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ABSTRACT Skin diseases affect millions of people worldwide, leading to significant healthcare burdens and
challenges in diagnosis and treatment. In the past few years, machine learning techniques have demonstrated
potential in assisting dermatologists with diagnosing various skin conditions. As in, conventional machine
learning algorithms might encounter challenges in handling the complexity and distinction of skin disease
classification tasks, primarily because of the intricate nature of medical image data with its high dimensional
properties. In this work, the main analysis is done based on exploring quantum machine learning models
for skin disease classification. This approach blends with the aspects of quantum computing with the
conventional machine learning techniques to push the boundaries of skin disease classification. This work
harnesses the HAM 10000 dataset, an extensive compilation of categorized images portraying common skin
lesions, to train and assess the efficacy of the proposed methodologies. Quantum computing libraries such
as PennyLane and Qiskit is used in this study. Using different combination of qubit rotation encoding and
decoding using three types of Pauli gates such as Pauli X, Y and Z gates are implemented and compared
using proposed Quanvolutional neural network. Features extracted using MobileNet pre-trained network is
used to build Quantum support vector classifier. These quantum machine learning models are compared
with some well-known pre-trained models such as Resnet50, Inception-Resnet, Densenet121, DenseNet201
and MobileNet. The combination of RY qubit rotation and PauliZ gate in quantum convolution layer in
Quanvolutional neural network produced the optimal classification accuracy of 82.86% more than any other
models included in this study. In contrast, Quantum Support Vector Classifier produced similar classification
accuracy of 72.5% with respect to pre-trained models.

INDEX TERMS HAMI10000 dataset, Qiskit, quantum machine learning, quanvolutional neural network,
quantum support vector classifier, skin lesion, PennyLane.

I. INTRODUCTION remains the most prevalent cancer globally, with an alarm-
An estimated 1.8 billion people worldwide suffer from ingly rising incidence rate. Skin infections, stemming from
skin-related conditions at any given moment. Skin cancer microbial, viral, fungal, or parasitic induced roots are the pre-
vailing disease contributors in tropical and settings with lim-
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of all skin diseases. As aresult, it is crucial for ailing countries
to embrace a comprehensive and people-based approach for
managing skin NTDs and various skin conditions within the
scope of universal health coverage. The World Health Orga-
nization acknowledges about twenty diseases and groups of
diseases as neglected tropical diseases. It is important to
use beneficial strategies to enhance the control of diseases
and healthcare through sharing resources and opportunities,
as advised by WHO. When it comes to these diseases, approx-
imately 9 consist of skin issues. Unlike diseases that can
be handled through mass drug administration (MDA), where
entire populations in specific areas are treated, some skin
NTDs need personalized diagnosis and treatment. In general,
these treatments require a sustained level of commitment and
significant resources. The provision of sufficient care to the
affected individuals becomes highly complicated due to the
limited healthcare infrastructure and poorly trained personnel
in those remote areas, where skin NTDs are quite prevalent.
Therefore, it is of utmost critical importance to address the
challenges faced in treating skin NTDs in a holistic manner
for better healthcare outcomes [1].

In 2017 study, the understanding towards adjusted life
years disability for fungal skin diseases (DALY) varied with
age, showing a peak between 1 and 5 years. Sub-Saharan
Africa bore the heaviest burden, with a DALY rate of 89.3 per
100,000 males and 78.42 for females. Mali had the highest
DALY rate at 122. On the other hand, areas characterized by
affluent economies, such as southern Latin America, western
Europe, Australasia, North America, and southern Pacific
regions, exhibits the lowest burden recording a DALY rate
of 33.12 per 100,000 males and 30.16 for females. In con-
clusion, fungal skin diseases significantly impact patients
worldwide, especially in resource-poor countries, tropical
regions, and among children aged 1 to 5 years. Using DALY's
as a metric could guide health policies to mitigate greater
impact on fungal based skin diseases [2]. Skin cancer is a
big health issue in India, a country with lots of people from
different backgrounds. Studies show that the number of skin
diseases, including ones that might be cancer, is going up.
It ranges from about 7.9% to 60% in different parts of the
country. This wide range is influenced by things like how
much money people have and how easy it is to get healthcare.
According to a 2017 study, skin diseases comprised 4.02%
of the overall disability-adjusted life years (DALYs) in India.
Skin based diseases have become more common in recent
years, putting a strain on healthcare systems worldwide.
In India, the duration of time individuals spent living with
disabilities because of malignant melanoma increased a lot
between 1990 and 2017, by 215.7%. Additionally, squamous
cell carcinoma and basal cell carcinoma among other skin
cancer types experience considerable rises, with growth rates
0f 96.8% and 90.9% respectively. But most of the information
we have about skin diseases in India comes from small studies
or surveys done in hospitals or communities, so we may not
know the full extent of the problem [3].

