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ABSTRACT As an important power device in modern industry, electric motor plays a vital role in the
production process. In the face of the expanding scale of the motor system and the increasing complexity
of the working environment, the study proposes a new model for motor fault diagnosis based on local
binary patterns and support vector machines. By analyzing the motor operation data, while extracting texture
features using local binary patterns, and accurately classifying and diagnosing by support vector machines,
the study aims to improve the accuracy and real-time performance of fault detection. Experimental results
show that the diagnostic model is able to complete the feature classification in as little as 200 seconds, and
the fault classification accuracy can reach up to 97%. The model’s fault prediction has the smallest mean
square error of 0.017, the smallest root mean square error of 0.214, and the smallest mean absolute error of
0.011. From the above data, it can be seen that the proposed method of the study can significantly improve
the efficiency and accuracy of fault detection. The contribution of the study is to propose an effective method
for motor fault monitoring and diagnosis, which provides important support for motor fault prevention
and maintenance, and also lays a new theoretical foundation for the development of motor fault diagnosis
technology.

INDEX TERMS Fault diagnosis, Gaussian kernel function, local binary mode, motor system, support vector
machine.

I. INTRODUCTION
In modern industry, the reliability and efficiency of motors
are crucial, and fault diagnosis has become a key technology
to ensure the normal operation of motors [1]. For this field,
researchers at home and abroad have successively proposed
many solutions. For example, the combination of the latest
advances in the Internet of Things and big data technology
makes motor fault detection realize real-time monitoring and
remote diagnosis [2]. The real-time collection of motor oper-
ation data through IoT technology and the use of big data
analysis technology for data mining and pattern recognition
can realize timely warning and diagnosis of motor failure.
However, the large amount of data generated by motors in
the field environment poses challenges to data transmission,
storage and processing, especially in scenarios with high real-
time requirements, and the performance and stability of edge
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computing still need to be further improved. In recent years,
significant achievements have beenmade in the field of motor
condition monitoring and fault diagnosis using image pro-
cessing techniques and machine learning. In particular, Local
Binary Pattern (LBP) and Support Vector Machine (SVM)
have gained widespread attention for their powerful feature
extraction and classification capabilities [3]. Although AI
classifiers utilizing deep learning have demonstrated excel-
lent performance in several fields, deep learning methods
require a large amount of labeled data and computational
resources when dealing with motor fault diagnosis, which is
often a major limitation in practical applications [4]. In con-
trast, LBP, as an effective texture analysis method, can extract
key features from motor operation data, while SVM, with its
superior classification performance and low computational
complexity, performs better in small-sample learning sce-
narios. In addition, although Local Ternary Pattern (LTP)
provides richer information for the extension of LBP, LBP
still has its unique advantages in simplifying computation
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and reducing model complexity. The study focuses on several
common failure modes in motor operation, including bearing
damage, rotor unbalance and stator winding failure. Vibration
signals, temperature variations and current anomalies during
motor operation are collected and analyzed. By combining
LBP and SVM, a novel motor fault monitoring and diagnosis
model is proposed, aiming to improve the diagnostic accuracy
and efficiency, while reducing the dependence on large-scale
training data and providing more effective technical support
for motor fault prevention and maintenance. Through experi-
mental validation, the extraction time of the proposed model
under the study can be as short as 200 seconds, and the pre-
diction accuracy is close to 97%, which not only outperforms
the existing methods in terms of feature extraction speed
and diagnosis accuracy, but also demonstrates the robustness
under different working conditions, which is of great signifi-
cance in promoting the development of motor fault diagnosis
technology.

