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ABSTRACT Electroencephalogram (EEG) signal-based emotion classification is vital in the ever-growing
human-computer interface (HCI) applications. However, the chaotic, non-stationary, and person-dependent
nature of EEG signals often limits such practical applications. These challenges reduce the ability of the state-
of-the-art approaches to effectively distinguish between different emotional states from EEG data, resulting
in sub-optimal emotion recognition performance. This work presented a time-frequency (T-F) analysis of
EEG signals to localize different EEG frequency rhythms responsible for emotion-related information in the
EEG signals. In particular, this work investigated two T-F analysis domains for multichannel EEG signals
based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and local
mean decomposition (LMD) to extract entropy features that capture specific emotion-relevant traits from the
specific EEG channels that are highly responsive to emotions. The CEEMDAN and LMD decompose the
EEG signals into different EEG frequency rhythms called mode functions, intrinsic mode functions (IMFs),
and product functions (PFs), respectively. Further, various types of entropy feature of these two categories of
mode functions, such as approximate entropy (ApEn), sample entropy (SaEn), permutation entropy (PeEn),
and bubble entropy (BuEn), are computed for extracting emotion-relevant distinguishing features. Entropy
features help quantify EEG’s non-linear behavior and eventually help classify EEG-based emotions precisely.
Emotion classification has been achieved using a grid search cross-validation (GSCV) optimized XGboost
classifier. Thorough experimentations are conducted to validate the efficacy of the proposed approach on
publically accessible datasets namedDatabase for EmotionAnalysis of Physiological Signals (DEAP), SJTU
emotion EEG dataset (SEED), and SEED-IV. The efficacy of the proposed emotion recognition approach
is measured in terms of widely used performance metrics such as accuracy, confusion metrics, receiver
operating characteristics (RoC), and area under the curve (AuC). The highest average accuracy is attained
using the proposed LMD-domain BuEn features, i.e., 97.8%, 98.6%, and 95.7% using SEED, SEED-IV, and
DEAP databases, respectively, outperforming the recent state-of-the-art emotion recognition algorithms.

INDEX TERMS CEEMDAN, LMD, XGboost, bubble entropy, grid search, cross-validation and emotion
recognition.

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Sabarimalai Manikandan .

I. INTRODUCTION
Emotions are fundamental human traits that signifi-
cantly influence our daily activities, including cognition,
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decision-making, and intelligence. Beyond logical reason-
ing, emotional capability is crucial to human intellect [1].
The advancement of emotional artificial intelligence is
a prominent trend in human-computer interaction (HCI)
research [2]. In addition to their role in emotional intelli-
gence, emotions are directly linked to variousmental illnesses
such as depression, attention deficit hyperactivity disorder
(ADHD), autism, and gaming addiction [3]. Consequently,
emotional computing has emerged as a multidisciplinary
research field aimed at developing human-aware artificial
intelligence capable of recognizing, understanding, and reg-
ulating emotions [4]. Affective computing primarily detects
and simulates human emotions using pattern analysis and
machine learning techniques. Among the various methods,
emotion recognition through EEG data has proven more
reliable than frameworks that rely on outward appearances,
such as facial expressions, gestures, and speech signals,
which can be manipulated to display fake emotions [5].
Although EEG has limited spatial resolution, it offers high
temporal resolution, allowing for evaluating signal proper-
ties associated with emotional inputs. Additionally, EEG is
a cost-effective, quick, and non-invasive technique, mak-
ing it a prominent choice for studying brain reactions to
emotional stimuli [6]. EEG has become a crucial tech-
nology for HCI systems, enabling the quantification of
neurological activity from the brain via contact electrodes
attached to the scalp. Moreover, the temporal resolution of
EEG, which is significantly faster than the pace of emo-
tional changes, offers a substantial advantage in accurately
capturing and analyzing emotional responses [7]. As a
result, EEG can collect, track, and distinguish dynamic
changes in brain activity. However, EEG-based emotion
recognition remains highly challenging due to the indis-
tinct boundaries between various emotions. Additionally,
EEG signals are highly asymmetrical and non-stationary,
leading to variations in EEG rhythms and emotional signa-
tures among individuals, even for the same emotion. This
phenomenon, subject-independent or cross-subject emotion
recognition, further complicates EEG’s emotion detection
process. In numerous studies on EEG-based emotion recog-
nition, multichannel EEG recordings, capturing signals from
various brain regions, are employed. However, not all chan-
nels contribute equally to reflecting the subject’s emotions.
As a result, examining data from all channels can lead to
redundancy and duplication [13]. Few studies have addressed
the specific EEG channel selection responsible for detecting
emotions. In [14], four distinct channel profiles were utilized,
demonstrating superior performance in emotion detection
compared to all channels. More recently, researchers in [15]
selected 14 emotion-significant channels from the DEAP
dataset, achieving improved emotion classification perfor-
mance. Recently, 25 channels from the SEED dataset were
employed for emotion detection, achieving a reported accu-
racy of 89.32% by combining particle swarm optimization
for feature reduction with a fusion of convolutional neural

network (CNN) and long short-term memory (LSTM) archi-
tectures [44]. In the literature, numerous methods have been
reported for analyzing human emotions via EEG, utilizing
various feature extraction procedures. Time-frequency (T-
F) domain-based techniques have rapidly gained popularity
due to their ability to extract distinctive EEG features. These
techniques include independent component analysis (ICA),
short-time Fourier transforms (STFT) [16], empirical mode
decomposition (EMD) [17], [18], wavelet transform (WT)
[19], and others. However, these approaches have certain
limitations. Few studies [17], [18] have utilized EMD to
divide EEG signals into intrinsic mode functions (IMFs),
from which various attributes were derived. However, EMD
has limitations such as mode mixing, noisy modes, and devi-
ating intermediate frequencies [20]. Advanced approaches
like ensemble empirical mode decomposition (EEMD) and
complete ensemble EMD with adaptive noise (CEEMDAN)
have been developed to address the limitations of conven-
tional EMD, such as mode mixing [21]. However, these
methods are computationally intensive and are limited in
real-world applications [20], [47]. In contrast, local mean
decomposition (LMD) offers a more efficient and accurate
analysis of EEG signals. LMD generates product func-
tions (PFs) that better represent the input signal than the
IMFs produced by EMD methods. Additionally, LMD cal-
culates instantaneous frequency (IF) in one pass, avoiding
the boundary effects and inaccuracies associated with the
Hilbert transform used in EMD. Thus, LMD is more effec-
tive for tasks such as emotion detection in EEG signals,
providing deeper insights and reducing computational com-
plexity [20].Thus, the LMD-decomposed EEG signal aids in
capturing non-linear EEG aspects that are vital for emotion
interpretation. This work presented a comparative analysis of
CEEMDAN and LMD for T-F analysis of EEG signals for
emotion recognition application. Consequently, the T-F anal-
ysis of EEG signals has resulted in mode functions, further
analyzed using non-linear techniques to capture non-linear
characteristics such as fractal dimension (FD) [62] and
entropy metrics. Conventional FDmetrics focus solely on the
complexity of a time series at one specific time scale, failing
to capture its comprehensive complexity [62]. Consequently,
two variants of FD are proposed to overcome the limitations
of conventional FD metrics [62]. However, entropy-based
techniques like approximate entropy (ApEn) [24], sample
entropy (SaEn) [24], [25], permutation entropy (PeEn) [27],
dispersion entropy [63], and slope entropy [64] are mostly
employed for evaluating the complexity of time series data.
Out of these, ApEn, SaEn, and PeEn have been frequently
used for different EEG-based applications [21], [22], [23],
[24], [25], [26]. However, there are certain limitations to these
existing entropy measures. Generally, entropy techniques
depend highly on the parameters, i.e., threshold/tolerance and
the subsequence length [25]. Due to this, the performance of
the entropy measures in the form of discriminating power,
tolerance to artifacts, or any other essential feature can vary
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significantly depending on the values of these parameters.
Consequently, selecting internal parameters is a crucial fact of
entropy computations. This challenge motivated us to explore
bubble entropy (BuEn) features within the LMD domain,
which have not yet been investigated for emotion recognition
tasks. Since BuEn is practically free of internal parame-
ters [27], it helps achieve stable emotional discriminating
ability from EEG signals. Moreover, LMD-decomposed PFs
are noise-free and help capture different EEG rhythms. Thus,
this work computed the BuEn of CEEMDAN-IMFs and
LMD-PFs to get more specific details or events of emotion
from EEG signals and presented a comparative analysis of
emotion classification. This study also showed a comparative
analysis with the existing entropy techniques. It demonstrated
that the BuEn features computed on LMD domain PFs out-
perform the current entropy features captured through ApEn,
SaEn, and PeEn for emotion classification.

