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ABSTRACT The saturated non-singular terminal switching function (SNTSF) for sliding mode control
with speed error limitation and finite-time error convergence is proposed. The sliding-mode dynamics and
the boundary layer dynamics of the SNTSF are analyzed. It is also shown that the non-singular terminal
switching function does not have a higher boundary layer position tracking precision than the linear switching
function, contrary to some previous claims in the literature. An SNTSF sliding mode controller with speed
error limitation and finite-time convergence is proposed and tested both simulatively and experimentally on
a laboratory DC motor system.

INDEX TERMS Boundary layer, finite-time, nonlinear control, non-singular, saturation, sliding mode, error
speed limitation, terminal.

I. INTRODUCTION
The control of real-world nonlinear uncertain systems
with disturbances necessitates the use of robust control
approaches. Sliding mode control (SMC) [1], [2], [3] is one
such approach, with good disturbance rejection capability and
often simple implementation.

The design of a sliding mode controller may be broken up
into two phases: the design of the switching function s and
the derivation of the control law u, which drives the switching
function value to zero as time progresses.

In the first part of the design, the surface s = 0 is
chosen, such that s = 0 corresponds to the compensated
dynamics [4] (or reference dynamics). Since s = 0 defines
the compensated dynamics, then the choice of the surface
s = 0 is important and many classes of switching functions
have been introduced and classified into broad categories [5].
The most common ones are the linear switching function [6],
the non-singular terminal switching function [3], [7], [8] and
their combinations [9], [10], [11]. One of the more recently
introduced switching functions is the compound switching
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function in [12]. The compensated dynamics of this switching
function results in convergence with speed error limitation.

The second step of SMC design is control law synthesis.
The control law has to ensure that the switching function
converges to 0 even in the presence of disturbances, which
may necessitate the use of discontinuous control, which may
introduce unwanted oscillations and chattering [13]. The
simplest solution to this problem is the introduction of a so-
called boundary layer [14]. When a boundary layer is used,
the switching function s need not converge to 0, but only into
an interval of the form [−1s, 1s] with 1s > 0. In this case,
the plant does not acquire the compensated dynamics, but
only the quasi-compensated dynamics [4].

In the case of specific second order systems and the linear
switching function the ‘‘steady-state’’ position errors are
proportional to the width of the boundary layer 1s [7] and
in the case of the (singular) terminal switching function the
same errors are proportional to 1

p/q
s [8], where p/q > 1,

which leads to more precise position tracking for small 1s.
The following is a short summary of this paper.
In Section II the concept of resting intervals is introduced.

This allows rigorous description of ‘‘steady-state’’ error
bounds.
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The main results of this paper are in sections III, IV, V
and VI.
In section III the speed error limiting switching function

from [12] is rewritten using a single equation and some
of its dynamic properties are analyzed and proven. The
resulting switching function is given the name saturated linear
switching function.

In section IV the saturated non-singular terminal switching
function is defined an analyzed. This switching function
shares the speed error limitation property of its saturated lin-
ear counterpart, but it also possesses finite-time convergence
properties.

The non-singular terminal switching function should
possess a narrower ‘‘steady-state’’ position error bound [7]
when a boundary layer is used to suppress chattering [14].
In section V it is shown, that this is not the case.
In section VI a saturated non-singular terminal switching

function based controller is synthesized for an uncertain
second order system. Control performance is verified
simulatively and experimentally, and compared to con-
trollers that are based on switching functions from [6], [7]
and [12].

II. RESTING INTERVALS
Since the term ‘‘steady-state position (speed) error’’ or
‘‘steady-state (speed) error bound’’ are imprecise, and since
these bounds are often referred to in this paper, it seems
necessary to adopt a more precise definition of these terms.

For this reason, the concept of resting intervals is defined
here and used in the rest of the paper.
Definition 1: A closed interval C is a resting interval of

the scalar-valued function e(s, t) over s ∈ S, if and only if for
all s(t) ∈ S and any ϵ > 0, there is a t0, such that for all
t > t0 it is true that minc∈C |e(s, t) − c| < ϵ.
The definition of the resting interval, may also be written

using the limit notation as

lim
t→∞

min
c∈C

|e(s(t), t) − c| = 0 for all s(t) ∈ S . (1)

Loosely speaking, e(s(t), t) converges into the set C asymp-
totically, for all possible s(t) ∈ S.
Any interval that contains a resting interval is also a resting

interval. A resting interval that does not contain a proper
subinterval that is also a resting interval is the ‘‘smallest’’
resting interval, defined as follows.
Definition 2: If for every proper closed subinterval Is of a

resting interval I of e(s, t) over s ∈ S and every t0, there is
an s(t) ∈ S and a t1 > t0, such that e(s(t1), t1) ̸= Is, then I is
the smallest resting interval of e(s, t) over s ∈ S.
This definition states that for every closed subinterval Is of

I it is ‘‘always’’ possible to choose some s(t) from S such that
e(t) will leave Is at some future time t1. The fact that s(t) may
be chosen for each Is independently, reflects the fact that the
true value of s(t) is not known and therefore it is not possible
to ‘‘commit’’ to any particular s(t), even though there may be
some s(t) ∈ S for which e → Is ⊂ I for t → ∞.