II. RELATED WORKS
The widespread use of electric motors in industry makes
motor operation fault monitoring and diagnosis crucial.
Motor failures not only lead to equipment downtime and
production disruption, but also may cause greater accidents
and losses. Therefore, timely detection and resolution of
motor faults are crucial to ensure production continuity and
equipment reliability. Jiang et al. proposed a strong robust
diagnostic strategy based on d-q axis current signals in
order to diagnose open-circuit faults in a novel fault-tolerant
drive motor system. The strategy can perform fault diagnosis
work properly in an environment with very few indepen-
dent power supplies and converters. Simulation experimental
results show that the strategy can overcome the early warn-
ing problem of motor fault diagnosis under sudden load
changes or light load conditions [5]. Afrasiabi et al. found
that existing convolutional neural networks still have some
deficiencies in diagnosing motor faults, in view of which the
research team proposes a single-module convolutional neural
network incorporating a Gabor filter. Experimental results
show that this novel network has more excellent performance
than feedforward neural networks and general neural net-
works [6]. Fu et al. proposed a multi-modal neural network
algorithm incorporating dynamic routing in order to improve
the efficiency of existing methods for fault diagnosis of
induction motors. The method introduces a dynamic routing
algorithm at the decision layer to assign appropriate weights
to different modes in an adaptive manner. The experimental
results show that the novel diagnostic method is effective and
robust compared to the same type of methods [7]. In order
to reduce the cost of motor operation faults, Behloul et
al. proposed a novel motor defect detection technique after
combining local ternary mode and gray level co-occurrence
matrix. Experimental results show that this technique has
more obvious detection efficiency and lower cost compared
to other more popular multiclassification fault detection
techniques [8]. In order to further explore the value of

combining LBP and SVM in the field of electric motor faults,
Hernandez-Ramirez et al. constructed a machine-learning
fault detection method by utilizing difference histograms and
SVM. The experimental results showed that the detection
accuracy of the method was up to 98.16% [9].

With the development of digital image processing and fea-
ture classification techniques, local binary patterns and sup-
port vector machines have gradually come into the public’s
view and have achieved certain results in many application
areas respectively. Basaran and Fidan found that variations in
vibration characteristics provide indicators about the type of
failure and can be used for click fault detection. Therefore, the
research team proposed a novel detection model combining
LBP and SVM. Experimental results showed that the model
was found to be more successful in classifying motor faults
with an accuracy of 96.7 when compared with other popular
machine learning algorithms [10]. Saidi et al. found that
existing LBPs consume a large amount of time and training
data during texture analysis, so the research team proposed
a new method that incorporates circular partial local binary
patterns. The experimental results show that the accuracy test
result of this method in Outex 10 dataset reaches 98.7% [11].
Zhu et al. In order to improve the accuracy of earthquake
magnitude estimation, a new magnitude estimation model
is proposed after combining migration learning and SVM.
Simulation experiments show that the estimation errors of
event magnitude by the proposed model are within plus or
minus 0.3 magnitude units in five tests of seismic events [12].
Qin et al. In order to more accurately measure the water hold-
ing capacity of in situ loess soil samples with different soil
textures, a prediction model for water retention parameters
in the low-water-table range is proposed by combining the
Particle Swarm Algorithm and SVM. The experimental
results showed that the absolute, relative and root mean
square errors between the predicted and tested values of the
model were less than 0.0153, 0.1071 and 0.0633, respectively.
Indicating that the overall performance of the model was
effective and stable, and the prediction was better [13].

In summary, the state-of-the-art technologies cover a wide
range of fields, and some of the prominent results include
the application of deep learning methods, the combination of
IoT and big data technologies, and the development of digital
image processing and feature classification techniques. These
techniques have brought innovations and advances in the field
of motor fault detection, where motor fault detection methods
combining LBP and SVM have made significant contribu-
tions in improving detection efficiency and accuracy. In view
of this, the study continues to optimize the feature extraction
of LBP and combines SVM to provide more effective theoret-
ical support for the technological development in this field.

III. CONSTRUCTION OF MOTOR OPERATION FAULT
MONITORING AND DIAGNOSIS MODEL BASED ON
LBP-SVM
In order to build a more effective and stable motor fault
diagnosis model, the first section of the study firstly analyses
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the motor fault signals and their features, and provides a
basis for the subsequent model construction by means of
enhancing the signal features. The second section of the study
then combines LBP and SVM to propose a novel motor fault
diagnosis model.

A. MOTOR OPERATION FAULT FEATURE EXTRACTION AND
SIGNAL ENHANCEMENT
Electric motors are widely used equipment in industrial pro-
duction, and their failure may lead to serious consequences
such as production interruptions, losses and safety accidents.
Therefore, accurate motor fault diagnosis is of great sig-
nificance to ensure the safety and stability of production.
Traditional motor fault diagnosis methods are mainly based
on expert experience and monitoring of sensor data, but there
are problems such as long diagnosis time, low accuracy and
high cost [14]. The general motor fault diagnosis system is
shown in Figure 1.