Recent advances in emotion identification studies involve
cutting-edge machine learning and deep learning algorithms
that use manual EEG features and automated or image-like
attributes. Deep learning techniques reported recently with
good EEG-based emotion recognition performance include
CNN-LSTM [15], [40], a fusion of CNN and recurrent neu-
ral network (RNN), i.e., ACRNN [28], a fusion of CNN,
stacked autoencoder (SAE) and dense neural network (DNN)
[29], asymmetric CNN [30], deep CNN [31] with feature
dimension reduction strategy. Despite achieving high accu-
racy, the work in [28] is computationally complex as it
combines three deep models (i.e., CNN, SAE, and DNN)
for feature extraction, feature reduction, and classification.
Additionally, it used advanced techniques, including extract-
ing Pearson correlation coefficient characteristics for emotion
categorization and transforming EEG into 2D images. A few
complex hybrid deep networks, like in [41], have recently
been employed for emotion recognition with amanual feature
extraction approach. However, only marginal improvements
could be achieved using the DEAP dataset compared to
the state-of-the-art methods [42], [43], [45], [46]. How-
ever, higher accuracy is obtained with SEED and SEED-IV
datasets. Out of these [42], achieved high accuracy but
involved many stages to perform the recognition task, such
as the Relief algorithm for channel selection, max-relevance,
and min-redundancy algorithm to obtain emotion-relevant
channels further and combined EEGNet [50] with cap-
sule network resulting in EEGNet for emotion- recognition.
Moreover, [45] also used a hybrid model, i.e., attention-
based convolutional transformer neural network (ACTNN)
that cascades CNN and transformer fed with two features,
i.e., a spatial feature made into a 2D matrix and spectral
characteristics of EEG frequency rhythms. It is worth men-
tioning that hybrid-deep techniques are resource-intensive
and data-hungry. These observations motivated us to propose
an emotion recognition framework using T-F domain non-
linear features and an ML-based classifier.

The contributions of the proposed work are summarized as
follows:

• A new method for emotion recognition is proposed
based on time-frequency (T-F) analysis of EEG sig-
nals, utilizing CEEMDAN and LMD techniques. This
approach effectively captures different EEG frequency
rhythms associated with various emotion patterns.

• To capture the non-linear behavior of the T-F decom-
posed EEG, entropy-based features of the mode func-
tions are proposed, which aids in further localizing the
emotion-aware traits of the EEG.

• An XGboost model optimized via grid search cross-
validation (GSCV) is developed, improving the clas-
sifier’s ability to accurately identify emotions by
fine-tuning its hyperparameters.

• An analysis based on EEG channel profiles is conducted
to determine the most effective channel configura-
tions for capturing emotion-relevant information, thus
enhancing the emotion recognition task.

• Cross-subject validation (CSV) and cross-dataset vali-
dation (CDV) are carried out to assess the robustness of
the proposed approach in handling inter-subject variabil-
ity, ensuring the model’s reliability and generalizability
across different subjects and datasets.

II. DATASET DETAILS
The public domain databases SEED [14], SEED-IV [48], and
DEAP [49] have been used to assess the effectiveness of the
proposed work. The details of the databases are discussed in
the following sections and summarized in Table 1.

A. SEED DATASET
The SEED dataset focuses on EEG signals from 15 subjects
who watched 15 four-minute film clips to elicit positive, neu-
tral, and negative emotions. The EEG data is recorded using
62 channels, providing high-resolution information on brain
activity. Data collection across three sessions ensures con-
sistency and allows analyzing emotion recognition reliability
over time. This session-based structure is precious for under-
standing how emotional responses can vary or remain stable
across different times, enhancing the robustness of emotion
recognition models. SEED’s detailed EEG recordings enable
in-depth analysis of the brain’s emotional responses, making
it a vital resource for researchers aiming to develop precise
and reliable emotion recognition systems.

B. SEED-IV DATASET
SEED-IV builds on the SEED dataset by expanding the
range of emotional stimuli and classes. It includes EEG data
from 15 subjects who watched 72 two-minute film clips to
elicit happy, sad, fearful, and neutral emotions. Like SEED,
the EEG data is captured using 62 channels and collected
across multiple sessions. This expanded dataset provides
a broader spectrum of emotional data, crucial for training
models distinguishing between various emotional states. The
numerous sessions help study the temporal stability of emo-
tional responses, ensuring that the models developed are
accurate and consistent over time. SEED-IV’s comprehensive
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TABLE 1. Database information.

and varied emotional stimuli make it an invaluable dataset for
advancing the capabilities of EEG-based emotion recognition
systems, allowing for more nuanced and accurate detection of
emotional states [48].

C. DEAP DATASET
The DEAP dataset is a comprehensive resource for
EEG-based emotion recognition, comprising data from
32 participants who watched 40 one-minute music videos
intended to evoke various emotional responses. The dataset
includes 32-channel EEG recordings, providing a detailed
view of brain activity during these emotional experiences.
Participants also offered self-assessed ratings for arousal,
valence, like/dislike, dominance, and familiarity, which are
crucial for mapping EEG patterns to specific emotional
states. The large number of participants and stimuli ensures
a diverse dataset, capturing a wide range of emotional
responses, essential for developing robust and generalized
emotion recognition models. DEAP’s extensive annotations
and high-quality EEG data make it a benchmark in the field,
facilitating the creation of reliable and accurate systems for
detecting and interpreting emotions based on brain activity.

III. PREPROCESSING
Different types of noise also get captured during EEG
data acquisition. So, EEG data records need to be prepro-
cessed regarding noise removal, filtering, downsampling,
etc., so that the resultant data is ready for subsequent
analysis. The EEG data records taken from the publicly avail-
able databases, DEAP, SEED, and SEED-IV, have already
been preprocessed to some extent. For example, in the
DEAP dataset, the acquired EEGwas initially down-sampled,
bringing the sampling frequency down to 128 Hz. Next,
a band-pass filter was applied, restricting the signal to the
4–45 Hz range. Each trial lasted 63 seconds, with the first
3 seconds serving as preparation time and the subsequent
60 seconds dedicated to video observation. Consequently,
each trial consists of 8,064 sampling points for each chan-
nel [49]. In the case of the SEED and SEED-IV datasets,
the preprocessing steps include downsampling the EEG data
to 200 Hz, a band pass filtering with a throughput frequency
range of 1-75 Hz, and extracting EEG trails corresponding
to the duration of each video. These preprocessing steps are

essential for refining the EEG data and ensuring its suitabil-
ity for subsequent analysis and interpretation. In this work,
we have strictly taken the second half of each EEG trail from
each dataset for experimentation to obtain steady emotions
by avoiding transient emotions [33].

