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ABSTRACT Predictive analytics is concerned with making predictions of future outcomes based on past
data using data statistics, machine learning, dynamic models and filtering algorithms. This paper provides
a review of the theory of predictive analytics from an optimization perspective, including some new
developments in convex optimization and quadratic neural networks. Several examples from many different
areas show how the theory can be applied to analyze data and provide useful information to decision makers.
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I. INTRODUCTION
The area of predictive analytics is concerned with making
predictions of future outcomes based on past data using
statistics, machine learning, dynamic models and filtering
algorithms. Based on data analysis and dynamic models
one can identify data patterns and determine any potential
future impacts of the observed patterns. This can help policy
developers make decisions regarding the evolution of safety-
critical situations, risk assessment, or the identification of
investment opportunities. In fact, predicting the future value
of a dynamic process is of extreme importance in a multitude
of different applications such as the prediction of stock
values, gross domestic product, number of new cases in an
epidemic, future weather, or the position and velocity of
a moving vehicle, to name just a few. Predictive analytics
has gathered increasing interest in the last decade [1]. Its
development has been disseminated at all levels, including in
student magazines [2]. Applications include studies of STEM
student success [3], student retention [4], clinical diagnosis,
diabetes, drug design, andmulti-disease risks [5], [6], [7], [8],
health informatics [9], analysis of big data in retailing [10],
and finance [11], to name a few. Optimization is at the
core of predictive analytics and it is a unifying approach
among different predictive algorithms. However, there are
very few contributions in the open literature that provide
a general optimization framework for predictive analytics.
Some references address application-specific modeling and
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optimization approaches for predictive analytics case stud-
ies [12], [13] whereas other references focus on specific
aspects of optimization in predictive analytics [14], [15].
By contrast, this paper provides a general overview of
predictive analytics from an optimization perspective with
a focus on convex optimization. The paper will discuss the
main areas of predictive analytics: regression, classification,
clustering, and identification of dynamic models based on
data.

Regression is concernedwith finding an approximate curve
that fits the available data and then use that curve for future
predictions. When the curve is a straight line it is called linear
regression. The most commonly used measure for assessing
how well the curve fits the data is the sum of the squared
errors, which leads to an optimization problem called least
squares. Least squares has been analyzed in [16] where partial
least-squares has been proposed to generate only a subset of
the total number of predictors when one is dealing with very
large amounts of data, so-called big-data. A cross-validated
predictive test has been suggested in [17] for partial least
squares to perform a parwise comparison of predictive power
of two competing models.

Classification categorizes data into pre-defined different
classes whereas clustering divides the data into different
groups based on similar attributes. The different groups for
clustering are not pre-defined as opposed to the case of
classification. This is due to the different way in which
learning from data is implemented in clustering when
compared to classification. Classification uses supervised
learning such as neural networks [18] and support vector
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machines [19], whereas clustering uses unsupervised learning
techniques such as k-means clustering and Loyd’s algorithm.
A comprehensive survey of k-means clustering including a
thorough comparison of different versions of the k-means
algorithm can be found in [20]. The stability of the centers
of the k-means clusters is analyzed in [21]. An historical
perspective of k-means clustering can be found in [22]
The identification of dynamic models can be divided into

two different classes: input-output time series [23] and state
space models [24]. State space models can be used to study
the evolution of a collection of variables as a function of
time. The variables are selected so that they completely
determine the system’s behaviour and are stacked together
into what is called a state vector. Time series is concerned
with the input-output description of a system as a function of
time and is used for the identification of cycles and trends in
time-stamped data.

This paper assumes that the reader has a standard
background in calculus and linear algebra, and some previous
exposure to time-series and dynamic models. Section II is
dedicated to optimization problems, with an emphasis on
convex optimization. This is followed by linear state space
models in section III and linear time series input-output
models in section IV. Neural network models are then
addressed in section V. Regression is the first application
to be described in section VI, followed by classification in
section VII, system identification in section VIII, and clus-
tering in section IX. The paper closes with the conclusions.

Notation: The sets of real numbers, real n vectors, and real
n× n matrices are denoted by R, Rn, and Rn×n, respectively.
In optimization problems the words ‘‘minimize in x’’ will
be abbreviated to min

x
, ‘‘maximize in x’’ will be abbreviated

by max
x

, and the words ‘‘subject to’’ will be represented by
s.t. The transpose of a matrix or vector will be denoted with
a superscript T . For example xT is the transpose of x. The
partial derivative of a function f (x), x = [x1 . . . xn]T , with
respect to xi is denoted by ∂xi f . The norm-1 and norm-2 of a

vector v are defined as ∥v∥1 =
∑

i |vi| and ∥v∥2 =

√∑
i v

2
i ,

respectively. The trace of a matrix A ∈ Rn×n is the sum of
its diagonal entries tr(A) =

∑n
i=1 Aii. A matrix P ∈ Rn×n is

positive semi-definite (written P ≥ 0) if all its eigenvalues
are non-negative and positive definite (written P > 0) if all
its eigenvalues are positive. A matrix Q ∈ Rn×n is negative
(semi-)definite if −Q is positive (semi-)definite.