VOLUME 12, 2024

The skin is our body’s largest organ which serves as a
crucial barrier against infections. It protects internal organs,
regulates body temperature, and allows us to feel touch.
Skin has three main layers such as epidermis, dermis, and
hypodermis where each layer performs distinct functions.
Additionally, the skin shields us from harmful UV radiation,
with melanin determining our skin color. Given its vital role
in safeguarding the body, prioritizing skincare is essential.
Untreated skin conditions can spread to other body parts,
causing serious issues, especially considering the contagious
nature of some diseases. Among skin diseases, skin can-
cer poses the greatest threat. Non-communicable diseases
(NCDs) contribute to a significant percentage of global and
Indian mortality rates [4]. Cancer is one of the deadliest
diseases. Of all the cancers, skin cancer has the fastest chance
of being cured if detected early. It is progressively vital
aspect of common health, with rapidly expanding practice.
The three different definitions of skin cancer are Squamous
Cell Carcinoma (SCC), Basal Cell Carcinoma (BCC) and
Melanoma. Non-melanoma skin cancer emerges as the most
common and dangerous, causing approximately one million
cases annually and bringing in 64,000 cases each other in the
world. In particular, the incidence of non-melanoma skin can-
cer shows a significant gender difference, with men suffering
approximately twice as much as women. The burden of this
malignancy is higher in Australia and New Zealand where it is
more likely to develop cancer [5]. This one is the preeminent
deadly kind of cancer because it spreads its roots to other
body parts and penetrates the skin more deeply if it is not
detected too soon. It is impossible to overstate the importance
of detecting melanoma early in its modification. Because of
this, early detection could potentially save numerous lives.
Thus, it is imperative to take seriously any suspicious lesion
that manifests anywhere on the skin. Early identification of
malignant melanoma is paramount [6].

Early and accurate diagnosis is paramount for successful
treatment and improved patient outcomes. Automated skin
lesion cancer classification using image analysis techniques
has emerged as a promising avenue in this domain. Machine
learning and deep learning algorithms in this analysis of
skin diseases has exhibited good performances in exam-
ining skin lesion images and finding differences between
benign and malignant lesions. A proposed approach outlines
a hair removal system digitally that utilizes filtering based
on morphological techniques including different algorithms
like black hat and in painting based algorithms with an auto-
matic Grab cut segmentation technique for lesion detection
employing two process of clustering aspects with K means
method and also involving hue based saturation value with
color space parameter [7]. After extracting features from the
Gray Level Co-occurrence Matrix and statistical parameters
followed by the three machine learning classification sys-
tems considering K nearest algorithm (KNN), support vector
machine modelling (SVM) and decision tree algorithm in
which SVM resulted in 97% accuracy. Incorporating Fuzzy
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clustering combined with features aspect of both involving
KNN and also SVM based classification techniques utilizing
analysis based on wavelet is used for 50 samples, revealing
KNN’s better accuracy of 91.2% compared to SVM [8].

The past few years have exhibited a significant aspect on
deep learning models for the detection and categorization of
skin cancer. This part offers a synopsis of key literature to the
advancement of this area. A hybrid and deep convolutional
network known as Inception ResNet V2 for classifying skin
cancer images was proposed [9]. The main aspect of this
work is to examine the efficacy of the specified model by per-
forming enhancement on the dataset by augmenting images
using affine transformation techniques which increases the
volume of available data for training. Therefore, the aug-
mented showed a notable improvement obtaining an accuracy
of 95.09% while the original dataset only managed to reach
an accuracy of 83.59%. This work exhibits on categorizing
different types of skin cancers which are analyzed based on
Mobile Net CNN with pre trained modelling. After removing
the final five layers, a new dense layer featuring SoftMax acti-
vation was done for predicting the models and a categorical
accuracy of 97% was observed [10]. A comparison of models
was done based on Adam and SGD optimizers performance.
ResNet50 showed the best results among other models and
arrived at an accuracy of 90% using SGD optimizer and
88% using Adam optimizer [11]. A DenseNetl21 architec-
ture consisting of dropout layers to reduce overfitting and
two dense layers with ReLU activation to capture nonlinear
interactions and a SoftMax activation function is utilized
by the output layer for effective classification across seven
skin disease classes which resulted in 95.75% accuracy [12].
DenseNet201 with its deeper architecture of 201 layers,
has better feature extraction abilities outperformed the other
pre-trained models in both plain and hierarchical classifiers
with two levels. The initial phase focused on distinguish-
ing nevi from non-nevi images, whereas the following level
classified malignant moles among non-nevi cases. An exper-
iment conducted to classify nevi from non-nevi images, and
malignant moles among non-nevi cases. Results showed that
DenseNet201 achieved about 10% better than other deep
networks on all metrics [13]. Xception-ResNet50 (X-R50)
model is proposed to classify different types of skin cancer
in HAM10000 dataset. The proposed concatenated X-R50
achieved a 97.8% prediction accuracy [14]. A merged model
of ResNet-50, and VGG-16 is proposed for classifying skin
lesions. The accuracy achieved by the proposed system is up
to 94.14% [15].

The theory of Moore’s law, suggesting a doubling in the
number of transistors on a microchip every two years, has
been the reason behind computer technology progress for
decades, but as transistors shrink and approach physical
limits, maintaining this number will become more chal-
lenging. As transistors edge closer to the atomic scale and
production costs climb, the traditional technological impetus
propelling Moore’s Law in fifty years is collapsing and is
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expected to level out by 2025. Many experts say that we are
approaching the practical limits of Moore’s Law in terms of
traditional silicon-based computing [16]. Quantum comput-
ing gives a potential answer to this problem by making use
of quantum mechanics principles to execute calculations in
fundamentally different methods than classical computers.
The quantum bit, also referred as qubit, serves as the essential
unit in quantum computing, and it can occupy multiple states
at the same time based on different phenomena like super-
position properties and entanglement. This enables quantum
computers to do certain sorts of calculations significantly
more efficiently than traditional computers [17]. One key
advantage of quantum computing over classical computing is
its potential to solve certain types of problems much faster.
For example, quantum computers have shown promise in
solving optimization problems, factoring large numbers, and
simulating quantum systems. Within machine learning, QML
harnesses quantum computing techniques by improving the
performance and efficacy of different learning algorithms.
QML algorithms supports various unique properties of qubits
to perform tasks such as data classification, clustering, and
regression more efficiently than classical machine learning
algorithms in certain scenarios. Some ways in which quantum
computing can enhance machine learning by faster training
time, improved feature mapping, enhanced optimization and
quantum pre-processing [18]. Today, intelligent technologies
such as pattern recognition, data mining, and deep learning
proficiently address the challenges associated with medi-
cal images, liberating craftsmanship, improving accuracy,
and greatly improves accuracy and performance but their
programs tend to be complex and time intensive. Quan-
tum Machine Learning (QML) brings the leverage of speed
and model refinement, offering potential solutions for the
challenges. Making use of the remarkable data processing
capabilities of classical computers, researchers influenced by
quantum mechanics have explored a variety of quantum com-
puting models to tackle n-dimensional objects as well as data
high-quality aspects of clinical images that can be suitable
for study using QML [19]. Most real-world data reside in
classical computers. Seamless integration between classical
and quantum systems for data processing and training QML
models is a significant challenge.