IV. METHODOLOGY
The major novelty of this work lies in proposing
entropy-based features from the time-frequency (T-F) decom-
posed EEG signals, which help quantify and capture
emotion-aware traits of EEG signals effectively. These fea-
tures eventually lead to precise recognition performance
using the GSCV-optimised XGboost classifier. In this work,
we investigated two T-F signal analysis tools, CEEMDAN
and LMD, to decompose the EEG signals into mode func-
tions, which help us localize emotion-relevant frequency
rhythms in the EEG signals. The CEEMDAN is an advanced
variant of EMD and is effective in solving issues of EMD and
its variants, including mode mixing issues and noisy IMFs.
Moreover, LMD is a novel T-F analysis approach for emotion
recognition introduced in this work, which is computationally
more efficient than EMD variants. This work presented a
comparative performance analysis of both the approaches,
i.e., CEEMDAN and LMD, by deriving the entropy-based
non-linear features from split EEG signals called mode func-
tions such as IMFs and PFs that represent emotion-relevant
content quite effectively. The popular machine learning (ML)
models are employed to classify the entropy features and
select a model that considerably assists in accurately identify-
ing emotions. Fig.1 depicts a schematic flow of the proposed
approach, and more details about each T-F analysis approach
adopted in this work are discussed in subsequent sections.

A. COMPLETE ENSEMBLE EMPIRICAL MODE
DECOMPOSITION WITH ADAPTIVE NOISE (CEEMDAN) OF
MULTICHANNEL EEG SIGNALS
The CEEMDAN decomposition defines white Gaussian
noise’s standard deviation (SD) GW i (n) (where I = 1, 2,
. . . , P). P denotes the number of EEG channels, and each
channel is decomposed individually and an operator Cj (.)
that yields the jth mode of EMD. The decomposition process
is demonstrated below step-wise:

1. Obtain x(n) + σdGW i (n) by adding P groups of white
Gaussian noiseW i (n) to input EEG signals x(n) where
i =1,2,3. . . P.

2. Next, using EMD, compute the first modal component
denoted by IMF1,P (IMF1,1, IMF1,2, IMF1,P) of each
group of the P number of EEG channels. The average
of these first mode functions could be expressed [21]
as below:

IMF1 (n) =
1
P

P∑
i=1

IMF i1 (n) = IMF1 (n) (1)

3. The residue can be computed using the equation below
and denoted ξl(n)
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FIGURE 1. A schematic flow diagram of the proposed method.

ξl(n) = x(n) − IMF l (n) where l = 1, 2, 3 . . . .,L (2)

The first residue is obtained by substituting l =1, and the
equation (2) is transformed as

ξ1(n) = x(n) − IMF1 (n) (3)

4. The realizations ξ1(n) + σ1c1
(
GW i (n)

)
are divided

until their first EMD mode where i=1, 2, 3, 4. . . , P. σl
indicate white noise SD of the lth stage (where l=1 for
this iteration). The following equation can be used to
determine IMF2 (n):

IMF2 (n) =
1
P

P∑
i=1

c1(ξ1(n) + σ1c1
(
GW i (n)

)
(4)

5. Calculate the lth residue for l = 2, 3,. . . , L.

ξl(n) = ξl−1(n) − IMF l (n) (5)

6. The realizations ξ1(n) + σ1c1
(
GW i (n)

)
are split till

their first mode of EMD, and the (l + 1)th mode is
defined as follows.

IMF l+1 (n) =
1
P

P∑
i=1

c1(ξln) + σlcl
(
GW i (n)

)
(6)

7. Go back to step 6 to complete the next step. l.
8. As steps 5–7 are repeated, the residue becomes mono-

tonic, and no more modes may be recovered. The
convergence criterion is satisfied; no more mode
decomposition is achievable if the end residue and l are
the maximum number of modes. The input signal x(n)
can be recovered from all mode functions of CEEM-
DAN with the following equation [21]:

x(n) =

L∑
l=1

IMF l (n) + ξl(n) (7)

B. LOCAL MEAN DECOMPOSITION (LMD) OF THE
MULTICHANNEL EEG SIGNALS
This approach offers a robust and analytically simple way
of assessing time-varying frequency, energy, and phase in
extremely complex non-stationary signals such as EEG.
LMD is explored to divide modulated signals into a small
number of PFs, while every PF combines an amplitude
envelope and frequency-modulated signals [31], [32]. The
LMD method produces a physically meaningful EEG time-
frequency distribution. Since the frequency components of
the EEG (Gamma, alpha, theta, and delta) are related to
various mental states, it is feasible to conclude that this
method of dividing time-series into various PFs identifiable
with their frequency is highly suitable for EEGs [31]. Also,
these PFs represent EEG subbands associated with different
emotional states in the brain [31]. As a result, we observed
LMD to be more appropriate for decomposing the EEG data
and applying it to recognize emotions. Using LMD, the EEG
signal s(t) is decomposed into PFs [56] as follows:

1. As mentioned below, calculate the local maxima and
average score of two nearby maximum data points (ni
and ni+1):

zi = (ei + ei+1) /2 (8)

Eq (8), all local means can be represented as straight lines
stretching from subsequent extrema. After smoothing the
local means via moving averaging, a constantly shifting con-
tinual local mean function called z11(t) is produced.

2. By the scenario previously stated, the local magni-
tude ai of the two nearby extremes (ei and ei+1) is
expressed [20] by

bi = |ei + ei+1| /2 (9)
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FIGURE 2. Various IMFs obtained after CEEMDAN for four emotion categories of a single participant from the SEED-IV dataset show variations in the
amplitudes.

FIGURE 3. Five PFs were obtained after LMD of SEED-IV EEG for four emotions, depicting substantial variations in magnitude and frequency for the four
emotion categories.

3. Subtract the local mean function z11(t) [20] from the
original EEG signal

l11 (t) = s (t) − z11 (t) (10)

Here, the estimated envelope l11(t) is then scaled by b11(t),
and demodulated element d11(t) is produced by

g11 (t) =
s (t) − z11 (t)

b11 (t)
=

l11(t)
b11 (t)

(11)

4. On the demodulated component, steps 1 through 3 are
repeated n times until the EEG signal g1n(t) is ulti-
mately frequency-modulated. A series of recursive
equations [20] are produced as a result.


l11 (t) = s (t) − z11 (t) ,

l12 (t) = g11 (t) − z12 (t) ,

...

l1n (t) = g1(n−1) (t) − z1n (t) .

(12)

where 
g11(t) = l11 (t) /b11 (t) ,

g12(t) = l12 (t) /b12 (t) ,

...

g1n(t) = l1n (t) /b1n (t) .

5. The estimated sub-envelopes are multiplied to create
the composite envelope, calculated as:
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FIGURE 4. Periodograms of the first ten IMFs of a randomly selected EEG signal of SEED IV datasets using the CEEMDAN approach.