The following lemma gives a sufficient condition to make
I the smallest resting interval of e(s, t) over s ∈ S according
to the previous definition.
Lemma 1: If for every closed subinterval Is of a resting

interval I of e(s, t) over s ∈ S there exists an s(t) ∈ S and
a constant ϵ ∈ I such that ϵ /∈ Is and

lim
t→∞

e(s(t), t) = ϵ , (2)

then I is the smallest resting interval of e(s, t) over s ∈ S.
Proof: Since ϵ ∈ I = [i1, i2] and ϵ /∈ Is = [is,1, is,2] and

Is is a proper closed subinterval of I , then there is an ϵ2 such
that
1) is,2 < ϵ2 < ϵ < i2
2) or i1 < ϵ < ϵ2 < is,1,

and since there is an s(t) such that limt→∞ e(s(t), t) = ϵ,
then for this s(t) and for all t0 there is a t1 > t0, such that
|e(s(t1), t1) − ϵ| < |ϵ2 − ϵ| based on which e(s(t1), t1) /∈ Is
for both cases 1 and 2.
These definitions and lemma are used later in this paper,

when the boundary layer properties of the saturated sliding
functions are analyzed.

III. THE SATURATED LINEAR SWITCHING FUNCTION
It is assumed, that e represents position error, the limit ė =

de/dt exists and represents speed error, a, k are constants and
the saturation function is defined by

sat(·) = max(−1,min(1, ·)) . (3)

Function arguments are left out for the sake of brevity, e.g. e
is written instead of e(t) etc.

The following switching function definition can found in
block diagram form in [12]:

s = ė+ asat(ke) . (4)

This saturated linear switching function (SLSF) already
appears in [12], but is not explicitly stated as a single
equation.

The contour and surface plots of (4) for a = 1 and k = 1
are shown in Fig. 1. Some figures in this paper were made
with Asymptote [15].
The main purpose of using (4) as a switching function

is to implement speed error limitation [12], which allows
steeper switching line slopes without introducing overshoot
into systems with control input limitations, which may lead
to more precise position tracking. An additional effect is the
reduction of dependence of |s| on e, i.e. |s| is bounded for
bounded ė regardless of e.

In the following the dynamic properties of systems
following the curve defined by the nullspace of (4) are
analyzed.

The analysis has two components: the switching surface
analysis, during which it is assumed that s = 0, and the
boundary layer analysis, during which it is assumed that
|s| ⩽ 1s for some 1s > 0. In both cases the evolution of the
position error e in time is analyzed and the smallest resting
interval of e over s ∈ [−1s, 1s] is derived.
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FIGURE 1. The contour plot (top) of the saturated linear switching
function (SLSF) and its surface plot (bottom).

A. SATURATED LINEAR SWITCHING FUNCTION SURFACE
ANALYSIS
The following lemma describes the evolution of e in time
when (4) holds and s = 0.
Lemma 2: Let a and k be constants. If e satisfies

ė = −asat(ke) , (5)

then
1) for |e| > 1/|k|, d |e|/dt = −asgn(k) and
2) for |e| ⩽ 1/|k|, e satisfies e(t) = exp(−akt)e(0).

Proof: Consider that for |e| > 1/|k|, it is true that
sat(ke) = sgn(ke), and therefore (5) is equivalent to

ė = −asgn(ke) = −asgn(k)sgn(e) . (6)

Since e ̸= 0, then d |e|/dt = sgn(e)ė = −asgn(k), which
proves 1.
Now consider that for |e| ⩽ 1/|k|, sat(ke) = ke, so that (5)

reduces to ė = −ake, which implies e(t) = exp(−akt)e(0),
which proves 2.
Therefore, if ak ⩽ 0 and |e| > 1/|k|, then d |e|/dt

is non-negative, so that ak > 0 is necessary for global
asymptotic stability of e = 0. When ak > 0, then e = 0
is globally asymptotically stable, since Lemma 2 implies that
|e| decreases unless |e| = 0 (either with constant speed or
exponentially). Thus, ak > 0 is necessary and sufficient for
asymptotic stability.

B. SATURATED LINEAR SWITCHING FUNCTION
BOUNDARY LAYER ANALYSIS
When a boundary layer is used to suppress chattering, the
equality s = 0 may or may not hold. In general, |s| will be
bounded, since for some s large enough in magnitude, the
boundary layer control reduces to the exact (discontinuous)
controller, which drives |s| to zero.
The dynamics of e under the condition |s| ⩽ 1s for some

1s > 0 is analyzed in this subsection. It is also assumed that
both a and k are positive.