II. OPTIMIZATION
The unifying theme of all predictive analytics methods
described in this paper is that they are formulated as an
optimization problem as follows

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p (1)

FIGURE 1. Convex sets (a) and convex functions (b).

where fi(x), i = 0, . . .m, hi(x), i = 1, . . . , p, are functions
that will be assumed to be continuous everywhere and
differentiable almost everywhere. The function f0(x) is called
the objective function, which is what one is interested in
minimizing, whereas the remainder functions fi(x) and hi(x)
represent the inequality and equality constraints, respectively.
When an optimization problem is unconstrained then it is
stated as

min
x

f0(x). (2)

For an unconstrained optimization with a differentiable
objective function a necessary condition of optimality is

∂xi f0(x) = 0, i = 1, . . . , n. (3)

For optimization problems with p affine equality constraints
and without inequality constraints, one can solve the con-
straints first for p of the variables, and then replace these vari-
ables into the objective function leading to an unconstrained
optimization problem in n− p variables. For this new equiv-
alent problem one can then use the necessary condition (3).
An important subclass of optimization problems is the one
corresponding to convex optimization. These problems can
be solved efficiently both from a theoretical point of view
(polynomial complexity) and from a practical point of view
(available software packages). The following definitions
characterize the general form of convex optimization.
Definition 1: A set C is convex if the line segment between

any two points in C lies in C, i.e, if for any x1, x2 ∈ C and any
0 ≤ θ ≤ 1 we have

θx1 + (1 − θ )x2 ∈ C.

□
Examples of convex sets are a circle in R2 including its
interior (see figure 1a) or a sphere in R3 including also its
interior. A set with the form of a horseshoe in R2 is not a
convex set. When a set is not convex one can determine the
smallest convex set that contains it, which is denoted by the
convex hull of the original set.
Definition 2: The convex hull of a set S is the smallest

convex set that contains S. A simplex in Rn is defined as the
convex hull of n+ 1 affinely independent points. □
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The affine independence in the definition guarantees that
the simplex has a nonempty interior and does not vanish
or collapse in some direction. Examples of simplices are
intervals in R, triangles in R2 (see figure 1a) and tetrahedrons
in R3. The epigraph of a function is the region lying above
the graph of the function, including the graph itself. Convex
functions are functions whose epigraph is a convex set.
Some examples are an exponential function and a quadratic
polynomial with positive second derivative (see figure 1b).
Note that convex functions do not need to be differentiable
everywhere. Another definition of convex function is as
follows.
Definition 3: A function f is convex if the domain of f(
Domf

)
is a convex set and if the line segment between

(x, f (x)) and (y, f (y)) lies above the graph of f , i.e, if for all
x, y ∈ Domf and 0 ≤ θ ≤ 1 we have

f (θx + (1 − θ )y) ≤ θ f (x) + (1 − θ )f (y).

A function f is concave if −f is convex. □
A general convex optimization program has the form (1)

where f0, . . . , fm are convex functions and hi(x) = aTi x −

bi, i = 1, . . . , p, are affine.
The next four sections will introduce examples of predic-

tive analytics optimization problems.

A. LEAST SQUARES
The first approach when analyzing data is quite often to try to
fit a curve to the data so that future predictions can be made
using this curve. To that aim, we assume that we have a linear
model for the vector of data measurements y as a function of
some unknown vector θ with an additive error e, i.e.,

y = Hθ + e. (4)

If one wishes to fit a line to data pairs (xi, yi), i = 1, . . . ,N
then the model (4) is related to the equation of the line as
shown in the linear regression example 1. We wish to find
θ that provides a small estimation error e = y − Hθ while
at the same time not having a very large magnitude ∥θ∥2.
The intuition behind this idea is that a solution θ with a large
magnitude may be associated with overfitting the model.
To solve this problem one can define an objective function
with a sum of two terms: one that weights the magnitude
of the error and another that weights the magnitude of the
estimated variable. When both terms are quadratic, this is a
regularized least squares optimization that can be formulated
as

min
θ,e

eTLe+ θTMθ

s.t. y = Hθ + e (5)

for given positive definite symmetric matrices L and M that
are selected by the designer. Note that there is a quadratic term
θTMθ in the objective function of (5) that penalizes large
values of the entries of θ . If M = I then the extra term is
θT θ , which is ∥θ∥