Quantum transfer learning applies a classical VGG16
layer with a multiqubit QML layer on Eurosat and synthetic
datasets, and an UC Merced Land use dataset which has
high dimensional data and challenging classification objec-
tives [20]. The MNIST and Fashion MNIST datasets served
as the backdrop for introducing a quantum neural network
model which is influenced by CNN relied only on two
qubit interrelations in the whole algorithm. Referred to as
Quantum Convolutional Neural Network (QCNN), it demon-
strated superior classification accuracy compared to the CNN
model, despite featuring fewer free parameters [21]. Using
the Eurostat dataset as the reference benchmark, a novel
QCNN technique is tested for the geographic analysis which
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is selected as an Earth observation (EO) use case. The sug-
gested model achieved a 98% overall F1 score and 98%
overall accuracy [22]. The Pegasos Quantum Support Vector
Classifier (QSVC) was proposed for multi-class cardiovascu-
lar disease classification. The results indicated that the QSVC
performed significantly better than the traditional Support
Vector Classifier (SVC), showcasing gains of +9.72% and
+10.76%, respectively, in comparison to both the QSVC as
well as the Pegasos QSVC. The research also investigated
a quantum deep learning methodology with an implemen-
tation of special Quanvolutional Neural Network (QNN).
Demonstrating remarkable performance, this model achieved
an accuracy, precision, recall, F1 score, and specificity of
97.31%, 97.41%, 97.31%, 97.30%, and 99.10% respectively.
It is noteworthy that it performed an extra +3.88% bet-
ter than its classical Convolutional Neural Network (CNN)
equivalent and all other models combined [23]. In a study,
the Cleveland heart disease data collection, featuring two
classes denoting disease presence or absence, served as the
basis for comparing the Quantum support vector classifier
(QSVC) against the classical support vector classifier (SVC).
QSVC outperformed classical SVC with the accuracy of
88.52% and 85.24% respectively [24]. Support vector clas-
sifier (SVC) algorithm outperformed the other algorithms
such as QSVC, XG-Boost and Variational quantum classifier
(VQC) with the accuracy of 95.08%. The training time of
quantum algorithm-based models is relatively high than clas-
sical models [25]. Two quantum classifiers, namely quantum
support vector classifiers (QSVC) and variational quantum
classifiers (VQC), were examined to assess their performance
in predicting chronic heart disease within the healthcare
4.0 ecosystem. QSVC'’s success rate was better than VQC
with an accuracy of 82% [26]. An ensemble machine learn-
ing strategy, incorporating quantum classifiers, is proposed
for accurate prediction of heart disease risk. The suggested
approach adopts a bagging ensemble approach, with a quan-
tum support vector classifier acting as the primary classifier.
The Bagging QSVC model produced 90.16% of classification
accuracy which outperforms all other models [27]. The CH,
HOG, and features extracted by auto encoder were classified
utilizing classical SVM and quantum SVM techniques on
the PH2 dataset. On several instances, it has been evident
that the classical method has consistently shown excellence
over the quantum-based technique [28]. Despite the consid-
erable potential of quantum computing in redefining fields
such as machine learning, it is essential to recognize that
practical quantum computers remain in the budding phases
of development. Significant technical challenges remain to
be addressed, such as improving qubit coherence and reduc-
ing error rates, before quantum computing can realize its
full potential. Nonetheless, research in this area continues
to progress rapidly, and quantum machine learning remains
an exciting area of exploration for the future of comput-
ing. The following points were observed from the literature
study:
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o Pre-trained networks such as Resnet50, Densenet121,
Densenet201, Inception-Resnet and MobileNet pro-
duced satisfying results on datasets based on skin
diseases.

o Quantum machine learning algorithms are in its nascent
stages.

« Benchmark quantum machine learning algorithms such
as variational quantum classifiers (VQC), Quantum
Convolutional neural network (QCNN) and quantum
support vector classifier (QSVC) have been used
recently across different research domains.

o Only few researchers have analyzed the impact of quan-
tum machine learning models in exploring skin diseases.

o Many researchers have performed binary classification
using QML algorithms.

Based on the findings, an innovative novel comparative
approach is introduced for diagnosing skin lesion classifica-
tion in alignment with the stated motivations.

« A multi-classification approach is proposed using quan-
tum machine learning for classifying skin lesions.

¢ Quantum machine learning models such as Quanvo-
lutional neural network and quantum support vector
classifier (QSVC) are implemented.

o Various quantum encoding and decoding methods have
been implemented in Quanvolutional neural network
and analyzed.

o This research conducts a comparative study to assess
the performance and impact of classical models versus
quantum models.