First, the influence of the boundary layer width on the
speed error limit is established.
Lemma 3: Let a, k, 1s be positive constants and also let

s = ė+ asat(ke). If |e| > 1/k and |s| ⩽ 1s ⩽ a, then

−a− 1s ⩽
d
dt

|e| ⩽ −a+ 1s . (7)

Proof: The inequalities |e| > 1/k , |s| ⩽ 1s ⩽ a and the
equation s = asat(ke) + ė imply |asgn(ke) + ė| ⩽ 1s ⩽ a.
Then the assumption that a ⩾ 1s results in |asgn(ke)| ⩾ 1s,
so that |asgn(ke) + ė| ⩽ 1s implies either
A.1 sgn(e) = −sgn(ė) if a > 1s or
A.2 ė = 0 if a = 1s.
In case A.1, the expression |asgn(ke) + ė| becomes
| − sgn(ė)a+ sgn(ė)|ė||, where sgn(ė) may be factored out
to get ||ė| − a|, so that |asgn(ke) + ė| ⩽ 1s becomes
||ė| − a| ⩽ 1s, which implies

a+ 1s ⩾ |ė| ⩾ a− 1s , (8)

which holds trivially for case A.2 as well.
Since |e| > 1/k , then:
1) in case A.1, the equation d |e|/dt = sgn(e)ė =

−sgn(ė)ė = −|ė| holds and since (8) also holds, then
−a− 1s ⩽ d |e|/dt ⩽ −a+ 1s, i.e. (7) holds,

2) and in case A.2 the equation d |e|/dt = sgn(e)ė = 0
holds and also a = 1s, so that (7) holds here as well.

Therefore (7) holds in both cases.
Thus, for |e| > 1/k the condition a ⩾ 1s is sufficient for

|e| to not increase and a = 1s + l with l > 0 is sufficient for
|e| to decrease with at least the speed l. It is also necessary
to have a ⩾ 1s, otherwise |e| may be increasing for some
s ∈ [−1s, 1s], as show in the following lemma.
Lemma 4: Let a, k, 1s be positive constants and define

s = asat(ke) + ė. If |e| > 1/k and a < 1s, then there is
an s ∈ [−1s, 1s], such that d |e|/dt > 0.

Proof: Since a < 1s, then a|sat(ke)| < 1s, therefore
there is an ϵ > 0, such that a|sat(ke)| + ϵ < 1s. If s =

asat(ke) + sgn(e)ϵ, then |s| < 1s and since |e| > 1/k , then
d |e|/dt = sgn(e)ė = sgn(e)[s− asat(ke)] = ϵ > 0.

In summary, for a > 0, k > 0 and |e| > 1/k it is necessary
and sufficient to have a ⩾ 1s in order to make sure that
d |e|/dt is not positive for any s ∈ [−1s, 1s] and (7) gives
the bounds of d |e|/dt .
The next lemma establishes an exponential envelope for

e(t), given that |s| ⩽ 1s and 1s/(ak) < |e| ⩽ 1/k , i.e. when
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|e| is small enough to fit into the linear region of sat(ke), but
larger than 1s/(ak).
Lemma 5: Let a, k, 1s be positive constants and define

s = asat(ke) + ė. If 1s/(ak) < |e| ⩽ 1/k and |s| ⩽ 1s,
then

|e| ⩽

(
|e(0)| −

1s

ak

)
exp(−akt) +

1s

ak
. (9)

Proof: Based on the assumptions 1s/(ak) < |e| ⩽ 1/k ,
s = asat(ke)+ ė and |s| ⩽ 1s it may be concluded that |ake+
ė| ⩽ 1s < ak|e|, so that sgn(ė) = −sgn(e) and ak|e|+1s ⩾
|ė| ⩾ ak|e| − 1s. Therefore, d |e|/dt = sgn(e)ė = −|ė| ⩽
−ak|e|+1s. Next, define h = |e|−1s/(ak) ⩾ 0 and observe
that d |e|/dt ⩽ −ak|e| + 1s is equivalent to dh/dt ⩽ −akh,
so that h ⩽ h(0)exp(−akt) [16]. Substituting |e| − 1s/(ak)
for h gives (9).

These results agree with previous results from [17] where
it is stated that e converges into [−1s/(ak), −1s/(ak)]. See
[18] for an alternative integral-based proof.
Lemma 5 shows that

C =

[
−

1s

ak
,
1s

ak

]
, (10)

is a resting interval for e(s, t) over s ∈ [−1s, 1s], since
limt→∞ minc∈C |e(s, t)− c| = 0 for all such s. The following
lemma shows that C is also the smallest resting interval I of
e(s, t) over s ∈ [−1s, 1s].
Lemma 6: Let a, k, 1s be positive constants, define s =

asat(ke) + ė and assume that s may take on any value from
[−1s, 1s]. Then,

I =

[
−

1s

ak
,
1s

ak

]
, (11)

is the smallest resting interval of e(s, t).
Proof: Let Is be a proper closed subinterval of I . Then,

there is a ϵ ∈ I , such that ϵ /∈ Is. Since ϵ ∈ I , then
|ϵ| ⩽ 1s/(ak), so that if s = akϵ, then |s| ⩽ 1s and
akϵ = asat(ke) + ė. Given that e(0) ∈ Is, then akϵ =

ake+ė and the solutions of this differential equation converge
to ϵ asymptotically for all initial e(0) ∈ I . Therefore,
limt→∞ e(s(t), t) = ϵ and based on Lemma 1 the interval I is
the smallest resting interval of e(s, t) over s ∈ [−1s, 1s].