FIGURE 1. Motor fault diagnosis system.

As can be seen from Figure 1, the method is mainly
divided into four parts: data acquisition, pre-processing, fea-
ture extraction and diagnostic analysis. Motor operating data
is first collected, then preprocessed to ensure accuracy, fol-
lowed by extraction of features to describe the motor state,
and finally diagnostic analysis to determine the presence
of faults. And the current method is mainly combined with
neural algorithms for diagnosis, although the diagnosis speed
is fast and the accuracy rate is high, but there is the problem
of high cost of neural network training and complex training.
Combined with the fact that the object of this research is
the electric motor, it is generally difficult to obtain a large
amount of fault data to train the model under normal con-
ditions, and the use of time-frequency heat maps of signals
for fault warning and diagnosis is more intuitive, compu-
tationally efficient, and better fitted to a specific problem
compared to neural algorithms. So the research tries to use
the time-frequency heat map of the signal to carry out fault
warning and diagnosis [15]. The time-frequency thermogram
of the signal must firstly be plotted by analysing the spectrum
of the acquired data signal in order to preferentially obtain
certain dynamic features that are representative in the time
domain. The general time-frequency feature visualization
method is the wavelet transform, which is better compared
to the quadratic distribution because the wavelet transform
has better time-frequency resolution and better adaptability to

non-smooth signals, and can capture the time-frequency fea-
tures of the signal more accurately. The calculation process
of which is shown in equation (1) [16].

ϕa,b(t) = |a|−
1
2 ϕ(

t − a
b

), a, b ∈ R, a ̸= 0 (1)

In equation (1), ϕ denotes the fundamental wavelet,
a denotes the expansion factor, b denotes the translation
factor, and ϕa,b denotes the continuous wavelet. The variation
form of continuous wavelet is shown in equation (2).

Wf (a,b) =
〈
f , ϕa,b

〉
= |a|−

1
2

∫
R
f (t)φ(

t − b
a

)dt (2)

In equation (2),
〈
f , ϕa,b

〉
denotes the inner product of

the two and φ(t) denotes the conjugate complex. The
time domain analysis of a signal allows mapping of a
one-dimensional time signal into a two-dimensional plane on
the time axis and frequency group layers. The formula for this
process is shown in equation (3).

fa = fc ×
fs
a

(3)

In equation (3), fs denotes the centre frequency of the
wavelet, fc denotes the sampling frequency and fa denotes the
actual frequency. Different wavelet functions show different
effects on time-frequency thermograms, therefore, in order
to select the most effective thermograms, the study adopts
Tamura texture for feature extraction. Because Tamura tex-
ture can effectively capture the subtle texture features of an
image with high differentiation and stability, it is suitable for
time-frequency heat map analysis of signals. Compared to
other texture features, Tamura texture provides more accurate
and reliable characterization in time-frequency thermogram
presentation. Tamura texturemainly considers six dimensions
of the image, which are orientation, roughness, linearity,
contrast, roughness, and regularity. Among them, the formula
for orientation degree is shown in equation (4).

Fdir =

{
|1G| = (|1H |) + (|1V |)

θ = tan−1(|1V / |1H ||) +
π
2

(4)

In equation (4), 1V and 1H denote the amount of gradient
change of the texture image in the vertical and horizontal
directions, respectively. The formula for roughness is shown
in equation (5).

Fcrs =
1

m× n

m∑
i=1

n∑
j=1

Sbest (i, j) (5)

In equation (5), Sbest (i, j) denotes the optimal image grain
size at the two-dimensional coordinate point (i, j), m denotes
the image length, and n denotes the image width. The formula
for calculating the degree of linearity is shown in equation (6).

Flin =

n∑
i

n∑
j
PDd (i, j) cos

[
(i, j) 2πn

]
n∑
i

n∑
j
PDd (i, j)

(6)
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In equation (6), PDd (i, j) denotes the symbiotic matrix dis-
tance points in 2D coordinates (i, j). The contrast calculation
formula is shown in equation (7).

Fcon =
σ

(µ4/σ 4)
1
4

(7)

In equation (7), σ denotes the image grey scale standard,
and σ 2 denotes the variance. µ4 denotes the fourth order
mean. The formula of regularity is shown in equation (8).

