0

Pl1({E1}) = 0.8, Pl1({E2}) = 0.4, Pl1({E3}) = 0.4

m2 : Bel2({E1}) = 0.2, Bel2({E2}) = 0, Bel2({E3}) = 0

Pl2({E1}) = 0.4, Pl2({E2}) = 0.8, Pl2({E3}) = 0.8

m3 : Bel3({E1}) = 0.2, Bel3({E2}) = 0, Bel3({E3}) = 0

Pl3({E1}) = 0.8, Pl3({E2}) = 0.8, Pl3({E3}) = 0.8

We can observe thatm1 allocates a substantial belief mass
to the proposition E1, whereasm2 assigns a larger belief mass
to the proposition E2, E3 and m3 emphasizes the proposition
E1, E2, E3. Essentially, both m2 and m3 encapsulate the
elements of uncertainty and imprecision in the information.
Notably, there is a pronounced conflict between m1 and m2.
Consequently, it is anticipated that the similarity between
m1 and m2 would be lower compared to the similarity
between eitherm1 and m3 or m2 and m3.

According to (8), the BLSM among m1, m2 and m3 are
computed as follows:

BLSM(m1,m2) = BLSM(m1,m3) = BLSM(m2,m3)

It becomes clear that the similarity between the BBAs
remains uniform, a finding that deviates from our anticipa-
tions. This unexpected outcome arises because the original
BLSM model only accounts for the influence of singleton
subsets. Addressing this limitation, we introduce a reinforced
BLSM, designed to thoroughly incorporate the effects of
both singleton and multiple subsets within BBAs. This
refinement aims to provide a more accurate representation of
similarities and discrepancies among BBAs, aligning more
closely with theoretical expectations.

B. A REINFORCED BELIEF LOGARITHMIC SIMILARITY
MEASURE
Definition 6 (Reinforced Belief Logarithmic Similarity

Measure): Letm1 andm2 be two BBAs on 4, the reinforced
belief logarithmic similarity measure (RBLSM) between
m1 andm2 is defined as:

RBLSM(m1,m2)

= log2

2 −

∑
Ei∈4

|BPLm1 (Ei) − BPLm2 (Ei)|
2

 (9)
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where

BPLm(Ei) =
Bel(Ei) + Pl(Ei)∑

Ei∈4

Bel(Ei) + Pl(Ei)
(10)

Remark 1: We can note that BPLm effectively converts
BBA into a probability distribution by amalgamating Bel
and Pl. The RBLSM introduced here is adept at capturing
the interplay between singleton and multiple subsets. This
capability ensures that the influence of multiple subsets,
which might be overlooked by BLSM, is duly considered
and integrated into the analysis. Interestingly, RBLSM
degenerates to BLSM when BBA contains only singleton
subsets.
Remark 2: Ahigher value ofRBLSM(m1,m2) indicates

a greater similarity between m1 and m2, i.e., the disparity
between m1 and m2 is comparatively smaller. Conversely,
a lower value of RBLSM(m1,m2) signifies a lesser
similarity betweenm1 andm2, implying a larger discrepancy
between the two.
Property 1: The new RBLSM satisfies the following

properties:
1) Bounded: 0 ≤ RBLSM(m1,m2) ≤ 1.
2) Symmetry:RBLSM(m1,m2) =RBLSM(m2,m1).
3) Non-degeneracy:RBLSM(m1,m2) = 1 if and only if

m1 = m2.
Proof 1: For two BBAsm1 andm2 in 4, we have:

RBLSM(m1,m2)

= log2

2 −

∑
Ei∈4

|BPLm1 (Ei) − BPLm2 (Ei)|
2


We can easily get 0 ≤

∑
Ei∈4

|BPLm1 (Ei)−BPLm2 (Ei)|
2 ≤ 1,

Clearly, the value of log2(X ), X ∈ [1, 2] is always positive
and within [0, 1]. Thus, we obtain 0 ≤ RBLSM(m1,m2) ≤