Il. MATERIALS AND METHODS

A. HAM10000 SKIN LESIONS DATASET

In this study, we have used the (‘“Human Against Machine
with 10000 training images”) HAM10000 dataset which
consists of 10015 dermatological images, this dataset is
openly accessible through ISIC archive, providing a valuable
resource for intellectual machine learning purposes. This
dataset serves as a benchmark for machine learning as well
as evaluations with human experts. Cases are drawn from a
wide range of important medical categories in the domain
of skin lesions. A significant majority of the lesions have
histopathological confirmation, whereas the remaining cases
are proven by subsequent inspection, consensus among spe-
cialists, verification via in-vivo confocal microscopy [29].
The dataset description is shown below in Table 1. Fig. 1
exhibits different types of skin cancer and its samples.

B. DATA AUGMENTATION AND DATA PROCESSING

In this analysis data augmentation includes different range of
methods including both the size and the quality of the datasets
based on enabling the design aspects with the deep learn-
ing models. Numerous image-based augmentation process
which includes transformation based on geometric analysis,
adjustments which is involved with the color space and also
with different kernel filters and also involves various image
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TABLE 1. Dataset description.

Skin Lesion Label Description Size
Type
Commonly known as moles, are
. benign (non-cancerous) growths on
nMeslianocytlc nv the skin that develop when 6705
melanocytes (cells that produce
pigment) grow in clusters [31].
Arises from melanocytes, the cells
responsible for skin pigmentation. It
Melanoma mel can occur anywhere on the body. 1113
Melanomas may have a larger
diameter than normal moles [32].
. Also known as seborrheic keratoses,
Benign
Keratosis-like bkl are non-cancerous growths t}}at 1099
lesion comm_only‘ appear  on the skin,
especially in older individuals [33].
Most prevalent skin cancer type,
basal cell typically appearing on sunlight
- bee . 514
carcinoma exposed body regions such as the
face, neck, and arms [34].
Generally considered precancerous,
Actinic they can progress to squamous cell
keratoses/ akiec carcinoma if left untreated. It 327
Bowen’s develops on areas of the skin that
disease have been exposed to ultraviolet
(UV) radiation from the sun [35].
Abnormalities in the blood vessels
vascular vasc of the skin, which can manifest in 142
various forms [36].
These are benign (non-cancerous)
skin growths that typically appear as
dermatofibro firm, raised nodules on the skin.
df 115
ma They are commonly found on the
legs, although they can occur on any
part of the body[37].

mixing. This also includes random erasing, augmentation
of feature space, generative adversarial networks, adversar-
ial training, meta learning process, transfer based on neural
networks which have been employed in numerous research
studies. Overfitting occurs when a network learns a func-
tion with excessive variance, resulting in an overly precise
representation of the training data. Unfortunately, not all
application domains like medical image analysis have access
to big data [30]. In this study, a dataset comprises 10,015
images across 7 classes, initially imbalanced. Some nor-
mal data augmentation methods such as rotations, flipping,
enhancing contrast and brightness and noise tuning have
been used randomly on original dataset. This step ensures
more equitable representation across classes which enhances
the robustness and fairness of subsequent analyses in the
research. After augmenting, each class now contains 1,430
images mitigating the class imbalance. Due to the computing
resource limitations, 250 random images per class have been
considered from 1,430 augmented images. Fig. 2 shows the
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FIGURE 1. Images (a) to (g) are seven skin lesions in HAM10000 dataset.

percentage of different category of data before and after
augmentation. Data preprocessing is an important step in
deep learning that involves preparing the raw data to make
it suitable for training a neural network. It typically involves
several operations such as cleaning, transforming, and orga-
nizing the data to make sure it is formatted properly that can
be effectively utilized by learning algorithms. In this study,
common data preprocessing methods such as resizing and
normalization are used.

C. RESIZING AND NORMALIZATION

It is a data preprocessing technique commonly used in tasks
involving image data, particularly in deep learning applica-
tions. It refers to the process of changing the dimensions
(height and width) of an image to a desired size to ensure that
every image contained in the dataset has consistent dimen-
sions, which is essential for feeding them into the neural
network. This helps to improve the computational and mem-
ory efficiency, and prevents overfitting. Normalizing in deep
learning is the process of scaling input features to a standard
range or distribution. It is aimed at grading the scales of all
input features, resulting in enhanced integration of training
models. In this study, all the pixel values of an image are nor-
malized using a simple normalization method. In image data,
pixel values typically range from O to 255 representing the
intensity of the color channels (red, green, blue). By dividing
each pixel value by 255, all of the pixel values are scaled to
fall between 0 and 1.

Ill. PROPOSED METHODOLOGY

In this section, a detailed explanation of the proposed method-
ology is provided under different sections. Initially, the
dataset goes through a data augmentation process which is
involved to address different issues for class imbalance. Next,
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Before augmentation

W akiec

Wbcc

(a)

After augmentation

14% | 15% M akicc
M bcc

m bkl

(b)

FIGURE 2. Data percentage a) before and b) after data augmentation.

data preprocessing methods are imposed to ensure uniformity
across all data. The complete methodology employed in the
current study is visually depicted in Fig. 3.

A. PRE-TRAINED DEEP NEURAL NETWORKS (DNN)
Convolutional neural networks (CNNSs) are considered to be
the subset for deep learning models for better image analysis
functions. The strength of CNNss lies in their ability to grasp
spatial hierarchies of features within images thereby proving
to be effective within tasks such as object classification,
image partition and object identification. It typically performs
a compilation of sequences, each applying a specific action to
the input data. The general architecture of the CNN is shown
in Fig. 4. There are different layers associated with CNN,

o The starting layer of the CNN is designated based on
the input layer which accepts and also retains the images
pixel levels.

o Following the input layer, Convolutional layers are
employed. These layers utilize a range of filters on the
input data. Each filter is a small matrix of values and
the convolutional layer computes its output which is
involved in sliding the filter across input data and taking
the inner product at each location. Also, it has the ability
to learn the edges, corners and objects which are known
as hierarchical spatial features in images.

o The pooling layers reduce the spatial resolution of the
data. This is done by dividing the data into a grid of
cells and then taking the maximum or average value
from each cell. Pooling layers assist in decreasing the
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HAM10000 Dataset
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C) Quantum Support Vector
learning models Network Classifier

C i of results

FIGURE 3. Overall proposed methodology.