Freg = 1 − r(σcrs + σcon + σdir + σlin) (8)

In equation (8), σcrs, σcon, σdir and σlin denote the standard
deviation of roughness, contrast, directionality and linearity,
respectively, and the roughness calculation formula is shown
in equation (9).

Frgh = Fcrs + Fcon (9)

The meaning of each expression in equation (9) is the
same as explained previously. Since the time-frequency
thermograms have the same background colour, it leads
to some challenges in classifying the pixels with devia-
tions in them. The commonly used image enhancement
methods are spatial and frequency domains, therefore, the
study chooses the binarisation technique in the frequency
domain as the enhancement means. Because binarization can
effectively convert the time-frequency thermogram into a
black-and-white image, highlighting the differences between
different frequency components, making the fault character-
istics clearer and more explicit, and suitable for rapid and
intuitive identification of fault modes. Compared with other
techniques, binarization is simple and easy to implement, and
it can retain the main frequency information, which improves
the recognition accuracy and visualization effect of the image.
And the derivation of the binarisation process is shown in
equation (10) [17]. {

a0 = N0/(m× n)
a1 = N1/(m× n)

(10)

In equation (10), a0 and a1 denote the percentage of
foreground and background pixel distributions in the global,
N0 andN1 denote the number of pixel grey levels less than and
greater than the threshold pixel point. The final binarisation
formula is obtained as shown in equation (11).

g = a0a1(β0 − β)2 + a1(β1 − β)2 (11)

In equation (11), β0 and β1 denote the average grey level
of pixels in the foreground and background, respectively,
and g denotes the inter-class variance. The video feature
enhancement map after binarisation is shown in Figure 2.

Figure 2(a) shows the initial time-frequency feature map.
Figure 2(b) shows the first valued feature map. Figure 2(c)
shows the second valued feature map, and Figure 2(d) shows
the critical time-frequency feature map. As can be seen from
Figure 2, the initial more dispersed time-frequency feature
image, after two binarisation processes, in which the key fea-
ture factors are centrally extracted and characterised. It shows

FIGURE 2. Time frequency feature image after feature enhancement.

that this technique can separate various frequencies and their
distribution laws from the image background and achieve
the segmentation of the target and the background, so as to
strengthen the distribution of the frequency components and
improve the recognition rate and operation speed in the later
stage.

B. FAULT MONITORING AND DIAGNOSIS MODEL
CONSTRUCTION BY COMBINING LBP AND SVM
After obtaining the enhanced thermal map of the motor sig-
nal, the study adopts the idea of LBP for feature extraction
analysis of the time-frequency distribution map before and
after the occurrence of faults. LBP compares each pixel
in the image with its neighbouring pixels, and generates a
local binary pattern based on the result of the comparison.
This local binary pattern describes the luminance relationship
between a pixel point and its surrounding pixels, which is
encoded as a binary number, and this encoded binary number
can be used to represent the texture features. The schematic
diagram of the LBP operation process is shown in Figure 3.

FIGURE 3. LBP operation diagram.

As can be seen in Figure 3, the central number 5 is used
as the threshold point and the surrounding numbers are com-
pared to it. If it is greater than the threshold, it is labelled
as 1 and if it is less than the threshold, it is labelled as 0.
Thus an eight digit binary number is obtained and there are
a total of 256 possibilities for combining these numbers.
For simplicity of operation, the representation is changed to
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a decimal number, i.e., the LBP code. The computational
formula for the LBP code is shown in equation (12).

LBP (x, y) =

∑
{n = 0} ∧ {P− 1} s (n) ∗ 2 ∧ n (12)

In equation (12), (x, y) denotes the coordinates of the
center pixel; P denotes the number of pixel points contained
in the neighborhood centered on the center pixel, which is
usually the number of points on a circular neighborhood.
The radius R denotes the radius of the neighborhood, i.e.,
the radius of the neighborhood circle centered on the center
pixel. Typically, the relationship between P and R is P = 8∗R.
s(n) denotes the binarization result obtained by comparing
with the grayscale value of the center pixel, if the grayscale
value of the neighboring point is greater than or equal to
the grayscale value of the center pixel, s(n) takes the value
of 1, and 0 otherwise. SVM is mainly used in classification
problems, and its core idea is to find a maximal spacing
hyperplane, i.e., a decision boundary that maximises the spac-
ing between data points of different classes [18]. A linearly
divisible SVM can divide two classes of data by a plane
that maximises the interval between the divisions [19]. The
schematic diagram of linearly divisible SVM is shown in
Figure 4.