1.
Proof 2: For two BBAsm1 and m2 in 4, we have:

RBLSM(m1,m2)

= log2

2 −

∑
Ei∈4

|BPLm1 (Ei) − BPLm2 (Ei)|
2


and

RBLSM(m2,m1)

= log2

2 −

∑
Ei∈4

|BPLm2 (Ei) − BPLm1 (Ei)|
2


Since |BPLm1 (Ei) − BPLm2 (Ei)| = |BPLm2 (Ei) −

BPLm1 (Ei)|, it is easy to obtain RBLSM(m1,m2) =

RBLSM(m2,m1).

Proof 3: For two same BBAsm1 andm2 in 4, i.e.m1 =

m2. Thus, we have:

RBLSM(m1,m2)

= log2

2 −

∑
Ei∈4

|BPLm1 (Ei) − BPLm2 (Ei)|
2


= log2

2 −

∑
Ei∈4

|BPLm1 (Ei) − BPLm1 (Ei)|
2


= 1

Conversely, assume that RBLSM(m1,m2) = 1, we thus
have:

log2

2 −

∑
Ei∈4

|BPLm1 (Ei) − BPLm2 (Ei)|
2

 = 1

Hence, we can conclude
∑
Ei∈4 |BPLm1 (Ei) − BPLm2 (Ei)|

= 0, which also means thatm1 = m2.
Example 2: Recall Example 1, the proposed similarity

measure RBLSM among m1, m2 and m3 are computed as
follows:

m1 : BPLm1 ({E1}) =
0.6 + 0.8

0.6 + 0.8 + 0.4 + 0.4
= 0.6364

BPLm1 ({E2}) =
0.4

0.6 + 0.8 + 0.4 + 0.4
= 0.1818

BPLm1 ({E3}) =
0.4

0.6 + 0.8 + 0.4 + 0.4
= 0.1818

m2 : BPLm2 ({E1}) =
0.2 + 0.4

0.2 + 0.4 + 0.8 + 0.8
= 0.2727

BPLm2 ({E2}) =
0.8

0.2 + 0.4 + 0.8 + 0.8
= 0.3636

BPLm2 ({E3}) =
0.8

0.2 + 0.4 + 0.8 + 0.8
= 0.3636

m3 : BPLm3 ({E1}) =
0.2 + 0.8

0.2 + 0.8 + 0.8 + 0.8
= 0.3846

BPLm3 ({E2}) =
0.8

0.2 + 0.8 + 0.8 + 0.8
= 0.3077

BPLm3 ({E3}) =
0.8

0.2 + 0.8 + 0.8 + 0.8
= 0.3077

RBLSM(m1,m2),RBLSM (m1,m3), and RBLSM
(m2,m3) as shown in the equation at the bottom of the
next page. Hence, we can find that RBLSM(m1,m2) ≤

RBLSM(m1,m3) ≤ RBLSM(m2,m3), which is
consistent with our expectation.
Example 3: Suppose that m1 and m2 are two BBAs on

4 = {E1, E2, E3, E4, E5}.

m1 : m1({E1}) = 0.25, m1({E2}) = 0.15, m1({E4}) = 0.35

m1({E1, E3}) = 0.05, m1({E2, E3, E4, E5}) = 0.20

m2 : m2({E1}) = 0.25, m2({E2}) = 0.15, m2({E4}) = 0.35

m2({E1, E3}) = 0.05, m2({E2, E3, E4, E5}) = 0.20

104632 VOLUME 12, 2024



Z. Liu et al.: Generalized Similarity Measure for Multisensor Information Fusion via DSET

Clearly,m1 andm2 are the same, and the elements in each
subset are the same. we find that RBLSM(m1,m2) = 1,
illustrating that RBLSM is proficient in accurately mea-
suring the similarity between identical BBAs. Furthermore,
this particular example also showcases the non-degeneracy
property ofRBLSM.
Example 4: Suppose that m1 and m2 are two BBAs on