2
2. For diagonal positive definite matrices

M the extra term is a weighted sum of squares. The same
interpretation can be used for the parameter L with respect to
e. The equality constraint of the optimization problem (5) can
be solved for e as

e = y− Hθ. (6)

Replacing (6) into the objective function and rearranging
using the rules

(A+ B)T = AT + BT ,

(AB)T = BTAT , (7)

and using the fact that yTLHθ = θTHTLy because it is a
scalar and L = LT , one arrives at the equivalent optimization

min
θ

f (θ ), (8)

where

f (θ ) = θT
(
HTLH +M

)
θ − 2θTHTLy+ yTLy. (9)

To find the solution of the minimization (8) we solve the
necessary condition

∂θ f = 2
(
HTLH +M

)
θ − 2HTLy = 0. (10)

The matrix
(
HTLH +M

)
is always invertible for a positive

definite M , and the solution of (10) is the regularized least
squares estimate

θ̂ = (HTLH +M )−1HTLy. (11)

If M was allowed to be positive semi-definite (instead of
positive definite) then making M = 0 one would find the
weighted least squares solution, which assumes H to be
maximum rank so that HTLH is invertible.

B. K-MEANS CLUSTERING
Data clustering belongs to the class of unsupervised learning
because the data is not assumed to be labeled. One assumes
that there is a collection of data vector samples vi ∈ Rn, i =

1, . . . ,N , and that we are given a number of k clusters in
which to split the data points. The objective is then to find the
regions Ri, i = 1, . . . , k, partitioning Rn that correspond to
the clusters. After finding these regions, any data point can be
allocated to one of the k clustersRi. A data point is allocated
to the cluster Ri if it is closer to the centroid (mean) xi of
that cluster than to any other centroid xj, j ̸= i. This yields
what is called a Voronoi partition of Rn. The regions Ri in
this partition are thus defined as

Ri = {x | ∥x − xi∥2 < ∥x − xj∥2 ∀j ̸= i} (12)

for i = 1, . . . , k . Note that if any data point is equidistant
from two or more centers then it will not be classified in
any cluster. In practice when that happens the data point is
arbitrarily allocated to one of the regions corresponding to
the centers from which it is equidistant. Given k and V =
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[v1 . . . vN ]T , the optimization for the k-means clustering is

min
xi

k∑
i=1

N∑
j=1

aij∥vj − xi∥22

s.t. (12), aij =

{
0, vj /∈ Ri

1, vj ∈ Ri
. (13)

Unfortunately, this problem is not convex. In fact it has
been shown to be NP hard, which makes it computationally
intractable. Therefore, one resorts to heuristics to find
approximate solutions of the k-means clustering problem.
The most widely used heuristic is Loyd’s algorithm (see
table).

Algorithm 1 Loyd’s Algorithm

1: function kmeans (V , k) [V ∈ RN×n and k ∈ R]
2: Initialize k × n array Centers at random
3: Initialize k × n array PreviousCenters with zeros
4: Initialize Cluster with k void n-arrays
5: while norm(Centers - PreviousCenters) > ϵ do
6: for j = 1, . . . ,N do
7: for i = 1, . . . , k do
8: d(i) = norm(Centers(i, :) − V (j, :))
9: end

10: [ClosestCenter,m] = min(d)
11: Cluster{m} = [Cluster{m};V (j, :)]
12: end
13: PreviousCenters = Centers
14: for i = 1, . . . , k do
15: Centers(i, :) = MeanRow(Cluster{i})
16: end
17: end return Centers

C. SUPPORT VECTOR MACHINES
As we have seen in the previous section, clustering is
unsupervised learning because there are no labels to the
training data points allocating them to a specific cluster.
In classification problems we assume that the different clus-
ters (called classes) have training data with the corresponding
class label. Therefore, the classifier is obtained by supervised
training. A support vector machine is a classifier that is
applicable to data that can be separated by a hyperplane
called a separating hyperplane. The data is said to be linearly
separable if such a hyperplane can be found. The objective
is to find among the set of all hyperplanes that are able to
separate two different classes of data, the one that maximizes
the minimum distance of the hyperplane to the closest data
point. This minimum distance dmin is called the hyperplane
margin. After the hyperplane is determined, one class of data
points will lie above the hyperplane whereas the other class
will lie below the hyperplane (see figure 2). This idea can
be extended to the classification of several different classes
of data. One way to do this is to find first one hyperplane
for each pair of classes separately, and then to combine all
hyperplanes in a single separating surface.

In order to train a support vector machine by solving an
optimization problem let us first define the affine function

f (x) = wT x + w0. (14)

FIGURE 2. Support vector machine hyperplane.