FIGURE 4. Schematic diagram of linearly separable SVM.

As can be seen from Figure 4, a simple dataset is divided
into two types of datasets with red circles and blue squares by
a dotted line. And this dotted line is the decision boundary of
SVM. The data points that are closer to the decision boundary
are called support vectors, and in order to define this decision
boundary [20]. Generally, two parallel lines with intervals
of d1 and d2 are chosen to approximate the truest decision
boundary by infinitely deriving these two lines. The formula
for this process is shown in equation (13).

D = {(xi, yi) |i = 1, 2, · · · , n }, xi ∈ R, yi ∈ {1, −1} (13)

In equation (13), D denotes a complete data set, xi and yi
denote two 2D data points on the data set, respectively. The
formula for this data set to be correctly linearly classified is
shown in equation (14).

wx + b = 0 (14)

In equation (14), w and b both belong to the weights and
biases of the samples in the given data set, and x represents
the feature space. Then the distance between two parallel
lines and the decision boundary is calculated as shown in
equation (15). {

d1 =
|wx+b|

∥w∥
=

1
∥w∥

d2 =
2

∥w∥

(15)

The variables of interest in equation (15) are consistent
with the interpretation between. However, problems that can-
not be classified by a two-dimensional straight line need to be
mapped to a high-latitude environment before classification.
The method generally transforms the data from low to high
latitude in the form of vector points, and the schematic of the
linearly indivisible SVM is shown in Figure 5.

FIGURE 5. Schematic diagram of linearly indivisible SVM.

As can be seen from Figure 5, SVM can map the 2D spatial
dataset in the left part to 3D space, and at the same time,
due to the greater divisibility of the data in the high-latitude
environment, the effective division of the original data can be
completed. In the process, the auxiliary processing of kernel
function is generally required. The efficiency of mapping
and classification can be improved and the complexity of
operation can be reduced by choosing appropriate kernel
functions. Therefore, the focus of the computational process
should be on the kernel function rather than the mapping
itself. Common kernel functions include linear Linear kernel
function, polynomial Poly, Gaussian radial basis RBF kernel
function and Sigmoid kernel function. Considering that the
object of this study is motor faults, after combining the num-
ber of samples and the number of features, the study combines
LBP and SVM with RBF kernel function. Because the RBF
kernel function has strong nonlinear mapping ability, it is
more effective in dealing with complex nonlinear problems,
and is suitable for data with complex time-frequency char-
acteristics such as motor signals. Compared to other kernel
functions, the RBF kernel function is able to better capture
the nonlinear relationship between the data. And proposes
a new motor fault monitoring and diagnostic model using
time-frequency thermograms of the motor signals for human-
computer analysis. The schematic of the operation flow of the
model is shown in Figure 6.

As can be seen from Figure 6, the operation process of
the LBP-SVM model can be roughly divided into four parts.
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FIGURE 6. The motor operation fault monitoring and diagnosis model
combined with LBP-SVM.

Firstly, the motor equipment is monitored for its operation
status and data information is collected in real time. Then
these collected data are converted into time-frequency ther-
mograms by wavelet transform. Then the data is classified
and analysed by LBP-SVM model to filter out the error
characteristic data with motor faults, and if there is no such
data, the motor continues to work normally. If there is fault
data, the type of fault is judged to be destructive, simple
damage or unknown. If the fault is destructive, it is necessary
to immediately suspend motor operation and start manual
maintenance. If it is a minor damaging fault, a fault warning is
issued. If it is an unknown type of fault, the fault information
is sent to the information base to facilitate subsequent data
tracking.

IV. EXPERIMENTAL ANALYSIS OF FAULT MONITORING
AND DIAGNOSTIC MODELS
In order to test the performance effect of LBP-SVM model,
the first section of the study firstly tested the training of LBP
feature extraction and compared the performance of the same
type of model, and secondly tested the in-depth classification
performance of SVMmodel. The second section of the study
builds a simulation environment and performs simulation
tests on the LBP-SVM model.