FIGURE 5. Periodograms of the first six PFs of a randomly selected EEG signal of SEED IV datasets of the LMD approach.

b1 (t) = b11 (t) b12 (t) . . . .b1n (t) =

n∏
q=1

b1q (t) (13)

and at last, the aim is to lim
n→∞

b1n (t) = 1.
The first PF1 is produced by multiplying the two functions

g1n(t) and b1n(t)

PF1 (t) = b1 (t) g1n (t) (14)

6. A signal r1(t) is obtained by eliminating PF1(t) from
s(t)

r1 (t) = s (t) − PF1 (t) (15)

7. To get the function rj(t) to become stable and stop
oscillating, repeat steps (1) – (5) above j times. This
results in EEG input s(t) being divided into j PFs and a
residue rj(t). One can recover the EEG s(t) as

s (t) =

j∑
i=1

PFi (t) + rj (t) (16)

C. SELECTION OF RELEVANT MODE FUNCTIONS FOR
EMOTION RECOGNITION
The T-F analysis of EEG signals through CEEMDAN and
LMD techniques has demonstrated their potential for emotion

recognition as illustrated by their mode functions, i.e., IMFs
and PFs in the previous section for the happy, fear, sad,
and neutral emotion classes, as shown in Fig. 2 and 3. It is
worth observing that the four emotions of interest exhibit
various oscillatory characteristics in terms of their ampli-
tudes and frequencies, as shown in Figs. 2 and 3. Thus, the
mode functions carry the discriminating characteristics of
each emotion. However, all the mode functions decomposed
using CEEMDANand LMDapproaches are irrelevant to their
respective EEG signals as the few only represent the dominat-
ing EEG rhythms. Hence, selecting relevant mode functions
only by discarding the irrelevant ones is essential, which will
eventually help reduce the computation burden of the pro-
posed system.We followed a periodogram-based approach to
identify the no. of mode functions, capturing the majority of
frequency rhythms of the associated EEG. The periodograms
of themode functions are plotted to visualize their power den-
sity. Fig. 4 depicts the periodogram plots of the first ten IMFs
of EEG signal obtained through the CEEMDAN approach.
It is clear from Fig.4 that IMF1-IMF5 periodograms have sig-
nificant frequency rhythms, which gradually decrease from
IMF6- IMF10. Therefore, in a resource-constrained scenario
likemobile-based applications, the first five IMFs can only be
used as they capture a majority of emotion-relevant EEG vari-
ations; however, this study employed IMF1-IMF8 to ensure
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FIGURE 6. (a-d) Histograms of four emotion classes of IMF-3 obtained by CEEMDAN decomposed EEG data from the SEED-IV; and (e-i) histograms of
PF-3 obtained by LMD decomposed EEG approach. The distinguishing nature of the histograms can be seen for four emotion classes.

the best performance. Similarly, the periodograms of the first
six PFs of an EEG signal obtained through LMD decomposi-
tion are plotted in Fig. 5. It can be observed that the PF1-PF3
capture the majority of EEG variations, which might be rele-
vant in capturing different emotions, andminimal frequencies
are present in other PFs. Therefore, the first three PFs may
be used for computational saving as these represent EEG’s
dominating emotional power. However, this study used the
first five PFs for best recognition results. These relevant mode
functions are used for extracting entropy features, which are
discussed in detail in the next section.

To further demonstrate the distinguishing capabilities of
both categories of mode functions, we plotted the histograms
for four emotion classes. As expected, the histogram mor-
phologies show discriminating characteristics for four emo-
tion cases, as seen in Fig. 6. Figs. 6(a-d) are the histograms
of IMF-3 obtained through the CEEMDAN decomposition
of EEG for four emotions. Similarly, Figs. 6(e-h) are the
histograms of PF-3 obtained through LMD decomposition
of EEG. It is evident from Fig. 6 that LMD’s histograms
are more distinguishable than CEEMDAN histograms. Fur-
thermore, the EEG amplitude distributions are distinct, and
this difference is directly related to the signal’s emotional
characteristics varying across four emotion classes.

D. ENTROPY-BASED FEATURE EXTRACTION USING MODE
FUNCTIONS
In the previous section, we demonstrated the suitability of
CEEMDAN and LMD decomposition for emotion recogni-
tion analysis of EEG signals. To further localize the discrim-
inating characteristics of the T-F decomposed EEG (mode
functions) for different emotions, we have used entropy fea-
tures, which help us capture the non-linear characteristics

of the mode functions. Entropy is a popular non-linear time
series metric employed for EEG signals in many applica-
tions [21], [22], [23], such as mental fatigue detection [22],
autism analysis [23], and sleep monitoring [21]. This study
investigated entropy computations of the T-F decomposed
time-series EEG using CEEMDAN and LMD, which may
help us overcome the mode-mixing and noise issues of
conventional EMD-IMFs. Different types of entropies inves-
tigated over the mode functions include approximate, sample,
and permutation entropy. For eachmode function, the entropy
metrics are calculated using the equations described below in
detail:

E. Approximate Entropy (ApEn)
ApEn [24] is a regularity statistic that measures the irregular-
ity ofmode functions (IMFs and PFs) time series fluctuations.
Mathematically, it is calculated using the following expres-
sion [24]:

ApEn (m, r,N ) = ln
[
Xm (r)
Xm+1 (r)

]
(17)

Xm andXm+1 are subsequencemean of lengthm andm+1,
respectively.

F. Sample Entropy (SaEn)
SaEn [24] quantifies the complexity of the IMFs’ and PFs’
time series. If Xm and Xm+1 are counters for template vectors
of length m and m+1, correspondingly, and computed as
below [24]

SaEn(m, r,N ) = − ln
[
Xm+1 (r)
Xm (r)

]
(18)

Here, we have selected m=2 and r=0.2 based on the
work [25] for computing the ApEn and SaEn of IMFs and
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PFs. The proposedmethod achieved better performance using
these values.

G. Permutation Entropy (PeEn)
PeEn [26] measures the incongruity of the IMFs and PFs time
series by computing a smoothened histogram of ordinal pat-
terns seen in subsequences when arranged in ascending order,
from which the Shannon entropy is derived. It is calculated
with the help of the probability vector of the subsequences as
follows [26]:

PeEn (x,m,N ) = −

m!−1∑
k=0

pk log pk (19)

wherem! denote the permutations of the pattern length.
We have chosenm=5 for our experiments to compute the per-
mutation entropy of EEG-decomposed mode functions [26].
It is generally found that sample entropy is the best

choice to discriminate between different groups with the
proper selection of the parameters for a time series. For
shorter time series, the approximate entropy is inefficient
and lacks consistency [24]. Although sample entropy over-
comes approximate entropy, the discriminating nature of both
entropy measures is highly dependent on the parameter selec-
tion. Hence, we investigated bubble entropy (BuEn), a novel
entropy measure independent of the parameter selection for
feature extraction of mode functions.