The equation of the separating hyperplane is f (x) = 0.
We label the two different classes of data points by defining
a function y : Rn

→ {−1, 1}. For the data points x ∈ Rn

located above the hyperplane (red points in figure 2) one has
f (x) > 0 and y(x) = 1. The data points x located below the
hyperplane (blue points in figure 2) will satisfy f (x) < 0 and
y(x) = −1. Therefore, all data points satisfy the constraint

|f (x i)| = y(x i)
(
wT x i + w0

)
, i = 1, . . . ,N . (15)

The vector x0 (see figure 2) that is parallel to the vector w and
connects the origin to the hyperplane with equation f (x) =

0 can be written as

x0 = α
w

∥w∥2
(16)

and must satisfy the equation

f (x0) = wT x0 + w0 = 0. (17)

Therefore, replacing (16) into (17) and solving for α, one
concludes that

x0 = −
w0w

∥w∥
2
2

. (18)

To be able to determine dmin in figure 2 wemust first compute
the orthogonal distance of any vector x i to the hyperplane
with equation f (x) = 0. This distance is equal to the
magnitude of the orthogonal projection of x i − x0 onto w
computed as

d(x i) =

∣∣∣∣ wT

∥w∥2

(
x i − x0

)∣∣∣∣ =
|f (x i)|
∥w∥2

=
y(x i)f (x i)

∥w∥2
, (19)

where equation (15) was used to remove the absolute value.
GivenN data points x i, the problem of finding the hyperplane
that maximizes the hyperplane margin (i.e., the minimum
distance dmin) can then be formulated as

max
w,w0,γ

γ

s.t.
y(x i)f (x i)

∥w∥2
≥ γ, i = 1, . . . ,N . (20)
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To be able to separate the data one must find the vector w
with the right orientation (see figure 2). Note that one can set
without loss of generality the constraint γ ∥w∥2 = 1, given
that it has no effect on the orientation of the vector w. Adding
the constraint ∥w∥2γ = 1 to the optimization (20), it becomes
the equivalent problem

min
w,w0

∥w∥
2
2

s.t. y(x i)f (x i) ≥ 1, i = 1, . . . ,N . (21)

Since the data is never perfect and in certain cases not all data
points may be separated by a hyperplane, one can relax the
constraints of the problem (21) to allow for some data points
to be misclassified. This must be done while still making sure
that the minimum amount of misclassified points is desired.
The way to proceed is to add what are called slack variables
ζi ≥ 0, i = 1, . . . ,N , which are all stacked into a vector
ζ . Similarly to the case of least squares in section II-A,
the objective function is changed in order to be a trade off
between two objectives: minimizing the norm-2 of ∥w∥2 and
minimizing the norm-1 of ζ . The trade-off will depend on a
parameter β ≥ 0 that is called a regularization parameter. The
modified optimization program is known as the soft margin
formulation and can be stated as

min
w,w0

∥w∥
2
2 + β

N∑
i=1

ζi

s.t. y(x i)f (x i) ≥ 1 − ζi, ζi ≥ 0, i = 1, . . . ,N . (22)

Note that if 0 < ζi < 1 the data point x i is classified correctly
but it does not lie above the minimum margin. If ζi > 1 then
the data point x i is misclassified.

D. NEURAL NETWORKS
Feedforward neural networks map a given input vector x into
an output vector ŷ and are composed of different layers. The
last layer performs an affine combination of its inputs. All
layers but the last are called hidden layers and each hidden
layer has several neurons. When presented with an input
vector s with elements si, i = 1, . . . , n, a neuron output is

z(s) = σ
(
wT s+ w0

)
(23)

where w and w0 form the vector of weights of the neuron
and σ is a nonlinear activation function that models the
‘‘firing’’ characteristics of the neuron. This function is
commonly chosen to be a sigmoid (e.g., tangent hyperbolic),
or ReLU (z) = max(0, z), or a polynomial. Note that by
creating an augmened input vector s̄ = [sT 1]T and an
augmented weight vector w̄ = [wT w0]T one can rewrite
equation (23) as z(s̄) = σ

(
w̄T s̄

)
. Therefore, without loss of

generality, the affine terms w0 will not be considered.
Figure 3 shows an example of a neural network with a

single output and one hidden layer. The network is called a
quadratic neural network when the activation functions σ are
quadratic polynomials. These networks have the advantage

FIGURE 3. Single output two-layer neural network.

that training can be performed by a convex optimization and
will be the focus of this section. The structure of a quadratic
feedforward neural network with one output, as presented in
figure 3, was suggested in [25]. Although quadratic neural
networks can have several outputs, the network proposed
in [25] is constrained to have a single hidden layer with
M =

∑p
k=1Mk neurons. Each output is connected to Mk

neurons in the hidden layer. The value of each network output
k = 1, . . . , p, is