4 = {E1, E2, E3, E4}.

m1 : m1({E1}) = 0.55, m1({E2}) = 0.10,

m1({E1, E3}) = 0.20, m1({E2, E4}) = 0.05,

m1({E1, E2, E4}) = 0.10

m2 : m2({E1}) = 0.10, m2({E2}) = 0.45,

m2({E1, E3}) = 0.10, m2({E2, E4}) = 0.05,

m2({E1, E2, E4}) = 0.20

m1 has the greatest mass of belief for proposition E1, while
m2 has a greater mass of belief for proposition E2, which
indicates that there is a large discrepancy betweenm1 andm2.
According to (9), we haveRBLSM(m1,m2) = 0.6211 and
RBLSM(m2,m1) = 0.6211. Therefore, we verify the
property of symmetry.
Example 5: Suppose that m1 and m2 are two BBAs on

4 = {E1, E2, E3}.

m1 : m1({E1}) = α, m1({E2}) = β,

m1({E3}) = 1 − α − β

m2 : m2({E1}) = 0.7, m2({E2}) = 0.3

Given the constraints 0 ≤ α, β ≤ 1 and 0 ≤ α + β ≤ 1,
the behavior ofRBLSM can be observed in FIGURE 1. For
instance, when α = 0.7 and β = 0.3, the calculations result
in m1({E1}) = 0.7 and m1({E2}) = 0.3, leading to m1 = m2.
In this situation, the RBLSM achieves its maximum belief
mass of 1, indicating complete similarity. Conversely, when
α = 0 and β = 0, we find m1({E1}) = 0, m1({E2}) = 0 and
m1({E3}) = 1. This configuration results inm1 andm2 being

completely at odds, with RBLSM reaching its minimum
belief mass of 0, reflecting total dissimilarity. Moreover,
regardless of the variations in α and β,RBLSM consistently
maintains values within the range of [0,1]. This observation
further validates the bounded property ofRBLSM.
Example 6: Suppose that m1 and m2 are two BBAs on

4 = {E1, E2}.

m1 : m1({E1}) = α, m1({E2}) = β,

m1({E1, E2}) = 1 − α − β

m2 : m2({E1}) = β, m2({E2}) = α,

m2({E1, E2}) = 1 − α − β

where 0 ≤ α, β ≤ 1, and 0 ≤ α + β ≤ 1.
As depicted in FIGURE 2, when α = β, it leads to

m1 = m2. In this scenario, RBLSM attains its maximum
value of 1, indicating a perfect similarity. On the other hand,
when α = 1 and β = 1, which is not possible within the
specified constraints but hypothetically, it would mean that
m1 and m2 are entirely conflicting. Under these conditions,
RBLSM would reach its minimum value of 0, representing
total dissimilarity. Moreover, regardless of the variations in
α and β, RBLSM consistently maintains values within
the range of [0,1]. This further confirms its property of
boundedness. Examples 5 and 6 in the paper illustrate the
ability of RBLSM to effectively measure the similarities
between different subsets of BBAs, showcasing its versatility
and effectiveness in handling diverse belief assignments.
Example 7: Suppose that m1 and m2 are two BBAs on

4 = {E1, E2}.

m1 : m1({E1}) = α, m1({E2}) = 1 − α

m2 : m2({E2}) = 1

In Example 7, m1 m1 and m2 contain only singleton
subsets {E1} and {E2}. FIGURE 3 shows the BLSM and
RBLSM between m1 and m2. We can find that the
results of BLSM and RBLSM are always the same under

RBLSM(m1,m2)

= log2

(
2 −

|0.6364 − 0.2727| + |0.1818 − 0.3636| + |0.1818 − 0.3636|
2

)
= 0.7105

RBLSM (m1,m3)