Feature extraction

Kemel
i
r soling layers e

Pooling layers Fully connected layers

. Convolutional layers
Convolutional layers 4

Classification

Skin lesion image

FIGURE 4. General architecture of CNN.

computational cost of the network and to design the
network most robust to noise.

« The next layer is considered to be fully connected layers
which plays an important role which involves classifi-
cation by considering a specified set of values for every
set of class which enables activation function to classify
in accordance. Fully connected layers identify com-
plicated relationships between features acquired from
convolutional layers and pooling layers. Image features
are converted from matrix form to vector form using
fully connected layers.

o The output generated by the fully connected layers is
subsequently used to perform the desired classification,
detection, or segmentation tasks.

CNNs have been employed across a spectrum of applica-
tions such as image classification and segmentation, object
detection, medical imaging, and natural language processing.
CNNSs can learn complex relationships between features in
data which makes them very effective at a wide range of
applications [38].

B. RESNET50 PRE-TRAINED NETWORK
ResNet50 introduced in 2015 as a pre-trained CNN [39].
ResNet50 came out on top in ImageNet Large Scale Visual.
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It follows a technique that allows CNNss to learn deeper and
more complex features without overfitting. ResNet archi-
tectures are available in many shapes, determined by the
quantity of various residual units and the varieties in range
of layers starting from 18 to 1202. The effectiveness of the
ResNet architecture was enabled by incorporating identity
shortcuts wherein the output identity value closely resembled
the input values identity. The ResNet architecture shares var-
ious similarities with respect to the architecture of VGG. It is
notably analysed with the process of eight times very much
deeper with respect to VGG which are leading to an increased
number of trained features in the architecture. Moreover,
the ResNet -50 architecture involved in the process of study
exhibits convolutional layers of 49 and also one connected
layer in the process.

C. INCEPTIONRESNETV2 PRE- TRAINED NETWORK
InceptionResNetV?2 is a deep CNN architecture that com-
bines the Inception and ResNet architectures, to improve
feature extraction and classification performance [40]. Devel-
oped by Christian Szegedy et al., InceptionResNetV2 was
introduced as an extension of the Inception architecture with
residual connections, offering a deeper and more efficient net-
work design. The architecture leverages the benefits of both
Inception and ResNet models, incorporating multi-level fea-
ture extraction from the Inception modules and the residual
learning mechanism from ResNet. Through this integration,
the network can overcome the vanishing gradient problem
that deep networks often encounter while capturing a vari-
ety of hierarchical properties. InceptionResNetV2 comprises
multiple modules, including Inception modules with vary-
ing kernel sizes for feature extraction and residual blocks
for facilitating information flow and gradient propagation.
The depth and complexity of the architecture enables it to
acquire intricate representations from input images, rendering
it highly effective for tasks such as image classification and
object detection. Additionally, InceptionResNetV?2 incorpo-
rates auxiliary classifiers and global average pooling layers
to improve model robustness and generalization. Trained on
extensive image datasets, InceptionResNetV2 demonstrates
superior performance in various computer vision applica-
tions, with its pre-trained models serving as effective feature
extractors or adaptable for fine-tuning on specific tasks.

D. DENSENET201 AND DENSENET121 PRE-TRAINED
NETWORK

DenseNet-201 is a deep CNN architecture that has been
pre-trained on large image datasets for various computer
vision tasks. It is an extension of the original DenseNet archi-
tecture (DenseNet-121) and was developed to address chal-
lenges in training very deep neural networks while improving
accuracy and parameter efficiency. It was introduced in the
work Densely Connected Convolutional Networks which has
been exhibited [41]. DenseNet201 is a 201-layer CNN that
uses a dense connectivity architecture. Dense connectivity is
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a technique that allows CNNss to learn more complex features
by connecting each layer to every other layer. DenseNet201
underwent training on the ImageNet dataset, comprising over
14 million images across 1000 distinct categories. It incorpo-
rates a sequence of densely connected convolutional layers
within dense blocks, facilitating feature reuse and gradient
flow, supplemented by transition layers to manage compu-
tational complexity. A global average pooling layer reduces
spatial dimensions, succeeded by fully connected layers for
classification purposes. DenseNet-201’s depth and capacity
make it suitable for different concepts of mainly involving
classification of images tasks and also detection of objects
in varied models with pre-trained models serving as feature
extractors or being fine-tuned for specific datasets.

DenseNet-121 is a deep CNN architecture that builds upon
the original DenseNet design to address challenges in training
deep networks effectively. DenseNet-121 is a 121-layer archi-
tecture that makes use of dense connectivity, an important
architectural concept that creates dense connections between
layers to promote gradient flow and feature reuse. The con-
cept of dense connectedness improves the network’s capacity
to detect complex patterns and representations, which helps
explain why it performs so well across a range of computer
vision applications. DenseNet-121 is robust and versatile,
making it appropriate for applications like object identifica-
tion and image classification. Pre-trained models function as
efficient feature extractors or can be fine-tuned to specific
tasks, making DenseNet-121 a powerful tool in the field of
deep learning.