ŷk (x) = f̂ k (x) =

Mk∑
j=1

σ
(
xTwk,j

)
αkj (24)

where the activation function is quadratic and is written as

σ (z) = az2 + bz+ c (25)

where a ̸= 0, b, c, are pre-defined constants that parameter-
ize the quadratic activation function. The weights w connect
the input x ∈ Rn to each neuron in the hidden layer (figure 3).
The notation of equation (24) where the weights leav-

ing the input are denoted by w and the weights leaving
the hidden layer are denoted by α will be used throughout
the paper. For the weights we will use superscript indices
to indicate the target and subscript indices to indicate the
source of each connection. For example, to denote the weight
connecting the first input component to the second hidden
neuron of the third output we use w3,2

1 . The desired (label)
outputs will be denoted by y and the actual outputs of the
network will be denoted by ŷ.
As already mentioned, one of the advantages of quadratic

neural networks is that the training of the weights can be done
by solving a convex optimization problem, which guarantees
convergence to the global optimum. To do this, following [25]
it will be assumed that the weights wk,j are normalized to
have unit 2-norm. Additionally, a regularization term on the
1-norm of αj will be included in the objective function for the
network training. Furthermore, we assume the more general
case wk,j = wj of all M neurons connected to each output
ŷk . Using a loss (error) function l(·) the original (primal) non-
convex training problem for a quadratic neural network is [25]

min
wj,αj

l(ŷ− y) + β
∑M

i=1
∥αi∥1

s.t. ŷk =

∑M

j=1
σ

(
xTwj

)
αkj ,
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∥wj∥2 = 1, k = 1, . . . , p, j = 1, . . . ,M , (26)

for fixed a ̸= 0, b, c, and a fixed regularization coefficient
β ≥ 0. Following [25], unless otherwise stated, the parame-
ters a, b, c,will be selected to approximate in the least squares
sense the function ReLU (z) = max(0, z) in the interval
[−5, 5] and are equal to a = 0.0937, b = 0.5, c = 0.4688.
The following result from [25] recasts the training as an
equivalent convex optimization problem.
Lemma 1: [25] Given fixed a ̸= 0, b, c, and a fixed

regularization coefficient β ≥ 0, the solution of the convex
problem that is dual to (26) and is formulated as

min
Z k+, Z k−

l(ŷ− y) + β

p∑
k=1

(
Z k,4+ + Z k,4−

)

s.t. ŷki = x̄Ti

 a
(
Z k,1+ − Z k,1−

)
b
2

(
Z k,2+ − Z k,2−

)
b
2

(
Z k,2+ − Z k,2−

)T
c tr

(
Z k,1+ − Z k,1−

)
 x̄i

Z k,4+ = tr
(
Z k,1+

)
,Z k,4− = tr

(
Z k,1−

)
,

Z k+ =

 Z k,1+ Z k,2+(
Z k,2+

)T
Z k,4+

 ,

Z k− =

 Z k,1− Z k,2−(
Z k,2−

)T
Z k,4−

 ,

Z k+ ≥ 0, Z k− ≥ 0, x̄Ti = [xTi 1],

k = 1, . . . , p, i = 1, . . .N , (27)

where l(·) is a convex loss function, provides a global optimal
solution for the parameters Z k+,Z k− ∈ R(n+1)×(n+1), for k =

1, . . . , p, when the number of neurons satisfies M ≥ M∗ with

M∗ =

p∑
k=1

[
rank

(
Z k∗+

)
+ rank

(
Z k∗−

)]
, (28)

where Z k∗+ and Z k∗− for k = 1, . . . , p, are the solution of
the optimization problem (27) given N input data vectors
xi ∈ Rn with corresponding labels yi ∈ Rp and ŷk is
given by (30). Moreover, the optimal value of the solutions
of problems (26) and (27) are the same and the duality gap is
zero. □

To determine the weights of the neural network, a clear
advantage of quadratic neural networks with a single hidden
layer is that the optimal network weights and architecture can
be extracted from Z k∗+ and Z k∗− using Algorithm 2 from [25]
where

G =

[
In 0
0 −1

]
(29)

and In is the identity matrix of order n. Instead of describing
the neural network by its weights, in this paper we will focus
on the description of the neural network as a quadratic form
because such a description leads to an analytical expression,
namely the one in equation (30) where x̄ = [xT 1]T . The
quadratic form (30) is equivalent to the quadratic form in (27)

and to expression (24) (see [25]).

ŷk = f̂ k (x) = x̄T
[
aZ k1

b
2Z

k
2

b
2

(
Z k2

)T
ctr

(
Z k1

) ]
x̄ = x̄T Z̄ k x̄ (30)

Algorithm 2 Neural Decomposition With Tolerance tol [25]
1: function NeuralDecomposition (Z∗, tol)
2: Compute rank-1 decomposition

Z∗
=

∑r
j=1 vjv

T
j

using eigenvector decomposition keeping all
eigenvectors with eigenvalues λ > tol.