= log2

(
2 −

|0.6364 − 0.3846| + |0.1818 − 0.3077| + |0.1818 − 0.3077|
2

)
= 0.8059

RBLSM(m2,m3)

= log2

(
2 −

|0.2727 − 0.3846| + |0.3636 − 0.3077| + |0.3636 − 0.3077|
2

)
= 0.9169
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FIGURE 1. The results of RBLSM varying with α and β in Example 5.

different α. This is also consistent with our previous analysis
thatRBLSM degenerates into BLSM when BBA contains
only singleton subsets.
Example 8: Suppose that m1 and m2 are two BBAs on

4 = {E1, E2}.

m1 : m1({E1}) = α, m1({E1, E2}) = 1 − α

m2 : m2({E2}) = 1

In Example 8, m1 contains not only singleton subset
{E1} but also multiple subset {E1, E2}. FIGURE 4 displays
Xiao’s measure [46] and Kaur et al.’s measure [49]1 and
the BLSM and RBLSM between m1 and m2. We can
see that changes with α do not change the results of Xiao’s
measure, Kaur et al.’s measure and BLSM because they
do not take into account the effect of multiple subsets when
measuring similarities between BBAs. For comparison, the

1Here, both measures are converted into similarity measures based on the
original divergence.

increase in α corresponds to the decrease in RBLSM,
which is reasonable. Therefore, RBLSM is in a better
position to distinguish similarities between different subsets
of BBAs.

IV. RBLSM-BASED MULTISENSOR INFORMATION
FUSION METHOD
This section introduces an new multisensor information
fusion method, ingeniously integrating RBLSM with a
belief entropy concept. The method unfolds in a three-
stage process. Initially, RBLSM is employed for assigning
a credibility weight to each evidence. The key principle
here is that the more an evidence agrees with others,
the higher its credibility weight. Subsequently, the belief
entropy is leveraged to quantify the information volume
weight of each evidence. This measure encapsulates the
richness or the informational content inherent in the evidence.
Finally, a comprehensive weight is derived by integrating
the previously calculated credibility and information volume
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FIGURE 2. The results of RBLSM varying with α and β in Example 6.

FIGURE 3. The results of BLSM and RBLSM varying with α in
Example 7.

weights. This weight acts as a modifier for each evidence,
fine-tuning them before they undergo fusion through the

FIGURE 4. The results of various similarity measures varying with α in
Example 8.

application of Dempster’s rule. The flowchart of the proposed
method is displayed in FIGURE 5.
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FIGURE 5. The flowchart of the proposed method.

Step 1: Obtaining credibility weights
Consider n distinct evidences, denoted as

mk (k = 1, · · · , n), each defined within the framework
4 = {E1, · · · , EN }.
Step 1.1:Employ Eq. (9) to compute the similarity between

the evidence mk and ml (k, l = 1, · · · , n), represented as
RBLSM(mk ,ml). This leads to the formation of a similarity
matrix S M n×n, which captures the pairwise similarities
among all the evidences.

S M n×n =


1 RBLSM12 . . . RBLSM1n)

RBLSM21 1 . . . RBLSM2n
...

. . .
...

RBLSMn1 RBLSMn2 . . . 1


(11)

Step 1.2: Calculate the support degree S D(mk ) ofmk as:

S D(mk ) =

n∑
l=1,l ̸=k

RBLSM(mk ,ml) (12)

TABLE 1. BBAs modeled from sensors in case 1.