A. FAULT MONITORING AND DIAGNOSTIC MODEL
PERFORMANCE TEST
Motor fault monitoring and diagnostics are critical to ensur-
ing the reliability and efficiency ofmodern industrial systems.
Early identification and accurate diagnosis of faults can sig-
nificantly reduce unplanned downtime, lower maintenance
costs and increase productivity. In order to verify the perfor-
mance effect of the LBP-SVM diagnostic model, the study
builds a suitable experimental environment. The motor fault

simulation platform developed by Zongyuan Measurement
Company was used for fault diagnosis testing. The vibration
signal is collected by 6 acceleration sensors, the data sam-
pling frequency is set to 53000 Hz, the rated speed of the
motor is set to 1520 r/min, and the power supply frequency is
set to 80 Hz. The motor test stand is shown in Figure 7.

FIGURE 7. Image of motor test bench.

As can be seen in Figure 7, the test stand includes a
standard industrial motor connected to the load to simu-
late operating conditions and is equipped with a variable
frequency drive to control the motor speed, allowing for
both fixed and variable speed testing. Data acquisition
was performed using an array of high-precision sensors,
including vibration, temperature, and current sensors, which
were mounted at strategic locations on the motor and load
assembly. The collected data is then digitized by a high-speed
data logger, ensuring that the motor’s operating character-
istics are accurately captured under a wide range of fault
conditions, including bearing failures, misalignment and
unbalanced loads. The number of samples for each type of
fault data is 12, and the length of the samples is 1 s. A total
of 500 pieces of data after sampling for 40 min are divided
into the training set and the test set according to the ratio
of 8:2, and the recognition accuracy is taken as the refer-
ence index. Taking the recognition accuracy as the reference
index, the LBP, Local Directional Pattern (LDP), Local Phase
Quantization (LPQ), and HOG feature extraction. LBP, Local
Directional Pattern (LDP), Local Phase Quantisation (LPQ)
and HOG feature extraction method (Histogram of Oriented
Gradient). The specific test results are shown in Figure 8.

Figure 8(a) shows the feature recognition accuracy results
of the four models on the training set, and Figure 8(b) shows
the feature recognition accuracy results of the four models on
the test set. As can be seen from Figure 8, there is a decreasing
trend in the combined recognition ability of all four models
on the training set, but overall, the LBPmodel has the slowest
decreasing trend. In the test set, the feature recognition accu-
racy of the LBP model is the highest, with a maximum value
of about 90%. This result points to the effectiveness of LBP
feature extraction in handling motor fault data. Compared to
other feature extraction methods, the LBP method is more
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FIGURE 8. Training test results of different feature extraction models.

FIGURE 9. Testing the diagnostic accuracy and classification speed of different kernel functions.

sensitive and accurate in capturing motor fault features. After
comparatively testing the signal recognition performance of
the different models, the study continued with comparative
testing of the signal feature classification models. Taking the
diagnosis correctness and classification time as the reference
index, the test results for different kernel functions, such
as Poly kernel function, RBF kernel function, Linear kernel
function and Sigmoid kernel function, are shown in Figure 9.

Figure 9(a) shows the fault diagnosis accuracy under four
different kernel functions, and Figure 9(b) shows the classi-
fication speed under four different kernel functions. As can
be seen from Figure 9, the diagnosis accuracy of the four
kernel functions does not differ much with the increase in the
number of iterations, and the best performance is the RBF
kernel function, which has the highest fault diagnosis rate of
about 97%. In addition, as the number of iterations increases,

the time required for different kernel functions to complete
the classification task increases gradually. Among them, the
RBF kernel function has the least time of 200 seconds, which
is about 80 seconds earlier than the Poly kernel function.
The reason for this may be that the RBF kernel function
can map the samples to a high dimensional space, but it
requires fewer parameters compared to the Poly kernel func-
tion, so the training time is shortened and more time-saving.
In summary, the study is based on the RBF kernel function,
80 data are randomly selected from the fault data samples
as fault samples, and the other 80 data are also randomly
selected from the data samples of the normal operation of
the motor as normal data samples. The time-frequency dia-
gram before dichotomous reinforcement, the time-frequency
diagram after dichotomous reinforcement, Laplace sharpen-
ing and morphological processing are compared with the
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FIGURE 10. Test results of different signal reinforcement methods.