H. PROPOSED BUBBLE ENTROPY-BASED FEATURE
EXTRACTION IN T-F DOMAIN
BuEn [27] is a significant tool in non-linear dynamics
study owing to its potential enhancements upon permu-
tation entropy (PeEn). Its considerable goal is to reduce
the entropy metric’s dependency on input parameters. Most
entropy measures need a minimum of two parameters for
their computation: an embedded dimensionm and a threshold
r. Based on these parameter settings, their performance in
discriminating power, artifacts robustness, or any other desir-
able feature might change. It does not require parameter r,
is less volatile onm, and is unbiased for tremendousm values.
BuEn places the time-series data, the mode functions of EEG
x=x1, x2, x3. . . ,xN into an m-dimensional space, obtaining a
sequence of vectors of dimension N-m+1:

X1,X2,X3, . . . .,XN (20)

where Xj =
{
xj, xj+1, xj+2, . . . , xj+m−1

}
The bubble sort technique is implemented to sort every

vector Xj, and the number of swaps needed for sorting is
recorded. The second-order Renyi entropy is determined
using the probability mass function (PMF) pi of having I
swaps:

Hm
swaps = − log

(
m
2

)
∑
i=0

p2i (21)

The BuEn is calculated as the normalized difference of the
entropy associated with the swaps required for sorting vectors
of lengths m+1 and m:

buEn(m) =

(
Hm+1
swaps − Hm

swaps

)
/ log

(
m+ 1
m− 1

)
(22)

The vectors Xi are sorted in ascending order; this is merely
a practice that has no implications on the classification of
the time sequence or the value of BuEn. Similarly, if we
consider smj the count of swaps needed to sort the vector Xj in
ascending order, thenm(m-1)/2-smj sorting steps are necessary
to arrange it in descending order. As a result, if pi represents
the PMF of the swaps performed for setting all the vectors in
ascending order, grouping them in descending produces the
PMF qj = pm(m−1)/2−j, resulting in the exact value of Hm
swaps in the equation (12). We have considered m=12 for
computing the BuEn of IMFs and PFs, as it is clear that the
discriminating nature of the BuEn increases for m≥12 [27].
This study experimented with various values of m>12 and
found that for m=12, BuEn features obtained a lower p-value,
indicating its discriminating power of emotions, as discussed
in the next section. It has been noted that ApEn, SaEn, and
PeEn suffer from computational challenges and are sensitive
to parameter dependencies [24], [25], [26], [27], which moti-
vated us to explore BuEn as a new entropy feature on mode
functions that has stable behavior and is independent of the
parameters. Moreover, it has a higher potential to study the
non-linear dynamics of the given signals. Therefore, we chose
BuEn of CEEMDAN and LMD mode functions in most of
our experimentation, whose discriminating ability is unbiased
with the parameters. Furthermore, we have also computed
ApEn, SaEn, and PeEn of mode functions and compared the
performance of these entropy techniques with BuEn for the
recognition of EEG-based emotions.

I. EEG CHANNEL PROFILING
It is a known fact that not all EEG channels contribute equally
to human emotions. Hence, it becomes essential to analyze
the contribution of different channels in emotion recognition
so that only the relevant EEG channels can be used for
emotion recognition tasks while minimizing the computa-
tional burden on the emotion detection system. To address
this, we performed EEG channel profiling with the following
objectives: (i) To reduce the computational complexity of
EEG signal processing, we focused on selecting only the
significant channels, thereby deriving the essential character-
istics; (ii) To handle overfitting issues that may occur due to
the use of redundant channels to improve emotion recogni-
tion performance, and (iii) To minimize the setup time for
building the emotion recognition model. This work considers
five different channel profiles as proposed in the study [14]
for 62 channels (SEED dataset), and we replicated it for
32 channels (DEAP dataset) following a similar strategy. The
emotion recognition performance of all the channel profiles
is evaluated. Moreover, a comparative analysis is performed
with all EEG channels (62 and 32).
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FIGURE 7. Channel selection for (a-e) DEAP dataset respectively.

TABLE 2. Feature matrix dimensions for the various channel profiles of
SEED & SEED-IV.

The five different channel profiles analyzed are
i) 2-channel, ii) 4-channel, iii) 6-channel, iv) 9-channel, and
v) 12-channel, as shown in Table 2 [14], [25]. The authors
in [14] proposed these channel profiles considering the chan-
nels from the brain’s lateral temporal and prefrontal regions.
Also, they verified that these regions are highly responsible
for emotion processing by computing the weight distribution
of these regions using deep belief networks. Moreover, these
findings align with their previous studies [52], [53], [54].
Furthermore, it is concluded from [14] that a group of features
extracted from the prefrontal and temporal lobes have been
identified to provide discriminative information associated
with emotion processing. These observations motivated us
to use the channel profiles proposed in this study [14].
Thus, we extracted entropy features from these five-channel
profiles and all 62 channels to classify emotions. Based on
the channel selection strategy reported in [14] for SEED, this
work proposed channel selection covering the prefrontal and
temporal lobes of the brain and defined five-channel profiles
for the DEAP dataset, as shown in Table 3. These channel
profiles include i) 2-channel, ii) 4-channel, iii) 6-channel,
iv) 9-channel, and vi) 12-channel as shown in Figs. 7(a-e).
The EEG signals of these channel profiles are decomposed
into mode functions using the two techniques, CEEMDAN
and LMD. The length of each mode function is equal to
the length of the EEG trial considered for decomposition.
Further, different entropy features are computed for each
mode function, resulting in an entropy feature matrix. This
has resulted in a feature matrix for each channel profile of
each dataset. Subsequently, these feature matrices are labeled
with the emotion classes available in the respective datasets

TABLE 3. Feature matrix dimensions with the two decomposition
techniques of the DEAP Dataset.

for classification. As mentioned above, for the 2-channel
profile, the feature vector obtained is of dimension 15× 15×

2× (8(or) 5) (subjects× trails× channels× (IMFs (or) PFs),
which leads to the feature matrix of size 225(columns) ×

10(rows) for SEED dataset with PFs. Next, the emotion label
is appended, resulting in a matrix of dimensions 225 × 11.
The same procedure is repeated for each channel profile
entropy feature. Table 2 and Table 3 detail the feature matrix
dimensions of the two approaches. These extracted features
are fed to XGboost to classify different emotion classes.

J. ANALYSIS OF THE DISCRIMINATING CAPABILITIES OF
THE ENTROPY FEATURES
Before going to the emotion classification task, it is crucial to
demonstrate the discriminating capabilities (ability to iden-
tify different emotions) of various proposed entropy features
(ApEn, SaEn, PeEn, and BuEn) in the CEEMDAN and LMD
domain. This section aims to compare the capabilities of dif-
ferent entropies to localize the emotion-aware traits in other
EEG channel profiles. Here, we have calculated the fisher dis-
criminant ratio (F-score) [55] to measure the discriminating
power of the entropy features of different channel profiles.
The F-score for wth entropy feature vector of a channel profile
can be defined [55] as

Fw =

∑4
c=1

((
X
(c)
w − Xw

)2)
∑4

c=1

(
1

nc−1

∑nc
k=1

(
X
(c)
k,w − Xw

)2) (23)
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TABLE 4. Fisher-scores of entropy features for various channel profiles of the DEAP dataset.

FIGURE 8. The post-hoc analysis of LMD-entropy features with the 12-channel profile of the DEAP dataset.