Step 1.3: Calculate the credibility weight C W (mk ) of mk
as:

C W (mk ) =
S D(mk )
n∑

k=1
S D(mk )

(13)

Step 2: Obtaining information volume weights
Belief entropy, as proposed in [56], is commonly used to

quantify the uncertainty inherent in each evidence. However,
it has certain limitations. In our earlier research [39],
we developed an enhanced version of belief entropy, which
builds upon the original concept by incorporating both belief
and plausibility functions. These functions are recognized
for encompassing a broader spectrum of useful information,
thereby offering a more comprehensive measure of uncer-
tainty.
Step 2.1: Calculate the belief entropy BE (mk ) formk as:

BE (mk ) =

∑
Ei∈4

BPLk (Ei) log2
(

1
BPLk (Ei)

)
+

∑
Ei∈24

mk (Ei) log2
(
2|Ei| − 1

)
(14)

Step 2.2: Calculate the information volume I V (mk ) for
mk as:

I V (mk ) = exp (BE (mk )) , ∀k = 1, . . . , n (15)

Step 2.3: Calculate the information volume weight
I V W (mk ) formk as:

I V W (mk ) =
I V (mk )
n∑

k=1
I V (mk )

(16)

Step 3: Obtaining final fusion results
Step 3.1: Calculate the comprehensive weight W (mk ) for

mk as:

W (mk ) =
C W (mk ) × I V (mk )
n∑

k=1
C W (mk ) × I V (mk )

(17)

Step 3.2: Calculate the weighted average evidence m̄k as:

m̄k (Ei) =

n∑
k=1

W (mk ) × mk (Ei) (18)

Step 3.3: Utilize Eq. (6) to fuse m̄k n− 1 times.
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TABLE 2. Fusion results of different methods in case 1.

TABLE 3. Fusion results of different methods in case 1.

FIGURE 6. The fusion results of different methods.

V. APPLICATION IN MULTISENSOR INFORMATION
FUSION
In this section, to validate the effectiveness of the proposed
method, two distinct applications are employed as test
cases.

A. CASE 1: TARGET RECOGNITION
• Background statement.

To compare the proposed method to other competitive
methods, the target recognition case from [57] is employed.
A total of five different sensors (S1, S2, S3, S4 and S5) are
used to collect data and model as BBAs. The framework
of discernment 4 = {E1, E2, E3} comprises three possible
targets: ft {E1}, airliner, bomber {E2} and fighter {E3}. The

TABLE 4. BBAs modeled from sensors in case 2.

BBA of each sensor in TABLE 1 shows that onlym2 strongly
supports target {E2}, while all the others support target {E1}.
Due to its highly conflicting with other pieces of evidence,
m2 can be considered unreliable one.
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TABLE 5. Fusion results of different methods in case 2.
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FIGURE 7. The fusion results via SLm1 and SWm2 of different methods.

FIGURE 8. The fusion results via SLm1 , SWm2 and PLm3 of different methods.

• Fusion procedure.
Step 1.1: The similarity matrix, denoted as S M , is con-

structed using the following procedure:

S M =


1 0.6781 0.5556 1 0.5956

0.6781 1 0.1884 0.6781 0.2895
0.5556 0.1884 1 0.5556 0.9391

1 0.6781 0.5556 1 0.5956
0.5956 0.2895 0.9391 0.5956 1


Steps 1.2 - 3.1: The S D , C W , BE , I V , I V W and W

are calculated as shown in TABLE 2:
Step 3.2: The weighted average evidence m̄ is calculated

as follows:

m̄(E1) = 0.5513, m̄(E2) = 0.3055, m̄(E3) = 0.0336,

m̄(4) = 0.1096

Step 3.3: The final result FR is calculated as shown in
TABLE 3.

• Discussion.
Table 3 clearly displays the fusion results obtained using

various methods, including the traditional Dempster’s rule
and the newly proposed method, alongside other improved
techniques. Notably, Dempster’s rule demonstrates a pro-
nounced bias towards E2, neglecting support for E1. This
skew in results highlights a potential limitation of Dempster’s
rule in certain scenarios. In stark contrast, the proposed
method exhibits a more balanced and accurate identification,
successfully recognizing the target E1. This outcome aligns
well with the results obtained from other improved fusion
methods, indicating a more reliable and nuanced approach to
information synthesis. Moreover, as illustrated in Figure 6,
the proposed method not only correctly identifies the target
but also shows a higher degree of support for E1 compared to
other enhanced methods. This superior performance under-
scores the method’s robustness and efficiency, particularly in
decision-making scenarios where accurate target recognition
is crucial. The findings suggest that the proposed method
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FIGURE 9. The fusion results via SLm1 , SWm2 , PLm3 and PWm4 of different methods.