Lemmas 3, 5 and 6 were verified via dynamics simulation.
The initial state was chosen to be e(0) = 1. Example
trajectories for the extreme cases s = ±0.1 are given in
Fig. 2. The hatched regions represent the uncertain approach
regions due to speed uncertainties given by (8). The switch
levels denote the moments when the dynamics switches from
constant speed convergence to exponential convergence.

IV. THE SATURATED NON-SINGULAR TERMINAL
SWITCHING FUNCTION
The saturated non-singular terminal switching function
(SNTSF) is defined as follows:

s = sgn(ė)|ė|p/q + asat(ke) , (12)

FIGURE 2. Extreme trajectories for s = 0.1 (top) and s = −0.1 (bottom)
from the simulative verification of lemmas 3 and 5 under different
parameter settings.

where 1 < p/q < 2 and a, k > 0. This switching function is
combination of the non-singular terminal switching function
(NTSF) [7] and the saturation linear switching function
from (4).

The contour and surface plots of the SNTSF for a = 1,
k = 1, p = 3 and q = 2 are shown in Fig. 3.
The same two part analysis is carried out for the switching

function (12) as was done for (4) in the previous section.

A. SATURATED NON-SINGULAR TERMINAL SWITCHING
FUNCTION SURFACE ANALYSIS
Lemma 7: Assume that (12) holds. If s = 0 and |e| > 1/k,

then
d
dt

|e| = −aq/p , (13)

i.e. |e| converges towards 0 with the constant speed aq/p.
Proof: For s = 0, the equation (12) becomes

sgn(ė)|ė|p/q = −asat(ke) . (14)

For |e| > 1/k , it is true that sat(ke) = sgn(ke), so that

sgn(ė)|ė|p/q = −asgn(ke) . (15)

Since |e| > 1/k , then sgn(ke) ̸= 0, which implies sgn(ė) ̸= 0,
otherwise (15) would not hold, thus

|ė|p/q = −asgn(ke)sgn(ė) . (16)
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FIGURE 3. The contour plot (top) of the saturated non-singular terminal
switching function (SLSF) and its surface plot (bottom).

Since a and k are positive, then |ė| = aq/p and sgn(e) =

−sgn(ė). Therefore,

d
dt

|e| = sgn(e)ė = −sgn(ė)ė = −|ė| = −aq/p . (17)

Which completes the proof.
Therefore in the case of the SNTSF, the speed limit is given

by aq/p.
For |e| ⩽ 1/k , equation (14) reduces to sgn(ė)|ė|p/q =

−ake, therefore e → 0 in finite-time [7].

B. SATURATED NON-SINGULAR TERMINAL SWITCHING
FUNCTION BOUNDARY LAYER ANALYSIS
In this subsection, the boundary layer analysis of (12) is
performed. It is assumed that s = 0 does not have to hold,
but that s ∈ [−1s, 1s] for some 1s > 0.
First, the influence of 1s on the speed limit aq/p is

analyzed. The results are summarized in the following
lemmas.
Lemma 8: Assume that (12) holds. If |s| ⩽ 1s, |e| ⩾ 1/k

and a > 1s, then

−(a+ 1s)q/p ⩽
d
dt

|e| ⩽ −(a− 1s)q/p . (18)

Proof: Since (12) is assumed as well as |s| ⩽ 1s, then

|sgn(ė)|ė|p/q + asat(ke)| ⩽ 1s . (19)

Since |e| ⩾ 1/k , then sat(ke) = sgn(ke) and therefore

|sgn(ė)|ė|p/q + asgn(ke)| ⩽ 1s . (20)

Since a > 1s, then

sgn(ė) = −sgn(ke) , (21)

since otherwise (20) would be contradicted. Equation (21)
implies that

d
dt

|e| = sgn(e)ė = −sgn(ė)ė = −|ė| . (22)

It also must be true that

||ė|p/q − a| ⩽ 1s , (23)

based on (20) and (21). Inequality (23) results in

a− 1s ⩽ |ė|p/q ⩽ a+ 1s . (24)

Since a > 1s and the function (·)q/p for 1/2 < q/p < 1 is
monotonically increasing, then

(a− 1s)q/p ⩽ |ė| ⩽ (a+ 1s)q/p . (25)

Equations (22) and (25) imply (18).
The following lemma describes the influence of the

boundary layer width 1s on the convergence of e, when
sat(ke) is not saturated. Inside the linear region of sat(ke), the
SNTSF reduces to the standard NTSF [7], therefore this part
of the analysis also applies to the NTSF.
Lemma 9: Assume that (12) holds. If |s| ⩽ 1s, |e| < 1/k

and ak|e| > 1s, then

−(ak|e| + 1s)q/p ⩽
d
dt

|e| ⩽ −(ak|e| − 1s)q/p . (26)

Proof: Since |e| < 1/k , then sat(ke) = ke, so that

|sgn(ė)|ė|p/q + ake| ⩽ 1s . (27)

Since ak|e| > 1s, then

sgn(ė) = −sgn(e) , (28)

since otherwise (27) could not hold. Based on (28) it is true
that

d
dt

|e| = sgn(e)ė = −sgn(ė)ė = −|ė| . (29)