TABLE 5. ANOVA test probabilistic (p)-value for a 12-channel profile of
entropy features.

where X
(c)
w and Xw are the average of the features of the

emotion category and other emotion categories. X
(c)
k,w are

the features of the kth EEG sample of the cth category, and
nc denotes the number of samples of the cth category. The
Fisher score (F-score) is computed for the entropy features
to determine if the estimated values of a quantitative variable
differ between feature types. The features that have scored
the highest F-score have a good discriminating ability and
can be used to classify emotions [35]. The F-score values
computed for the four entropy features with every chan-
nel profile of the DEAP dataset are depicted in Table 4.
It illustrates that CEEMDAN-BuEn and LMD-BuEn features
scored higher F-scores than other entropies. This indicates
the BuEn features have a higher discriminative power of
emotions when compared to other entropy measures. More

specifically, the LMD-based BuEn features obtained higher
F-scores than CEEMDAN-BuEn features with all channel
profiles, as shown in Table 4. This indicates the supe-
rior discriminating characteristics of LMD-PFs compared to
CEEMDAN-IMFs. This can also be verified from the classifi-
cation results in the following section. It is also noteworthy to
emphasize that the F- score values are very close to each other
for all entropy cases of 12-channel and 32-channel profiles,
indicating a significant contribution by the 12-channel profile
to the EEG’s emotional state. To further verify the discrimi-
nating ability of BuEn, we have also conducted the statistical
analysis, as shown in Fig. 8, using the post-hoc analysis of the
ANOVA test. The BuEn feature has minimum overlap across
the different emotions compared to all the other entropy
features, as shown in Fig. 8, indicating its high discriminative
capabilities for various emotions. Moreover, Table 5 details
the outcomes of ANOVA test-based discriminative analysis
of entropy features in terms of probability (p-value). It can
be observed that BuEn has a significantly lower p-value than
other entropy measures, indicating its ability to discriminate
between different emotions. Furthermore, the LMD-BuEn
has a very low p-value compared to CEEMDAN-BuEn fea-
tures shown in Table 5, indicating a higher discriminating
capacity of LMD-BuEn features. Therefore, it can be con-
cluded that BuEn features are the best-performing entropy
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TABLE 6. Reported accuracy (%) of the CEEMDAN approach with All-Channel features with various classifiers.

TABLE 7. Reported accuracy (%) of the Proposed LMD approach with All-Channel features with various classifiers.

features in the LMD domain, with maximum discriminat-
ing capability across different emotions. Hence, most of the
experiments performed in this study are conductedwith BuEn
features only.

K. MACHINE LEARNING MODELING FOR EMOTION
CLASSIFICATION
After creating a channel-specific feature matrix, the next
step is emotion classification.We have examined well-known
ML models for classifying entropy features, spanning prob-
abilistic, neural network, distance, and ensemble-based
models. It reveals that ensemble-based classifiers per-
form well. Specifically, the XGboost outperforms all the
considered ML models described in the result section.
The better classification capability of the conventional
XGboost model motivated us to present a grid search cross-
validation (GSCV) technique to fine-tune its parameters
to enhance its emotion recognition performance further.
The following section discusses the experimental results of
the conventional XGboost and GSCV-XGboost models in
detail.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section thoroughly evaluates the proposed emo-
tion recognition approach on the aforementioned public
databases: DEAP, SEED, and SEED-IV. The cross-validation
experiments are performed to analyze the relationship
between different channel profiles and their contribu-
tion to the brain’s emotional states. The three datasets’

CEEMDAN and LMD domains entropy features extracted
from all-channel profiles are fed to the various classifiers
listed in Tables 6 and 7. As per the ‘‘no free lunch’’
theorem [34], no unique optimum classifier exists for a clas-
sification task; hence, prominent machine learning classifiers
are tested to perform a comparative analysis and select an
optimum classifier for our tasks. Tables 6 and 7 compare
different classifiers’ performance using the discussed entropy
traits derived from all EEG channels. Here, the performance
of the classifier is measured in terms of accuracy as stated
below:

%Accuracy = correct predictions
/
total predictions (24)

It reveals that ensemble learning classifiers, such as ran-
dom forest (RF), Adaboost, and XGboost, keep performing
well with all three databases. Moreover, as Tables 6 and 7
reported, BuEn features achieved higher performance than
other entropy features. Furthermore, the LMD approach
obtained maximum accuracy with all entropy features com-
pared to the CEEMDAN approach. It can be verified from
the classification results of XGboost in Table 6 and Table 7
with all the datasets. This shows that LMD-PFs possess a
higher discriminating ability for emotions than CEEMDAN-
IMFs. However, XGboost outperforms the other classifiers,
achieving higher classification accuracy and demonstrating
its better suitability in the proposed emotion identifica-
tion system. Hence, from here on, the XGboost classifier
will be used for the rest of the experiments conducted in
this work.
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FIGURE 9. Emotion classification performance of various LMD-domain
entropies using XGboost.

TABLE 8. ANOVA test probabilistic (p)-value for various channel profiles
of BuEn features of the DEAP dataset.

A. ANALYSIS OF CONTRIBUTIONS OF DIFFERENT EEG
CHANNEL PROFILES IN EMOTION RECOGNITION
Based on the analysis in the previous section, we can infer that
the LMD decomposition followed by BuEn features enabled
the XGboost classifier to achieve better performance for the
three datasets, as shown in Table 7. Thus, we experimented
with XGboost, considering the five channel profiles of
LMD-BuEn features of the three datasets to verify the channel
profiles’ relevancy in emotion classification. The obtained
classification accuracy of the channel profiles with the three
datasets is depicted in Fig. 9 and compared with all-channel

FIGURE 10. Demonstrates the data splitting and GSCV process with
XGboost.

profile performances. It is observed that taking all 32 chan-
nels of DEAP, the XGboost reported 93.7% accuracy with the
LMD approach, as shown in Fig. 9(a), which is marginally
higher (1.6%) than the 12-channel profile (92.10%) taken.
As the number of EEG channels increases (from 12 to 32),
more emotion-relevant information is expected to be added
to the classifier, resulting in a better emotion recognition
performance (marginal gain of 1.6%). However, this comes at
the cost of a significant increase in the computational burden
of the system (for processing 32 channels).

Similarly, XGboost reported 95.2% and 96.6% accuracy
with SEED and SEED-IV datasets, as depicted in Figs. 9(b-c),
respectively, for 12 channel profiles. If we take all 62 chan-
nels together, the percentage gain in accuracy is merely 2.2%
and 1.4% for the SEED and SEED-IV datasets, respectively,
as shown in the comparative figure. This implies that the
specific 12-channel combination is responsible mainly for a
person’s emotional state as it captures almost all the charac-
teristics of EEG required for emotion processing. Therefore,
in a resource-constrained scenario, processing the proposed
12-channel profile is much more beneficial compared to
62 channels. It may lead to significant savings in the com-
putational resources at a marginal loss of (1.4-2.2%) in the
system’s emotion recognition accuracy.

Further, to support our findings about the contribution of
different EEG channel profiles to conveying emotional traits,
we conducted an ANOVA test with the five-channel profiles
using BuEn features. Specifically, it tells us whether there
is a statistically significant difference in the means of the
five profiles BuEn features. It is clear from Table 8 that all
the channel profile features of the two approaches are below
the p-value threshold (p<0.001). It is observed that the 12-
channel profile has a p-value close to the 32-channel profile
of shallow values with both the T-F analysis approaches,
indicating the effectiveness of the 12-channel combination
for emotion processing. Similar statistics were obtained for
12-channel and 62-channel profiles in SEED and SEED-
IV datasets. Therefore, after this analysis, we can say that
the emotion-relevant contribution of EEG channels from the
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TABLE 9. List of Hyper parameters used with XGboost for all channel experiments conducted with DEAP.

TABLE 10. %Classification accuracy obtained by the XGboost and
GSCV-XGboost models.

prefrontal and temporal lobes is significantly higher than that
of other brain regions.