TABLE 1. Motor operating parameters table.

classification accuracy as the reference index. The test results
are shown in Figure 10.

Figure 10(a) shows the classification accuracy test
results under different image enhancement methods, and
Figure 10(b) shows the actual fault classification test results
under different image enhancement methods. As can be
seen from Figure 10, the fault classification accuracy after
binary reinforcement is significantly improved up to 97%.
Compared with the time-frequency feature map before rein-
forcement, the efficiency is improved by 34%. Meanwhile
the classification accuracy of other reinforcement methods
is significantly lower than that of the time-frequency feature
map after reinforcement. In addition, for different feature
reinforcement methods, after diagnosing 80 motor normal
operation sample data, it is found that the diagnosis data after
binary reinforcement is 79, and the diagnosis efficiency is
better than other methods. The reason for this is that bina-
rization reinforcement helps to highlight important features
in the image, making it easier for the classifier to distinguish
between different fault types. In contrast, other reinforcement
methods may not highlight fault-related features.

B. FAULT MONITORING AND DIAGNOSTIC MODEL
SIMULATION TEST
The study used Case Western Reserve University’s motor
bearing operation database to simulate and test the LBP-SVM
model proposed in this study, which used a motor test bed
with a motor power of 1521 W and two sampling frequency
settings of 12 kHz and 48 kHz. A pair of torque sensors was
used at the motor output position to collect the output data
and monitor the motor operation status in real time under
the miner’s operation. The faults are implanted by EDM
single-point damage, and the implanted faults are of different
complexity and in different locations of the motor bearings.
The general motor bearing faults are divided into three kinds:
inner ring faults, outer ring faults, rolling body faults. The
specific experimental motor parameters are shown in Table 1.

Table 1 shows that under the same data acquisition posi-
tion, acquisition frequency and the same motor bearing
speed, different fault types result in different fault diameters.
However, as the bearing speed increases, the fault diameter
becomes larger and larger. In addition, under the same col-
lection position, sampling frequency and rotational speed,
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FIGURE 11. Histogram of characteristics for different fault types.

the fault diameter of rolling element pitting is significantly
larger than that of inner ring pitting, and outer ring pitting.
The above results illustrate that for variable-speed operation
modes, the LBP-SVM model proposed by the study is par-
ticularly applicable and can adapt to these feature changes,
ensuring that the model can still accurately diagnose motor
faults under variable-speed conditions. In order to demon-
strate the feasibility of the proposed method under different
environments in a more graphic way, the study plots the
local binary feature cases of the time-frequency thermograms
of the motor bearings with normal, inner-ring faults, outer-
ring faults, and rolling-body faults in the form of feature
histogramswith feature-enhanced processing. The test results
are shown in Figure 11.

Figure 11(a) is the histogram of the characteristics of the
bearing normal. Figure 11(b) is the histogram of the charac-
teristics of the failure of the inner ring. Figure 11(c) is the
histogram of the characteristics of the failure of the outer
ring. Figure 11(d) is the histogram of the characteristics of
the rolling element failure. As can be seen from Figure 11,
the normal eigenvalue of the bearing is generally in a smooth
state, and the maximum eigenvalue is not more than 80,
and there are obvious random fluctuations in the eigenvalue
change after the failure. The maximum eigenvalue of inner
ring failure is close to 130, the maximum eigenvalue of outer
ring failure is close to 130, and the maximum eigenvalue of
rolling element failure is close to 160. The performance of
this data is similar to Table 2. It can be seen that the proposed

LBP-SVM performs well in many types of faults and has
a certain degree of reliability. In order to further verify the
authenticity of the above data, the fault data of the inner ring
and rolling element of the bearing were re-collected under the
sameworking conditions. The sliding windowmethod is used
to split these data, that is, every 1 second split to get 8 data,
and the percentage of the calculated results will be output.
The test results are shown in Figure 12.