It is also true that if both (27) and (28) hold, then

||ė|p/q−ak|e|| ⩽ 1s , (30)

which is just (27) with |sgn(ė)| = 1 factored out. The
inequality (30) implies

ak|e| − 1s ⩽ |ė|p/q ⩽ ak|e| + 1s . (31)

Since ak|e| > 1s and since (·)q/p is monotonically
increasing, then

(ak|e| − 1s)q/p ⩽ |ė| ⩽ (ak|e| + 1s)q/p . (32)

The inequality (32) and (29) imply (26).
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If a and k are chosen such that the preconditions of lemmas
8 and 9 hold, then d |e|/dt ⩽ −(ak|e| − 1s)q/p for |e| >

1s/(ak) and for all s(t) ∈ [−1s, 1s].
This is already sufficient for the interval

C =

[
−

1s

ak
,
1s

ak

]
, (33)

to be a resting interval of e(s, t) over s ∈ [−1s, 1s].
Proof:Let ϵ1, ϵ2 > 0 such that e > 1s/(ak)+ϵ1/(ak) >

1s/(ak) + ϵ2/(ak) > 1s/(ak). For e > 1s/(ak) + ϵ2/(ak)
it follows that ė ⩽ −ϵ

q/p
2 , so that for e > 1s/(ak) + ϵ1/(ak)

it follows that ė ⩽ −ϵ
q/p
2 , because e > 1s/(ak) + ϵ1/(ak) is

a subset of e > 1s/(ak) + ϵ1/(ak). Therefore, e decreases
under 1s/(ak) + ϵ1/(ak), in time less than t1 = [e(0) −

1s/(ak) − ϵ1/(ak)]/ϵ
q/p
2 . Thus, for every ϵ1 > 0, there is

a t1, such that if t > t1, then e(t) ⩽ 1s/(ak) + ϵ1/(ak).
The case when e < −1s/(ak) is analogous and it shows

that for every ϵ1 > 0, there is a t1, such that if t > t1, then
e(t) ⩾ −1s/(ak) − ϵ1/(ak).
Thus, for every ϵ1 > 0, there is a t1, such that if t > t1, then

|e(t)| ⩽ 1s/(ak)+ϵ1/(ak), i.e. for every ϵ1 > 0, there is a t1,
such that t > t1 implies minc∈C |e(s, t) − c| < ϵ1/(ak) over
all s ∈ [−1s, 1s] and thus limt→∞ minc∈C |e(s, t) − c| = 0
for all s ∈ [−1s, 1s], i.e. C is a resting set of e(s, t) over
s ∈ [−1s, 1s] as per Definition 1.

From (7) and (18) it can be observed, that given that

(a+ 1s)q/p − (a− 1s)q/p ⩽ 21s (34)

then the bound of d |e|/dt is more tight in the SNTSF case.
Equations (18) and (33) have been numerically verified by

integrating (12) from the initial state e(0) = 1 and for the
extreme cases s = ±1s = ±0.1. The results as well as
the chosen values of a, k, q and p are shown in Fig. 4. The
expected resting intervals of e based on (33) are shown as
shaded regions. The approach regions, that were computed
based on (18), have a hatch pattern in the figure. Both (18)
and (33) are verified by the simulation, since the errors
converge into the corresponding regions defined by (33) and
the approach speed is limited according to (18).

V. THE SMALLEST RESTING INTERVAL OF THE
NON-SINGULAR TERMINAL SWITCHING FUNCTION
Lemma 6 states that (33) is the smallest resting interval
of e(s, t) over s ∈ [−1s, 1s] in case of the SLSF. The
same interval is the smallest resting interval of e(s, t) over
s ∈ [−1s, 1s] for the SNTSF and the NTSF with a >

1s, k > 0, 1 < p/q < 2, based on the following lemma.
Lemma 10: Assume that

s = sgn(ė)|ė|p/q + ake , (35)

then

C =

[
−

1s

ak
,
1s

ak

]
, (36)

is the smallest resting interval of e(s, t) over s ∈ [−1s, 1s].

FIGURE 4. Extreme trajectories for s = 0.1 (top) and for s = −0.1
(bottom) from the simulative verification of (26) and (33).

Equation (35) holds for the NTSF and also for the SNTSF
after |e| < 1/k, which is guaranteed to happen for a > 1s
based on Lemma 8.

Proof: Let Is be any closed subinterval of I = C =

[−1s/(ak), 1s/(ak)]. Then there is an ϵ, such that ϵ ∈ I
and ϵ /∈ Is. Since ϵ ∈ I , then |ϵ| ⩽ 1s/(ak). Now
choose s = akϵ, so that |s| ⩽ 1s, i.e. s ∈ [−1s, 1s] and
sgn(ė)|ė|p/q+ake = akϵ. This differential equation may also
be written as sgn(ḣ)|ḣ|p/q = −akh, where h = e − ϵ. Since
for such h, the equation limt→∞ h(t) = 0 holds, which is the
same as limt→∞ e = ϵ, so that based on Lemma 1 the interval
I is the smallest resting interval of e(s, t) over s ∈ [−1s, 1s].