3: Create a list of vectors v D {v1, . . . , vr} and
a void output list V

4: for k = 1, . . . , r − 1 do
5: v1 = vk
6: if vT1Gv1 = 0 then v∗

= v1
7: else find j ∈ [k + 1, r]:

(
vT1Gv1

) (
vTj Gvj

)
< 0

and set v∗
=

v1+γ vj√
1+γ 2

where γ =

−2vT1 Gvj+
√

1

2vTj Gvj
and 1 =

4
[(
vT1Gvj

)2
−

(
vT1Gv1

) (
vTj Gvj

)]
8: Remove vk from list of vectors v and insert

v∗ =
vj−γ v1√
1+γ 2

at the end of the list.

9: Add v∗ to the list V
10: Add last element of list v to list V and return V

Algorithm 2 takes as inputs Z∗
= Z k∗+ and Z∗

= Z k∗−

for k = 1, . . . , p, which are the solution of the optimization
problem (27) and thus satisfy tr (Z∗G) = 0 [25]. At the end
of the algorithm there will be two lists of vectors for each

value of k = 1, . . . , p. One will be the list {vk,1+ , . . . , v
k,r+k
+ }

for Z∗
= Z k∗+ and the other will be the list {vk,1− , . . . , v

k,r−k
− }

for Z∗
= Z k∗− where

vk,j+ =

[
ck,j+

dk,j+

]
, vk,j− =

[
ck,j−

dk,j−

]
,

ck,j+ , ck,j− ∈ Rn, dk,j+ , dk,j− ∈ R. (31)

For each output k = 1, . . . , p, the weights in the first layer
of the neural network will be
(wk,1

+

, . . . ,wk,r
+

k ,wk,1
−

, . . . ,wk,r
−

k ) where [25]

wk,j
+

=
ck,j+

∥ck,j+ ∥2
, wk,j

−

=
ck,j−

∥ck,j− ∥2
. (32)

The weights of the second layer of the neural network will be

(αk
+

1 , . . . , αk
+

r+k
, αk

−

1 , . . . , αk
−

r−k
)

where [25]

αk
+

j =

(
dk,j+

)2
, αk

−

j = −

(
dk,j−

)2
. (33)
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The output k of the neural network for the input x is given by

ŷk (x) = f̂ k (x) =

r+k∑
j=1

σ
(
xTwk,j

+
)

αk
+

j

+

r−k∑
j=1

σ
(
xTwk,j

−
)

αk
−

j . (34)

Renumbering the weightswk,j
−

and αk
−

j to run from j = r+

k +

1 to j = r+

k + r−

k we can rewrite (34) as (24) with Mk =

r+

k + r−

k .
Remark 1: The convex formulation of the neural net-

work training (27) followed by the neural decomposition
algorithm 2 yields a network architecture in which any given
hidden layer neuron is only connected to one output (see
figure 3 for the output ŷ1). This is in contrast to the primal
training problem (26) which assumed the general case of all
hidden layer neurons connected to all outputs. It is proved
in [25] that the solution of the convex training problem
yields the same optimal value for the objective function as
the primal training problem if M ≥ M∗ with M∗ given
by (28). Additionally, it is proved in [26] that the convex
problem (27) is equivalent to a least squares problem when
l(y − ŷ) = ∥y − ŷ∥22 and β = 0, leading to the analytical
solution (11) with L = I and M = 0.

III. LINEAR STATE SPACE MODELS
State space models can be used to study the evolution of a
collection of variables as a function of time. The variables
are selected so that they completely determine the system’s
behaviour and are stacked together into what is called a state
vector. Perhaps the simplest state space model that is familiar
to everyone is the model of a bank account, which is

x(t + 1) = x(t) + rx(t) − d(t) + u(t), (35)

where x(t) is the balance in the account at the end of month
t and represents the state of the account, r is the monthly
interest rate, d(t) represents the monthly expenses, and u(t)
represents the monthly deposits in the account. This model
can be rewritten as

x(t + 1) = Ax(t) + Bu(t) +Wd(t), (36)

with A = 1 + r,B = 1,W = −1. The description in
equation (36) is valid for any discrete-time linear model with
x ∈ Rn, u ∈ Rm, d ∈ Rl where A ∈ Rn×n,B ∈ Rn×m,W ∈

Rn×l are the parameters. The variables x(t), u(t), d(t) are
called the state, the input, and the disturbance, respectively.
Each discrete-time linear model will have its own matrices
A,B,W but any discrete-time linear model can be represented
in the form (36). Starting from an initial condition x(0) and
knowing the values of u(0) and d(0) one can compute the
value of x(1) using equation (36) as

x(1) = Ax(0) + Bu(0) +Wd(0).