E. MOBILENET PRE-TRAINED NETWORK

MobileNet is a lightweight CNN architecture tailored mainly
for efficient mobile and embedded vision applications [42].
The architecture includes several depth wise separable con-
volutional layers arranged into blocks, with each block
followed by a pointwise convolution layer and batch nor-
malization. These blocks serve as the network’s backbone
and are assigned to extract multi-level features. Addition-
ally, MobileNet contains a global average pooling layer to
reduce spatial dimensions and create feature vectors, which
are further fed into fully connected layers for classification.
With its emphasis on efficiency and compactness, MobileNet
strikes a fine blend with model size, computational complex-
ity, and accuracy, making it well-suited for resource limited
environments. Pre-trained MobileNet models are widely used
as feature extractors in transfer learning applications such
as image categorization, object recognition, and semantic
segmentation, across diverse range of fields such as computer
vision and robotics applications. The Fig. 5 shows the flow
diagram of implementation of pre-trained models

F. QUANVOLUTIONAL NEURAL NETWORK - A HYBRID
QUANTUM-CLASSICAL MODEL

CNN have swiftly risen to prominence across a spectrum
of machine learning domains, with respect to the important
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FIGURE 5. Flow diagram of implementation of pre-trained models.

feature of image recognition. Their prowess largely hinges
on their knack for systematically discerning and extract-
ing intricate features from datasets. The extraction of these
features relies on various layers of transformations, with
particular emphasis on the convolutional layer, which the
model exhibits its name. In this work, the major contribution
is based on a new transformation layer which is termed
based on the quanvolutional layer or quantum convolution.
Fig. 6 show the proposed Quanvolutional neural network
model. Quanvolutional layers mainly works which is respect
to the input data which are taken transformed locally by
using multiple random quantum circuits which are involved
for the transformations considering various on the basis of
work on input data by locally transforming it using multiple
random quantum circuits. As involved quantum transforms
yield meaningful outcomes for classification, this algorithm
could be valuable for quantum computers, as it necessitates
small quantum circuits with minimal or there are correc-
tions of errors in the process. The major difference between
quantum circuits and classical convolutions are based on the
potential complexity of the kernels they produce. Quantum
circuits can generate immensely complex kernels, the compu-
tation of which may be prohibitively challenging for classical
methods, at least theoretically. PennyLane is used to imple-
ment this procedure, which is basically software framework
with open source which are involved for various needs of
quantum machine learning algorithms, quantum chemistry
and also involves quantum computing which can run on any
hardware [43].

Fig. 7 exhibits Quantum convolutional process with RY
rotations and PauliZ gates. Table 2 indicates types of Qubit
rotation used in this study and Table 3 listout types of gates
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FIGURE 7. Quantum convolutional process with RY rotations and Pauliz
gates.

TABLE 2. Types of qubit rotation used in this study.

Function Description

RX(phi, wires[, id]) The single qubit X rotation

RY (phi, wires[, id]) The single qubit Y rotation

RZ(phi, wires[, id]) The single qubit Z rotation

TABLE 3. Types of gates used in this study.

PennyLane Description Mathematical
Class name representation
The Pauli X gate is analogous
to the classical NOT gate. It
PauliX(*params  flips the state of a qubit, X=101]

effectively changing a qubit in 10|
the |0) state to the |1) state and
vice versa.

[, wires, id])

The Pauli Y gate is like the
Pauli X gate but with a phase
change. It performs a bit-flip
operation along with a phase
change. It is akin to a classical
NOT gate followed by a bit-
flip.

Y =10
-1 0]

PauliY (*params
[, wires, id])

The Pauli Z gate leaves the |0)

state unchanged but changes

the sign of the |1) state. It is Z=11 0|
akin to a classical NOT gate [0 -1]
but without changing the state,

only the phase.

PauliZ(*params
[, wires, id])

used in this study. Steps involved in quantum convolutional
layer:
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TABLE 4. Sequential classical layers of proposed model.

Layer Output shape Parameters
Convolution2D-1 12x12x32 1184
Convolution2D-2 10x10x64 18496
Convolution2D-3 8x8x128 73856
Convolution2D-4 6x6x256 295168
max_pooling2d-1 3x3x256 0
max_pooling2d-2 1x1x256 0

Flatten 256 0

Dense-1 128 32896
Dense-2 64 8256
Dense-3 7 455

« Initially, we resize the images to 28 x 28. A small portion
of the input image, specifically a 2 x 2 region, is encoded
into a quantum circuit.

o A PennyLane ‘“‘default. Qubit™ [43] device was initial-
ized to simulate a four-qubit system. In this study, this
is accomplished by applying parameterized rotations of
RX, RY, and RZ with angles scaled by a factor of pi,
to the qubits initialized based on the ground state, along
with a single layer of random circuitry.

o A quantum computation involving a unitary operation U
is executed on the system. This unitary operation can be
generated based on various quantum circuits.

« Finally, the developed quantum system is to be measured
which is based on the results of various classical expec-
tation values done in the process. In this process, it is
directly utilized based on these raw expectation values.
Here we have explored using Pauli-X, Pauli-Y, Pauli-Z
gates, estimating 4 expectation values.

Each expectation value corresponds uniquely to a channel in
a single output pixel, mirroring the structure of a standard
convolutional layer. Repeating this method across multiple
sections enables scanning of the entire input image, lead-
ing to the formation of an output object organized as a
multi-channel image. Fig. 8 clearly shows resolution down
sampling and some local distortion caused by the quantum
kernel. Conversely, the overall shape of the image remains
intact, consistent with the behavior expected of a convo-
lutional layer. Subsequently, quantum convolution can be
succeeded by additional quantum layers or classical layers.
In this study, we added classical layers after the quantum
convolutional layer along with SoftMax activation func-
tion at classification layer. Finally, the model consists of
430311 trainable parameters in total with 0 non-trainable
parameters. The classical layers proposed in this study are
given in Table 4.