Though the performance of the XGboost was better com-
pared to the state-of-art classifiers, we further presented a
fine-tuning approach using the grid search cross-validation
(GSCV) technique that tunes the model’s parameters for
enhanced recognition performance, as discussed in the next
section.

B. GRID SEARCH CROSS-VALIDATION (GSCV)-XGBOOST
The most challenging part of machine learning modeling is
parameter tuning since decision tree methods are prone to
overfitting. Therefore, optimal hyper-tuning of the param-
eters is necessary to obtain low bias and low variance of
the model. In addition to preventing model overfitting on
training examples, this would improve precision on unknown
test data. We employed the grid search (GS) technique in the
Scikit-learn framework [32] on the extracted features to find
the best possible set of parameters. At first, we divided the
all-channel feature matrices of the three datasets into 80%
for training and validation data and 20% for test data, i.e.,
completely unseen by the model, as shown in Fig. 10. Here,
the grid search (GS) with a 10-fold cross-validation (CV)
strategy is employed using 80% data. Thus, 80% of the data
is portioned into ten subsets, where nine subsets are utilized
to train the model per each parameter combination, and the
remaining set is used for validation. The process is iterated ten
times, taking each group for model validation. We chose the
hyper parameters that produced the best accuracy for the CV
experiments and utilized those parameter settings to create an
optimized XGboost model. Table 9 lists fine-tuned GSCV-
XGboost hyper-parameters obtained for the DEAP dataset
with all-channel BuEn features. Afterward, the optimized
model is evaluated using the 20% test set. A similar GSCV
procedure is adopted for 12-channel experiments of the three

datasets, and fine-tuned hyper parameters are opted for.
Finally, the optimized GSCV-XGboost is evaluated with the
test data of 12-channel and all-channel profiles of the three
datasets, and the obtained accuracy is reported in Table 10.
GSCV-XGboost achievedmore than 2% higher accuracy than
the conventional XGboost model. Hence, as expected, the
grid search optimization of XGboost improved the classi-
fication performance. The following section presents these
outcomes in terms of the confusion matrix and ROC-AUC
values.

C. EVALUATION OF THE PROPOSED METHOD USING
GSCV-XGBOOST AND OTHER PERFORMANCE METRICS
We have examined the experimental outcomes of the pro-
posed LMD-BuEn approach using GSCV-XGboost with a
variety of other performance metrics too, such as confu-
sion matrices, the receiver operating characteristics (ROC),
and area under the curve (AUC), along with accuracy and
demonstrated the relevance of these metrics in real-world
applications. Since accuracy is not considered a strictly cred-
ible indicator for a recognition issue, performance evaluation
in the context of additional metrics would help demonstrate
the robustness and reliability of the proposed framework.
(i) Confusion matrix (CM): It is a widely used tab-

ular metric that shows the numerical statistics of the
model’s class-wise classification/miss-classification perfor-
mance. The percentage discriminating accuracy achieved by
the GSCV-XGboost in Table 10 can be verified with the CMs
depicted in Fig. 11(b, d, f) for the respective three datasets.
Moreover, CM gives insights into the misclassified instances
and individual class accuracy. The classification accuracy
achieved with test data on conducting cross-validation exper-
iments with XGboost is plotted as CMs. Here, CMs are
computed for 12 channels and all channel profiles of each
dataset, as shown in Fig. 11. We can observe from Fig. 11(a)
that there are only two incorrectly categorized instances of
each positive and neutral emotion class of the SEED dataset.
Meanwhile, the 62-channel CM has only one incorrectly cat-
egorized instance of the positive emotion shown in Fig. 11(b).
So, there is only a marginal difference in the misclassification
rate of the 12 and all channel profiles, which reinstates that
in a resource-constrained scenario, the 12-channel profile is
preferable over the 62-channel. Similar observations can be
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FIGURE 11. Confusion matrices for 12 and all-channel (62 and 32) experiments performed using (a-b) SEED, (c-d) SEED-IV, and (e-f) DEAP datasets.

FIGURE 12. ROC curves for 12-channel and All-channel (62 and 32)experiments (a-b) SEED,(c-d) SEED-IV, and (e-f) DEAP datasets.

made from the CMs of the other two datasets, SEED-IV and
DEAP, shown in Fig. 11(c-f).
(ii) ROC Curve: It relates true positive rate (TPR) and false

positive rate (FPR).Moreover, ‘‘area under the curve (AUC)’’
is a crucial parameter that assesses the classifier’s efficiency
among all viable thresholds and is utilized for classifier
evaluation. Therefore, to analyze the XGboost model further,
we evaluated the model using a more consistent and effective
metric. The ROC curves and AUC values illustrate how well
XGboost discriminates between four emotion classes. The
ROC is plotted for each dataset’s 12-channel and all-channel
profiles, shown in Figs. 12(a-f). Themost significant outcome
of ROC curves was the average AUC obtained with the 12-
channel experiments, which are 0.96, 0.98, and 0.95 for the

employed datasets, as depicted in Figs. 12(a, c, e). On the
other hand, when all channels are considered, AUC values
are 0.98, 0.99, and 0.96, which are almost close to 12-channel
AUC values for the three datasets shown in Figs. 12(b, d, f).
The individual class-level AUC scores are also mentioned in
each ROC curve. Hence, the CMs and AUC analysis also
confirmed that 12-channel and all-channel profiles performed
almost equally well.

D. CROSS SUBJECT VALIDATION (CSV)
CSV experiments are implemented to demonstrate the robust-
ness of the proposed approach. It mainly illustrates the effi-
cacy of the proposed framework in dealing with inter-subject
variability, primarily found in real-world HCI applications.
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TABLE 11. The classification accuracy of CSV experiments with the three
datasets.

These evaluations are called subject-independent emotion
recognition (SIER). This experiment keeps one subject out
for testing, and the remaining subjects are fed to the proposed
model for training and validation. A similar procedure is
followed on every subject, and the test accuracy attained
with each subject is averaged to obtain the average classi-
fication accuracy (ACA) reported in Table 11. Experiments
are performed on three datasets, and the achieved %ACA is
summarized in Table 11. The CSV-1 is performed on SEED
with three emotions, i.e., happy, neutral, and sad. Further, the
CSV-2 is performed with four emotions of SEED-IV. The
CSV-3 experiment is executed with DEAP to classify four
emotion categories. As depicted in Table 11, observations
reveal that the XGboost model obtained superior recognition
performance for the three experiments with the proposed T-F
domain BuEn features in terms of higher %ACA at individual
class and average accuracy levels. For the CSV-1, XGboost
attained the maximum 97.01% ACA for the happy emotion
class and the minimum for sad 96.02%. Next, with the four-
class CSV-2 experiment, the happy class XGboost reported
a maximum of 97.68% ACA and a minimum of 94.13%
ACA. Further, with CSV-3, the XGboost achieved 89.14%
maximum %ACA with a maximum of ACA (90.21%) in
the happy emotion class and the minimum for the sad class
(88.50%) obtained. In these CSV experiments, XGboost
achieved higher accuracy for positive emotions than negative
classes. We can conclude from these findings that, even with
CSV, accomplished superior results, illustrating its efficacy
for SIER tasks.