From the knowledge of x(1), u(1), d(1) one can then compute
x(2) as

x(2) = Ax(1) + Bu(1) +Wd(1)

= A2x(0) + ABu(0)

+ AWd(0) + Bu(1) +Wd(1).

Continuing this procedure one can find the general solution
of equation (36) for any time t to be

x(t) = Atx(0) +

t−1∑
i=0

Ai [Bu(t − 1 − i) +Wd(t − 1 − i)] .

(37)

In many applications the variable u(t) corresponds to a
decision or control action and the variable d(t) corresponds to
a disturbance or noise signal, which is typically not known.
Therefore, when using data to determine an estimate of the
model parameters we will restrict ourselves to the case

x(t + 1) = Ax(t) + Bu(t) + e(t), (38)

where x(t), u(t) are assumed to be measured at M different
times and e(t) is the model error. To find the parameters A,B
that minimize the sum of the errors squared we define the
objective function

f0(A,B) =

M−1∑
k=0

eT (k)e(k). (39)

Using equation (38) and the trace operator this function can
be rewritten as

f0(A,B) =

M−1∑
k=0

tr[(x(k + 1) − Ax(k) − Bu(k))

(x(k + 1) − Ax(k) − Bu(k))T ].

The optimization problem to be solved to find the parameters
A,B is then

min
A,B

f0(A,B). (40)

Using the results

∂Atr
[
AMT

]
= M , (41)

∂Atr
[
AMAT

]
= 2AM , (42)

and solving the necessary conditions of optimality

∂Af0(A,B) = 0, (43)

∂Bf0(A,B) = 0, (44)

leads to

B =

(
Rx+u − Rx+xR

−1
xx R

T
ux

) (
Ruu − RuxR−1

xx R
T
ux

)−1
,

(45)

A = (Rx+x − BRux)R−1
xx , (46)
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with

Rab =
1
M

M−1∑
k=0

a(k)bT (k), (47)

where a(k) and b(k) can be any of the variables x(k), x+(k) =

x(k+1), u(k). The solution (45)–(46) is called the maximum
likelihood estimation of the parameters A and B and it
assumes that the data is ‘‘rich enough’’ so that all of the
inverse matrices in the formulas (45)–(46) exist (sometimes
called the persistent excitation assumption [23]). Note that for
unforced systems one has B = 0 and (46) becomes

A = Rx+xR
−1
xx . (48)

IV. LINEAR INPUT-OUTPUT TIME SERIES MODELS
Sometimes one cannot measure the whole state of a system
and the only available data is a time series of a scalar
output of the system y(t). In that case, instead of building
linear state space models one can turn to linear parametric
input-output time series models. The most commonly used
models are autoregressive (AR), moving average (MA),
autoregressive exogenous (ARX), and autoregressive moving
average exogenous (ARMAX). To be able to formulate such
models one must first define the delay operator

q−1y(t) = y(t − 1). (49)

The input-output ARMAX model can be written as

A(q−1)y(t) = B(q−1)u(t − d) + C(q−1)e(t), (50)

where

A(q−1) = 1 + a1q−1
+ . . . + anaq

−na , (51)

B(q−1) = b0 + b1q−1
+ . . . + bnbq

−nb , (52)

C(q−1) = 1 + c1q−1
+ . . . + cnaq

−na , (53)

and where y(t), u(t), e(t) represent the output, (exogenous)
input, and error (or noise) signals, respectively. The order of
the polynomialsA(q−1),B(q−1) andC(q−1) are na, nb and na,
respectively. The delay of the system is the difference of the
number of delays in the output and input, d = na − nb > 0.
Amoving average (MA) model describes the output y(t) as

a weighted sum of present and past error (noise) values and
is written as

y(t) = C(q−1)e(t), (54)

or equivalently as

y(t) = e(t) + c1e(t − 1) + . . . + cnae(t − na). (55)

In an autoregressive (AR)model the variable y(t) is a function
of its past values (autoregresses on itself) and of the current
value of the error signal. Therefore, the AR model is written
as

A(q−1)y(t) = e(t), (56)

or equivalently as

y(t) = −a1y(t − 1) − . . . − anay(t − na) + e(t). (57)

The autoregressive exogenous (ARX) model is similar to
the autoregressive model but it also includes terms in an
exogenous input signal u(t). It is written as

A(q−1)y(t) = B(q−1)u(t − d) + e(t), (58)

or equivalently as

y(t) = −a1y(t − 1) − . . . − anay(t − na)

+ b0u(t − d) + . . . + bnbu(t − d − nb)

+ e(t). (59)

This model can be rewritten in matrix form for a data set
consisting of time samples t = na, . . . , na + N − 1. It can
be cast as in (4) where θ = [a1, . . . , ana , b0, . . . , bnb ]

T and

H1 =

 −y(na − 1) . . . −y(0)
...