Lemma 10 contradicts some previous claims in [17] and
[8] and other papers, which state that

I2 =

[
−

(
1s

ak

)p/q

,

(
1s

ak

)p/q
]

(37)

is the interval into which e converges for the NTSF given that
a boundary layer of width 1s is used, similarly to the case of
the (singular) terminal switching function (TSF).

A counterexample is provided to verify that 10 disproves
(37). The following parameter settings were chosen for this
experiment: 1s = 0.1, k = 1, a = 2, q = 2 and
p = 3. Convergence of e into I2 would imply that e →

[−0.0112, 0.0112] (or into [−0.0224, 0.0224] in the case
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FIGURE 5. Extreme trajectories from the simulative disproof of previous
claims about the steady-state error bounds in the boundary layer of
non-singular terminal sliding surfaces.

of [7]), whereas convergence into I given by (33) implies
e → [−0.05, 0.05]. Substituting the parameters into the
NTSF equation gives

sgn(ė)|ė|3/2 = −2e+ s . (38)

where smay take on any value in [−0.1, 0.1]. This differential
equation was integrated numerically for the extreme cases
s = −0.1 and s = 0.1. The results are shown in Fig. 5.
When integrating (38), the sign of ė is sgn(−2e + s) and the
magnitude of ė is | − 2e + s|2/3. The simulation results in
Fig. 5 show that the bound (37) does not hold for the non-
singular terminal switching function, but that the bound (36)
does, which verifies Lemma 10 and disproves the claim that
e converges to (37).

The bound (37) for the NTSF was probably inferred from
the properties of the TSF. Even though the NTSF and the TSF
prescribe the same dynamics for s = 0, they have different
boundary layer properties, as have been demonstrated.

VI. SATURATED NON-SINGULAR TERMINAL SLIDING
MODE CONTROL
In this section, an SNTSF based controller is designed and
verified for the following the second order scalar system:

θ̈ (θ, θ̇ , u, t) = f (θ, θ̇ , t) + b(θ, θ̇ )u . (39)

It is assumed that θ is the position variable, θ̇ = dθ/dt is the
speed signal and θ̈ = d θ̇/dt is the system acceleration. The
reference position, speed and acceleration are denoted with
r, ṙ and r̈ , in that order. It is also assumed that the functions
f and b are not fully known, but that there are estimates f̃ and
b̃ of f and b, respectively. Also assume that
B.1 1fmax > 0 is an upper bound of the estimation error

1f = f − f̃ ,
B.2 1bmax > 0 is an upper bound of the estimation error

1b = b− b̃ and
B.3 |̃b| − 1bmax > 0.
Using these assumptions (39) may be rewritten as

θ̈ = (̃f + 1f ) + (̃b+ 1b)u , (40)

where arguments were left out for brevity. Note, that this
system is a generalization of the scalar system in [7].
The control input u for the system (40) may be chosen

according to the following lemma.
Lemma 11: If assumptions B.1, B.2 and B.3 hold for the

system (40) and

u =
−̃f + r̈

b̃
+

1fmax + ak qp |ė|
2− p

q

|̃b| − 1bmax
sgn(s)sgn(̃b)

+
l + 1bmax(|̃f | + |r̈|)

|̃b| − 1bmax
sgn(s)sgn(̃b) , (41)

where l > 0, then s = 0 is finite-time stable, in the sense that
C.1 s converges to 0 in finite-time and
C.2 s2 is non-increasing.

Proof: Define

kb =
b̃+ 1b

|̃b| − 1bmax
, (42)

so that sgn(kb) = sgn(b) and |kb| > 1 due to assumptions B.2
and B.3, based on which sgn(b) = sgn(̃b). Substituting (39)
into ë = r̈ − θ̈ , then substituting (41) into the result gives

ë = r̈ − (̃f + 1f ) − (̃b+ 1b)
[
−̃f + r̈

b̃

+

1fmax + ak qp |ė|
2− p

q

|̃b| − 1bmax
sgn(s)sgn(̃b)

+
l + 1bmax(|̃f | + |r̈|)

|̃b| − 1bmax
sgn(s)sgn(̃b)

]
= −1f − 1b

−̃f + r̈

b̃
− |kb|sgn(s)[1fmax

+ ak
q
p
|ė|2−

p
q + l + 1bmax(|̃f | + |r̈|)]

= −hsgn(s) where h ⩾ l + ak
q
p
|ė|2−

p
q . (43)

This is sufficient for s to converge to 0, which can be shown by
considering the case when the initial error phase state x(0) =

[e(0), ė(0)]T satisfies s > 0 (the case s < 0 will also hold
due to symmetry). If s > 0 and (43) hold, then ë ⩽ −l, and
therefore the phase state x(t) = [e(t), ė(t)]T satisfies

x(t) =

[
e(t)
ė(t)

]
⩽

[
e(0) + t ė(0) −

1
2 t

2l
ė(0)−tl

]
, (44)

which means that e is upper bounded by

emax = e(0) +
1
2
ė2(0)
l

, (45)

Therefore, the initial phase state x(0) is in the bounded set X
defined by

X = {(e, ė) such that: sgn(s) > 0

and e(t) ⩽ emax

and ė(t) ⩽ ė(0)−tl} . (46)