G. QUANTUM SUPPORT VECTOR MACHINE (QSVM)

Support Vector Machines (SVMs) have earned widespread
acclaim in the realm of machine learning due to their
remarkable proficiency in tackling binary classification tasks.
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output [ch. 2]
|

output [ch. 3]

" Truncated SVD for
Image data > Fea_lure extljactlon —> dimensionality —» Feature matrices —»{ Normalization
using MobileNet reduction

Qsve «—  Quantum Kernel  «—Quantum encoded data <«— Quantum feature map «— Selected features
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FIGURE 10. Results of selected pre-trained networks.

Notably, they excel at managing datasets with both linear
and non-linear separability, as demonstrated by the influential
work of Cortes and Vapnik. This versatility makes SVMs
a popular choice across various domains, from finance to
healthcare and beyond [44]. In SVMs, a decision bound-
ary, termed the hyperplane, is utilized to discern between
two classes within a dataset. This hyperplane is established
based on a collection of data points referred to as sup-
port vectors. Quantum Support vector classifier (QSVC) is
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FIGURE 11. Comparison plots of (a) Epochs vs Accuracy plot, (b) Epochs vs Loss plot of ResNet50V2.
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FIGURE 12. Comparison plots of (a) Epochs vs Accuracy Plot, (b) Epochs vs Loss Plot of InceptionResNetV2.
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FIGURE 13. Comparison plots of (a) Epochs vs Accuracy Plot, (b) Epochs vs Loss Plot of MobileNet.

a quantum machine learning method available through the classical SVMs by transforming input data into quantum
Qiskit library, which provides a way for multi-classification. states and exploiting quantum interference and entanglement.
Utilizing quantum circuits, the QSVC algorithm enhances This involves the process of uncovering various optimal
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FIGURE 15. Comparison plots of (a) Epochs vs Accuracy Plot, (b) Epochs vs Loss Plot of DenseNet201.

hyperplane which are effectively separates data points to
the exclusively classes which involves how it maximizes
the margin involvement between the methods. QSVC, inte-
grating quantum technology, offers potential for augmenting
classification performance in contrast to standard SVM
algorithms [24].

Feature extraction using Resnet50 pre-trained network is
used to extract features from ECG images to implement Pega-
sus Quantum SVC [23]. Fig. 9 shows the proposed Quantum
support vector machine pipeline. In this study, feature extrac-
tion using MobileNet pre-trained network is implemented.
Features were extracted from the final max pooling layer.
Truncated Singular Value Decomposition (SVD) serves as a
matrix factorization technique employed in machine learning
for linear dimensionality reduction. However, truncated SVD
does not require the feature matrix, X to be centered. Trun-
cated SVD accepts sparse matrices. Subsequently, min-max
normalization is employed to conduct a linear transformation
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on the feature matrices. This technique gets all the scaled data
in the range (0, 1). The selected features were then converted
to quantum data using ZZ.

Feature Map, a quantum machine learning (QML) encod-
ing method is utilized, which maps classical data to quan-
tum state amplitudes. Its purpose is to identify pairwise
correlations among input features and leverage them for clas-
sification tasks. Initiating the process is Quantum State Ini-
tialization, paving the way for Feature Encoding. Here, the
Hadamard gate is employed to create a superposition of
|0) and |1). Subsequently, ZZ Gate Implementation ensues,
with the ZZ gate being applied between qubits 0 and 1
[23]. A kernel can generate the scalar products based on
the feature map employed, which makes the optimization
process more efficient and less computationally intensive.
Here, FidelityQuantumKernel from Qiskit library is used.
Then these kernels are passed to the QSVC function for
multi-classification.
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FIGURE 16. (a) - (e) Confusion matrix of pre-trained models.

IV. RESULTS AND DISCUSSION models, Quanvolutional neural network, and the quan-
In this section, we delve into the results obtained from tum support vector classifier. Additionally, a comparison
the experimentation involving pre-trained neural network of results produced using combination of three qubit
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FIGURE 17. Model results with RX. RY and RZ Qubit rotation with Pauli-X
gate in quantum convolution.
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FIGURE 18. Model results with RX, RY and RZ Qubit rotation with Pauli-Y
gate in quantum convolution.
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FIGURE 19. Model results with RX, RY and RZ Qubit rotation with Pauli-Z
gate in quantum convolution.

rotations and Pauli gates in Quanvolutional neural network is
discussed.
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TABLE 5. Performance metrics of Quanvolutional neural network with
(Ry rotation and Pauli Z gate).

Different  Precision Recall Fl-score  Support
Class
akiec 0.83 0.86 0.84 50
bee 0.90 0.92 0.91 50
bkl 0.79 0.82 0.80 50
df 0.90 0.88 0.89 50
mel 0.74 0.70 0.72 50
nv 0.71 0.74 0.73 50
vasc 0.94 0.88 0.91 50
TABLE 6. Performance metrics of QSVC.
Class Precision Recall Fl-score Support
akiec 0.72 0.78 0.75 50
bee 0.73 0.80 0.76 50
bkl 0.65 0.86 0.74 50
df 0.80 0.90 0.85 50
mel 0.71 0.58 0.64 50
nv 0.67 0.48 0.56 50
vasc 0.88 0.74 0.80 50

The preprocessed data under seven classes were fed into
five pre-trained neural network models such as MobileNet,
InceptionResNetV2, DenseNet201, DenseNetl2]1 and
ResNet50V2, by resizing the data with respect to the models
input size. MobileNet produced the highest classification
accuracy of 73.42% among other pre-trained networks as
shown in Fig. 10. The Fig. 11 shows that ResNet50V2
produced the least accuracy compared to other models with
maximum loss during validation. InceptionResNetV2 pro-
duced the second highest accuracy among other pre-trained
networks with minimal loss. The Fig. 12 and Fig. 13 shows
the comparison between training and validation loss of Incep-
tionResNet50V2 and MobileNet models. DenseNet201 and
DenseNet121 produced the same classification accuracy of
71.42%, but in the Fig. 14 and Fig. 15, it indicates that
training and validation loss of DenseNet121 is less compared
to DenseNet201. From the observation of confusion matrix
of pre-trained models shown in Fig. 16(a) to Fig. 16(e), pre-
trained models performed a promising classification task on
“df” and ‘‘vasc” classes, in contrast to “mel” and “nv”
classes. Other classes such as “akiec”, “bcc’ and ““bkl’ are
moderately classified.