Figure 12(a) shows the fault detection results of the
LBP-SVM model for rolling body, and Figure 12(b) shows
the fault detection results of the LBP-SVMmodel for bearing
inner ring. As can be seen from Figure 12, under the interfer-
ence of multiple fault types, the accuracy rate of successfully
identifying the fault types of the rolling body is close to 95%,
while the accuracy rate of successfully identifying the fault
types of the inner ring of the bearing is close to 90% by the
fault detection analysis of LBP-SVM. This data is consistent
with the conclusion in Table 1 that under the same conditions
the fault type identification of rolling body is greater than that
of bearing inner ring, followed by outer ring. It shows that the
LBP-SVM model proposed by the study is effective for fault
diagnosis of motor bearings. Finally, the study to combine
these data analysis results with Mean Squared Error (MSE).

Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE) are used as reference indexes to compare and
test existing fault diagnosismodels, which include POS-SVM
model combined with particle swarm algorithm, Transfer
Learning (TL) model, Current Monitoring (CM) model,
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FIGURE 12. LBP-SVM model fault detection results.

TABLE 2. Test results of different fault diagnosis models.

and TL model, Time Domain (TD) model, LTP-SVM model
combining local ternary patterns and GRU-SVM combining
gated neural units and related literature methods in the review
section, etc. The specific test results are shown in Table 2.

As can be seen from Table 2, LTP-SVM, GRU-SVM and
POS-SVM have superior metrics test results relative to other
non-SVM combined algorithm models. It can be shown that
the powerful fault prediction and classification ability of
combined SVM makes the comprehensive performance of
the model significantly improved. The quantified data shows
that the proposed LBP-SVM model has the best overall per-
formance, and among the five diagnostic models, it has the
smallest values of MSE, RMSE and MAE, with the smallest
MSE of 0.017, the smallest RMSE of 0.214, and the smallest
MAE of 0.011. Compared with the current monitoringmodel,

which has the largest value, the value of the model has
decreased significantly. In summary, the LBP-SVM model
performs well in both image feature extraction and fault
classification, and lays a new theoretical foundation for the
field of motor operation fault diagnosis. The reasons can
be summarized as the following three points, firstly, the
LBP algorithm is able to effectively capture the local tex-
ture features of an image or a signal, which are crucial for
identifying abnormal conditions in motor operation. Second,
SVM, especially the RBF kernel function, makes it possible
for different classes of data to be effectively classified by
mapping the data into a higher dimensional space. Third,
the diagnostic accuracy of the model is further improved
by means of binary reinforcement, Laplace sharpening and
morphological processing of the signal.

V. CONCLUSION
Electric motors play a key role in modern industrial pro-
duction, and the monitoring of their reliability and operating
status is crucial to productivity and equipment safety. With
the increasing size of motor systems and the complexity
of operating environments, the monitoring and diagnosis of
motor faults have become more and more urgent. Firstly, the
high dimensional feature space is constructed by collecting
the frequency information of the motor during operation and
extracting the texture features using LBP technique. Then, the
motor state is classified and diagnosed with the help of SVM
supported by Gaussian kernel function. The experimental
results show that the highest value of feature recognition
accuracy of LBP model is about 90%. The shortest time for
the SVM model combined with the RBF kernel function to
complete the feature classification is 200. The accuracy of
the fault classification of the time-frequency featuremap after
the binary enhancement is up to 97%, which is 34% more
efficient compared to the efficiency before the enhancement.
Simulation tests found that the accuracy of the LBP-SVM

VOLUME 12, 2024 104213



W. Wu: Fault Monitoring and Diagnosis of Motor Operation Status Based on LBP-SVM

model in successfully identifying rolling body fault types is
close to 95%, and the accuracy of successfully identifying
bearing inner ring fault types is close to 90%. Its MSE is
at least 0.017, RMSE is at least 0.214, and MAE is at least
0.011. In summary, the proposed model of the study reaches
the industry-leading level in all the indexes, which demon-
strates the model’s remarkable results in the monitoring and
diagnosis of electric motor faults. A highlight of the research
is the improvement of LBP and the combination of SVM,
which reduces the dependence on large-scale training data,
provides strong technical support for motor fault prevention
and maintenance, and is of great significance in promoting
the development of motor fault diagnosis technology. In the
future, the research will continue to deepen the application of
LBP and SVM in electric motor fault diagnosis, and explore
the combination of more feature extraction and classification
methods to adapt to more complex working environments and
fault patterns. The integration of deep learning techniques
will also be considered to further enhance the performance
and universality of fault diagnosis.
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