The phase state x(t) may not leave X through the boundary
e(t) = emax, since that would contradict (44). For the same
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reason, x(t) may not leave X through the boundary ė(t) =

ė(0)−tl either. Thus, the phase statemay leaveX only through
the boundary sgn(s) = 0. The movement of the boundary
ė(t) = ė(0)− tl shrinks the set X and X becomes empty after
a finite-time not larger than tf = [|ė(0)| + (ak|emax|)q/p]/l,
then x(t) must have reached sgn(s) = 0 in finite-time. This
shows C.1, i.e. that s converges to 0 in finite-time.
The statement C.2 can be proven by considering two

separate cases:
D.1 ė ̸= 0 and
D.2 ė = 0.
In case D.1, i.e. when ė ̸= 0, the derivative of s2/2 w.r.t.

time is

sṡ = s
p
q
|ė|p/q−1ë+


0 if |e| ⩾

1
k

,

sakė if |e| <
1
k

.

(47)

The definition of d
dt sat(ke) is assumed to have been extended

to the case |e| = 1/k , such that d
dt sat(±1) = 0. If (43) is

substituted into (47), then (47) becomes

sṡ = −s
p
q
|ė|p/q−1hsgn(s) + s


0 if |e| ⩾

1
k

akė if |e| <
1
k

≤ slant − l|s|
p
q
|kb||ė|

p
q−1

, (48)

where the inequality holds because h ⩾ l + akq|ė|2−
p
q /p.

Inequality (48) shows that s2 is non-increasing for the
case D.1.

In case D.2, the derivative ė is zero, therefore ṡ = 0, which
can be seen by differentiating (12).

A. SIMULATIVE VERIFICATION
In this section, the control law (41) is verified simulatively.
The testing system has the form (39) with the estimates f̃ =

1.1sin(t) rad.s−2, b̃ = 1+0.1cos(t) rad.s−2.N−1.m−1. Other
parameters were chosen as a = 3s−1, k = 1, q = 2, p =

3, l = 0.3. Estimation errors 1f , 1b and the chosen upper
bounds 1fmax, 1bmax are shown in Fig. 6. The reference
signals were r = sin(t), ṙ = cos(t) and r̈ = −sin(t) in rad,
rad.s−1 and rad.s−2, respectively. A saturation boundary layer
with width 1s = 0.05 was used to replace the sgn function in
(41). This ensured that s ⩽ 1s after the reaching phase [19].

The control law (41) can also be used with the NTSF
from [7], by replacing the switching function s, since the
stability proof still applies. Similarly, SLSF and the LSF
control laws can be obtained by choosing p = q = 1.
Figures 6, 7 and 8 show the comparison of SNTSF, NTSF,

SLSF and LSF based controllers, all of which use the control
law (41).
In the position plot in Fig. 6 (top), it can be seen, that in

the case of controllers with saturated switching functions,
the initial error takes longer to converge, than for the
corresponding non-saturated switching function controllers.

FIGURE 6. Comparison of the SNTSF, NTSF, SLSF and LSF sliding mode
controllers. System position and the reference position (top) and system
trajectories in the phase plane (bottom).

This is due to the limits imposed on d |e|/dt , as described in
lemmas 3 and 8.

The d |e|/dt limitation property can be seen more clearly
in the phase-plane trajectory plot in Fig. 6 (bottom). In the
case of the saturated switching functions, the trajectories
converge to surfaces where the speed component is limited
(the horizontal line segments).

In the control input plot in Fig. 7 (top) it can be seen,
that the use of the saturated switching functions has resulted
in smaller control amplitudes. This is as expected, since the
control law (41) depends on |ė| which may not increase past
the speed limitation of the saturated switching functions.
If the initial value of |ė| is larger than the limitation, then |ė|
will be decreasing.

The speed error limitation property of the saturated
switching functions may be observed in Fig. 7 (bottom). The
speed error limitation of the saturated switching functions is
not precise when a boundary layer is used as described in
lemmas 3 and 8. The simulation results verify that the SNTSF
has a narrower speed error uncertainty band than the SLSF for
the chosen values of 1s, a, q and p.

In one sense, the narrower position error bound property of
the terminal switching function is, in the case of the NTSF,
transferred to a narrower speed error bound. The fact that the
NTSF does not have the narrower boundary layer position
band of the TSF is also verified by the detailed position error
plot in Fig. 8.

There is no appreciable difference between the non-
singular terminal and the linear switching functions when
it comes to the position error bound in quasi-sliding mode,
which verifies Lemma 10.
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FIGURE 7. Comparison of the SNTSF, NTSF, SLSF and LSF sliding mode
controllers. The controller outputs (top) and speed errors (bottom).

FIGURE 8. Comparison of the SNTSF, NTSF, SLSF and LSF sliding mode
controllers. The position errors as functions of time.

FIGURE 9. Laboratory testing equipment. The HSM150 DC motor pair.

B. LABORATORY EXPERIMENTS
Theoretical results were further verified via experiments on
a laboratory system. Figure 9 shows the HSM 150 DC motor
system, which was used for laboratory testing.