E. CROSS DATASET VALIDATION (CDV)
Cross-dataset validation is conducted on the SEED and
DEAP databases, i.e., we train the model using 90% of the
train data from one database and tested on 10% of data from
other databases. For this experiment, this work considered
only two emotion classes (positive and negative) to maintain
compatibility within the databases. The high valence and low
valence emotion classes are positive and negative emotions

TABLE 12. The classification accuracy of CDV experiments with the three
datasets.

of DEAP. Consequently, two experiments (CDV-1 and CDV-
2) are performed, and the individual classification accuracies
of each emotion class are given in Table 12. The key obser-
vations that we can infer from this experiment are that the
average emotion detection accuracy is reduced in this case
by the XGboost model compared to the previous experiment.
However, the proposed model’s performance in CDV-1 is
still close to CSV-2. As DEAP is an imbalanced dataset, the
proposed model achieved a marginal performance of 85.46%
for CDV-2. Even with the toughest validation like CDV, the
performance of theXGboost with proposed T-F domain BuEn
features is better, indicating the model’s robustness for real-
world scenarios. This aspect is crucial in SIER tasks. The
proposed emotion recognition system has real-world appli-
cations, such as detecting stress or depression and enabling
HCI applications. It involves using a wearable EEG device
on the subject’s head to record EEG samples, which can be
collected remotely. By analyzing these EEG signals through
the proposed approach, the person’s emotional status can be
identified.

VI. COMPARATIVE ANALYSIS
Table 13 presents a comparative analysis of the performance
of the proposed method against the latest published works
in the field of emotion recognition. This study evaluates
the percentage accuracy reported in these recent studies.
The comparison highlights that the proposed scheme outper-
forms most recently published methods. Notably, a recent
study [16] employed a combination of Convolutional Neu-
ral Networks (CNN) and differential entropy, achieving an
accuracy of 90.41% on the SEED dataset. However, using the
same SEED database, the suggested approach significantly
improves recognizing performance to 97.8% by utilizing
BuEn features in the LMD context. Moreover, the presented
work outperforms the most recent EMD-based studies [17],
[18], which achieved 93.8% of the highest accuracy with
DEAP four emotions, while we attained 95.7% for the same
classes. This might be due to the EMD’s drawbacks, such
as its issues with mode mixing, noisy IMFs, and deviat-
ing intermediate frequency. Deep learning (DL) techniques
are frequently used in modern research in emotion recog-
nition. For comparison with our suggested LMD-domain
entropy technique, we also incorporated the recently pub-
lished complex deep models [15], [28], [29], [30], [37],
[40], [41], [42], [43], [45], [46], [57], [58], [59], [60], [61].
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TABLE 13. Comparative analysis of the proposed work with existing
works.

The comparison table demonstrates that the GSCV-optimized
XGboost classifier outperforms deep learning (DL) methods

in emotion classification by leveraging LMD-domain BuEn
features. This superior performance might be attributed to the
ensemble nature of XGboost, its extensive parameter tuning
capabilities, built-in capacity to handle missing values, and
numerous other features. These aspects enable XGboost to
make more precise predictions than single classifiers like
SVM [18] and DL models. Moreover, the computational cost
of DL-based methods is high, often requiring a GPU for
training. Additionally, deep models are data-hungry; thus,
DL-based research [28], [30], [41] utilized vast amounts of
raw EEG data. Several studies also employed a wider variety
of features [15], [37], [42], [45], [46]. In addition, these
studies utilize numerous data processing stages and employ
hybrid deep models [15], [28], [29], [30], [41], [42], [43],
[45], [46] to distinguish emotions. While experimenting with
light ML classifiers and employing only BuEn features in
our work, we observed that XGboost performed better than
others. Finally, we optimized the parameters of XGboost
using the GSCV methodology, fine-tuning aspects such as
the number of estimators, maximum depth, and learning
rate. This optimization enhanced the discriminative power of
XGboost, enabling it to achieve a higher classification rate
than recent studies. To the best of our knowledge, the most
current DL-based works [42] obtained the highest accuracy
with DEAP 96.68% for 3-emotion classes and [45] with
SEED (98.47%). Meanwhile, [45] obtained only a marginal
accuracy of 91.9% with SEED-IV compared to our LMD
approach accuracy of 98.6%. Despite achieving high accu-
racy [42], it involves many stages for the task, such as
the Relief algorithm for channel selection, max-relevance,
and min-redundancy algorithm to obtain emotion-relevant
channels further and designed capsule EEGNet for emo-
tion recognition. Moreover, [45] also used a hybrid model,
i.e., ACTNN, with a complex feature extraction process,
i.e., a combination of the spatial feature made into a
2D matrix and spectral characteristics of EEG frequency
rhythms. However, the suggested LMD technique exceeds
the abovementioned work by attaining the highest accuracy
with SEED, SEED-IV, and DEAP, respectively, of 97.8%,
98.6%, and 95.7% without involving complicated proce-
dures. Considering only 12 channels, the proposed LMD
method gets competitive performance with SEED and SEED-
IV. It achieves superior performance of 94.1% with DEAP,
which is particularly noteworthy as it involves four distinct
emotion classes. The comparative study suggests that the
proposed strategy outperforms existing approaches while
requiring reduced computational effort. The BuEn features
in the LMD domain adeptly capture emotion-specific char-
acteristics from the EEG signal. In addition, the tuning of
hyperparameters in XGboost contributed to enhanced clas-
sification. Consequently, the presented method surpassed
the overall performance of the previous studies across all
three databases. Here, we have also compared our two T-F
approaches and found that the LMD approach performs bet-
ter than the CEEMDAN approach, which might be due to
the reason that LMD-domain PFs capture emotion-relevant
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traits more precisely from the associated EEG signal as com-
pared to CEEMDAN-domain IMFs. Additionally, the LMD
approach was computationally faster than the CEEMDAN
approach.

VII. CONCLUSION
This study introduces a novel framework for emotion recogni-
tion using a Local Mean Decomposition (LMD) approach to
analyze multichannel EEG signals. LMD decomposes EEG
signals into product functions (PFs), from which essential
mode functions are selected for emotion analysis. The BuEn
features are then derived from these functions and fed into
an optimized XGboost classifier to distinguish emotions.
The F-score and post-hoc analysis revealed that BuEn fea-
tures have better-discriminating ability than other T-F domain
entropy measures. Thus, the BuEn method outperformed
other entropy techniques in capturing emotion-relevant infor-
mation from T-F decomposed EEG signals. Additionally,
a channel selection strategy was also proposed to iden-
tify the contributions of specific EEG channels in emotion
recognition tasks. The 12-channel LMD-BuEn profile signif-
icantly improved emotion recognition performance using a
GSCV-optimized XGboost classifier. The proposed model,
leveraging multichannel LMD-BuEn features, outperformed
state-of-the-art methods and proved superior, less complex,
and faster than conventional EMD and deep learning-based
approaches. The BuEn features from selected EEG chan-
nels enhanced the classifier’s performance, demonstrated
through CSV and CDV experiments. The classification accu-
racy obtained with the XGboost model for CSV experiments
is 96.34%, 95.98%, and 89.14% with SEED, SEED-IV,
and DEAP. While with CDV, the results are 95.6% and
85.46% with SEED and DEAP, respectively. Furthermore,
the proposed framework’s robust performance and low
computational demands make it suitable for practical HCI
applications, offering superior emotion classification perfor-
mance. The proposed automatic emotion recognition system
can be extended further to be particularly useful in detecting
negative emotions like anxiety, stress, and depression, which
are critical as they may lead to suicidal tendencies and vary
significantly among individuals.
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