Images are resized to 28 x 28 pixels and normalized
before passing it through the quantum convolutional layer.
Images are resized to such small resolution to overcome
the computational limitation in this study. Furthermore,
classification accuracies of combination of different qubit
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FIGURE 21. Confusion matrix of (a) RX, and (b) RY Qubit rotation with Pauli-Y gate.

rotation encoding and Pauli gate measurements are discussed.
By observing Fig. 17 and Fig. 18, the Rx rotation encoding
produced the validation accuracy around 79% in Pauli X and
Pauli Y gate measurements as shown. The Ry the rotation
encoding produced the validation accuracy of 81.43% and
80.86% in Pauli X and Pauli Y gates respectively. From the
Fig. 19, we can observe that the combination of Ry rotation
encoding along with Pauli Z gate measurement at decoding
in quantum convolutional layer produced the highest classi-
fication accuracy of 82.86%.

Similarly, the combination of Rx rotation encoding along
with Pauli Z gate measurement at decoding in quantum con-
volutional layer produced the second highest classification
accuracy of 82.29%. The least classification accuracy is pro-
duced by Rz rotation encoding in all three Pauli gates. Thus,
Rx qubit rotation encoding is not suitable for skin disease
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classification. From the observation of confusion matrix of
Quanvolutional neural network models shown in Fig. 20,
Fig. 21 and Fig. 22, classes such as “mel”” and “nv’’ instances
are less classified than other classes.

The Table 5 conveys that ‘akiec’ and ‘bcc’ stand out
with precision, recall, and F1-scores all above 0.8, indicating
robust performance. ‘bkl’ and ‘df’ also demonstrate strong
precision and recall above 0.7, with F1-scores around 0.8 and
0.9 respectively. ‘mel’ and ‘nv’ show slightly lower but
still acceptable precision, recall, and F1-scores around 0.7.
‘vasc’ exhibits exceptional precision of 0.94 and recall of
0.88, resulting in an impressive Fl-score of 0.91. Overall,
the model showcases varying degrees of effectiveness across
different classes, with some achieving notably strong predic-
tive capabilities. Thus, by increasing the input image size
during Quanvolutional neural network model creation, one
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can reduce the loss in image resolution and achieve improved
results in future. In this proposed study, due to computing
limitations, a reduced dimension of 28 x 28 pixel images
is used. From the results of pre-trained models, MobileNet
is selected to extract features for building QSVC model,
since it produced the highest classification accuracy among
other models. Qiskit library is used to perform QSVC in this
study. QSVC produced the classification accuracy of 72.5%.
By observing Fig. 23, we understand that “mel” and “nv”
classes are poorly classified which leads to less classification
accuracy of the QSVC model.

The Table 6 shows the specificity for class ‘akiec’ was
0.72, indicating that 72% of the models predicted as ‘akiec’
were classified correctly, while recall was 0.78, indicating
that actual ‘akiec’ models were identified 78% correctly
F1-score of ‘akiec’ is 0.75, representing a balanced measure
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of precision and recall. Similarly, the precision, recall,
and Fl-score are 0.73, 0.80, and 0.76 for the ‘bec’ class,
respectively. The ‘bkl’ class exhibits a low precision of
0.65 but a high recall of 0.86, resulting in an F1-score of 0.74.

In contrast, the ‘df’ class exhibits good precision (0.80),
recall (0.90), and F1-score (0.85), indicating a robust perfor-
mance. Finally, the ‘vasc’ class achieves the highest precision
(0.88) and recall (0.74), resulting in an Fl-score of 0.80.
However, ‘mel’ and ‘nv’ classes show low recall values
of 0.58 and 0.48 respectively, indicating some difficulty in
correctly identifying instances of these classes. In addition,
by observing the confusion matrix of all the proposed models
in this study, “mel” and “nv” classes are less classified
than other classes. It can be because of the similarity in the
appearance of Melanocytic nevi (nv) and Melanoma (mel).
This shows the importance of skin lesion disease classifica-
tion because Nevis are non-cancerous, while Melanoma is
cancerous.

V. CONCLUSION

This study aimed to assess the effectiveness of quantum
machine learning concepts and models in classifying skin
diseases. The study showcased the superiority of QML mod-
els over classical counterparts. The novel quanvolutional
neural network models developed in this research exhibited
outstanding performance, achieving a classification accu-
racy of 82.86%, surpassing previously trained models. The
quantum support vector classifier demonstrated comparable
performance to the previously trained models. Only a few
concepts of quantum computing were explored in this study.
Exploring the theories of quantum computing and apply-
ing its potential to machine learning holds great promise.
Furthermore, the incorporation of quantum computing prin-
ciples into machine learning algorithms has the potential
to solve the complex challenges that traditional computing
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methods try to overcome and indeed, the future of this area
looks to be it is a great hope. Quantum Machine Learning
(QML) models have tremendous potential for breakthroughs
by integrating quantum hardware, enhancing existing med-
ical systems and diagnostic capabilities This integration
holds promise to improve diagnostic accuracy and improved
performance.
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