The following system model was assumed:

θ̈ =
1
j
[deadz(u, d−, d+) − ud−cθ̇ ] , (49)

where θ̈ is the angular acceleration of the motor shaft in
rad.s−2, θ̇ is the angular speed of the motor shaft in rad.s−1,
c > 0 is a friction coefficient in N.m.s.rad−1, j is the
total moment of inertia as seen from the motor shaft in
N.m.s2.rad−1, u is the driving torque and ud the disturbance
torque in N.m. The function deadz is the deadzone function
and it is defined as

deadz(u, d−, d+) =


0 if − d− ⩽ u ⩽ d+

u+ d− if u < −d−

u− d+ otherwise.

(50)

The systems (39) and (49) are equivalent if the deadzone
effect is removed and the functions f and b are defined as
f = (−ud − cθ̇ )/j and b = 1/j.
The deadzone effect may be partially removed by increas-

ing the amplitude of u by d+
|sat(s/1s)| if sgn(u) > 0 and by

d−
|sat(s/1s)| if sgn(u) < 0.
The following system parameters were used as estimates

of true values: j̃ = 1.2 × 10−4 N.m.s2.rad−1, c̃ = 7.03 ×

10−5 N.m.s.rad−1, d̃+
= 0.025 N.m, d̃−

= 0.002 N.m,
f̃ = −cθ̇f /̃j (where θ̇f is the filtered speed signal, which is
described below) and b̃ = 1/̃j. Switching curve and boundary
layer parameters were a = 1 s−1, 1s = 0.2 rad.s−1,
l = 8.33, k = 20, p = 3 and q = 2.
The testing experiment was a small amplitude motion

tracking task with an approach phase and an external distur-
bance effect. The reference signals were r = 4+0.1sin(t) rad,
ṙ = 0.1cos(t) rad.s−1 and r̈ = −0.1sin(t) rad.s−2. A constant
disturbance torque ud = 0.0292 N.mwas generated using the
second DCmotor at time t = 10 seconds and remained active
for the rest of the experiment. This disturbance torque was
accounted for using the bound 1f in (40), which should be
at least ud /̃j. Upper bounds of 1f and 1b were determined
experimentally as 1fmax = 0.04/̃j = 333.33 rad.s−2 and
1bmax = 0 rad.s−1.N−1.m−1.
The control scheme is shown in Fig. 10. The control law

refers to (41) with the added deadzone removal algorithm.
An IRC sensor was used for position sensing and the

output of the sensor was filtered using a first-order linear
low-pass filter with the transfer function 1/(Tf s + 1) and a
time constant Tf = 0.2 s. The output of the filter (θf ) was
numerically differentiated to obtain the filtered speed signal
θ̇f . The filteringwas necessary to ensure the smoothness of θ̇f .
The switching function value s was computed based on

the filtered speed θf and the unfiltered position signal θ . The
speed error ė in the control law (41) was replaced with the
filtered speed error ėf = ṙ − θf .
Figure 11 (top) shows the angular position θ during

the experiments. Good position tracking was observed for
each controller after the initial transient. For the saturated
switching functions speed error limitation was also observed.
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FIGURE 10. Control scheme for the laboratory experiments.

FIGURE 11. Laboratory measurement results. Position and reference
signals (top) and the detailed view of the error signals (bottom).

An important property of the saturated switching functions
is the fact that limiting ė allows us to use larger switching
function slopes with smaller control amplitudes, which can
prevent overshoot in real systems with control amplitude
limitations, unmodeled dynamics and filtering delays, while
preserving tracking precision.

A detailed view of the position error signals is shown
in Fig. 11 (bottom). It can be observed, that the position
errors converged into the band (33). After the disturbance
was applied, the errors remained inside or close to the band,
but they left the band briefly. It is possible, that these small
differences may be attributed to sensory errors, filtering and
unmodeled parts of the system.

After the errors converged to their resting intervals,
error trajectories remained close to each other regardless of
the switching function, which verifies Lemma 10, which

FIGURE 12. Laboratory measurement results. Controller outputs (driving
torques) (top) and the speed error signals (bottom).

states that the NTSF (and SNTSF) controllers do not have
a narrower smallest resting interval, than the linear switching
function based controllers.

Figure 12 (top) shows the driving torques and the bottom
part of Fig. 12 shows the filtered speed errors. A slight speed
overshoot is present as the switching curves are reached (the
red and green lines correspond to the saturated switching
functions, which implement speed error limitation). This may
be because of the aggressive speed signal filtering. After the
overshoot, the speeds settled near in their limiting values,
as described in lemmas 3 and 8.

VII. CONCLUSION
In this study, saturated variants of common switching func-
tions were presented. The sliding-mode dynamics of these
switching functions was investigated and it was demonstrated
how the saturated switching functions may be used for speed
error limitation.

It was shown that given the right choice of parameters the
saturated non-singular terminal switching function possesses
a narrower speed error (boundary layer) bound than its
saturated linear counterpart. This property was exploited by
designing a sliding-mode controller with a finite-time conver-
gence guarantee and more precise speed error limitation. The
controller was verified both simulatively and experimentally.

It was also proven and experimentally verified, that if a
boundary layer is used, then non-singular terminal switching
function based controllers do not necessarily have a higher
position tracking precision than linear switching function
based controllers, contrary to previous claims in the literature.
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