TABLE 6. Fusion results of different methods in case 2.

could offer significant advantages in environments where
discerning the correct target from multiple sensor inputs is
essential.

B. CASE 2: PATTERN CLASSIFICATION
In an application focusing on pattern classification, the
well-known Iris dataset from the UCI database is utilized.
This dataset includes three distinct classes: Setosa {Se},
Versicolor {Vc}, Virginica {Vi}. Each sample in the dataset
is characterized by four attributes: Sepal length (SL), Sepal
width (SW), Petal length (PL), and Petal width (PW).
As detailed in Table 4, the dataset information is represented
through BBAs, with an added layer of complexity in the form
of noise interference [58]. Compared to the other evidences,
the second evidence seems to conflict with them.

TABLE 5 presents the fusion results obtained using
various methods. Notably, Dempster’s rule exhibits a strong
inclination towards class {Vc}, entirely neglecting support for
class {Se}. This outcome underscores potential limitations
in Dempster’s rule when faced with certain types of
evidence configurations.Murphy’s method also demonstrates
shortcomings, indicating that a simplistic averaging of all the
evidences may not suffice for accurate decision-making. This
highlights the need for more nuanced approaches in handling
evidence fusion. Interestingly, when the third evidence is
introduced, Xiao’s method [46], Gao and Xiao’s method [31],
and the proposed method manage to discern the correct
result. Conversely, Deng et al.’s method [44], Lin et al.’s
method [1], Jiang’s method [45] and Xiao et al.’s method [2]
continue to favor class Vc. This persistence is attributed to
these methods focusing solely on the discrepancies between
evidence pieces, while disregarding the actual information

content within each evidence. FIGURE 7, 8, and 9 visualize
the belief masses for classes {Vc} and {Se} across differ-
ent methods. A notable observation is that the proposed
method secures the highest belief mass as the number of
BBAs increases. This enhancement in belief mass directly
contributes to improved accuracy in decision-making, which
is a testament to the effectiveness and superiority of the
proposed method. Moreover, we compare the performance
of the proposed method with the RBLSM-based method
and the belief entropy-based method in TABLE 6. As can
be seen from TABLE 6, although each method can classify
accurately, the proposed method (which takes into account
both the credibility and information volume of the evidence)
guarantees the highest belief value. The rationale is that
similarity measure is used to measure the differences between
evidences, while belief entropy quantifies the uncertainty for
evidence. This shows that considering these two dimensions
can significantly improve the effectiveness of the fusion
results.

VI. CONCLUSION
This paper introduces a new reinforcement belief logarithmic
similarity measure (RBLSM), specifically crafted to assess
the variances among the evidences. We demonstrate that
RBLSM adheres to essential properties such as bounded,
symmetry, and non-degeneracy. This adherence is further
corroborated through a series of numerical examples,
which effectively illustrate the robustness and reliability of
RBLSM. Building upon the foundation laid by RBLSM,
we develop a novel multisensor information fusion technique.
The utility and practicality of this method are rigorously
validated through two distinct application scenarios: target
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recognition and pattern classification. These applications
highlight its adaptability to various contexts.

While the proposed method holds considerable potential
for practical applications, it is currently limited to handling
real numbers. In some scenarios, complex numbers are often
used to represent richer information, which will limit the
application of the proposed method. Consequently, in future
work, expanding the proposed method to accommodate
complex evidence theory is crucial and could greatly enhance
its relevance and scope.
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