...
...

−y(na + N − 2) . . . −y(N − 1)


H2 =

 u(nb) . . . u(0)
...

...
...

u(nb + N − 1) . . . u(N − 1)


H =

[
H1 H2

]
, y = [y(na) . . . y(na + N − 1)].T (60)

It is assumed that N ≥ na + nb + 1. The least squares
estimation of the parameter vector θ can then follow the
procedure outlined in section II-A.

V. NEURAL NETWORK MODELS
Neural networks can also be used to obtain input-output
and state space models of a discrete-time dynamic system.
It is assumed that a collection of input-output data pairs
{u(k), y(k)}Nk=1 are measured. Based on the data one can
identify the parameters of a nonlinear model of the form

y(t + 1) = f (y(t − n+ 1), . . . , y(t), u(t)) (61)

by for example training a quadratic neural network, where
y ∈ Rp, u ∈ Rm, and n ≥ 1. The value of n − 1 is the
number of delays considered in the output. If n = 1 then
the model only considers the most recent sample y(t). When
n > 1 the model will also consider past samples of y. To have
an initial idea of how many samples should be considered
in the past to identify the autoregressive model one can look
at the autocorrelation of the measured output and see how it
decays as a function of the shift (delay) in the output. The
delay at which the first significant decay happens should be
the maximum delay used in the identification. We define the
training matrices as

X =

 uT (n) yT (1) . . . yT (n)
...

...
...

...

uT (N − 1) yT (N − n) . . . yT (N − 1)


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FIGURE 4. Least squares approximation of covid-19 data in the Canadian
Province of Québec using a fourth order polynomial.

Y =

 yT (n+ 1)
...

yT (N )

 , (62)

where X ∈ R(N−n)×(m+pn) and Y ∈ R(N−n)×p. Each row of
the matrix X is a neural network input sample and each row
of the matrix Y is an output label of the training set of the
quadratic neural network. It is assumed thatN ≥ n+0.5(pn+
m+ 1)(pn+m+ 2) so that the parameter estimation problem
is overdetermined. It is also assumed that the collected data is
rich enough in terms of persistent excitation [23], which is a
typical assumption in system identification. After training the
network, the input-output model is written as in equation (30)
changing x̄(t) to ȳu(t) = [uT (t) yT (t−n+1) . . . yT (t) 1]T .
Defining state variables as x1(t) = y(t−n+1), . . . , xn(t) =

y(t), a state vector x(t) = [xT1 (t), . . . , x
T
n (t)]

T , and noting that
ȳu(t) = [uT (t) xT (t) 1]T = [uT (t) x̄T (t)]T , the state space
model is written as

x(t + 1) =

[
0p(n−1)×p Ip(n−1)×p(n−1)
0p×p 0p×p(n−1)

]
x(t)

+

[
0p(n−1)×1
Z(x(t), u(t))

]
, (63)

where

Z(x(t), u(t)) =

 ȳTu (t)Z̄
1

...

ȳTu (t)Z̄
p

 ȳu(t), (64)

Z̄ i =

 Z̄ iuu Z̄ iux Z̄ iu(
Z̄ iux

)T Z̄ ixx Z̄ ix(
Z̄ iu

)T (
Z̄ ix

)T Z̄ inn

 (65)

for i = 1, . . . , p. Expanding the quadratic forms in
Z(x(t), u(t)), the system (63)–(64) can be rewritten as

x̄(t + 1) = Ā(x(t))x̄(t) + B̄(x(t))u(t) + E(u(t))u(t), (66)

where x ∈ Rnx with nx = pn, u ∈ Rm, Ā(x(t)) = A+F(x(t)),
Z̄ iux̄ =

[
Z̄ iux Z̄ iu

]
, and

A =

[
A 0pn×1

01×pn 1

]
,

A =

[
0p(n−1)×p Ip(n−1)×p(n−1)
0p×p 0p×p(n−1)

]
,

Z̄ ix̄x̄ =

[
Z̄ ixx Z̄ ix(
Z̄ ix

)T Z̄ inn

]
,

F(x(t)) =


0p(n−1)×(pn+1)
x̄T (t)Z̄1

x̄x̄
...

x̄T (t)Z̄px̄x̄
01×(pn+1)

 ,

E(u(t)) =


0p(n−1)×m
uT (t)Z̄1

uu
...

uT (t)Z̄puu
01×m

 ,

B̄(x(t)) =

[
B(x(t))
01×m

]
(67)

where

B(x(t)) = 2


0p(n−1)×m

x̄T (t)
[
Z̄1
ux̄

]T
...

x̄T (t)
[
Z̄pux̄

]T

 . (68)

VI. REGRESSION
Regression consists of the approximation of data points by a
curve that best fits the data according to a given measure of
fitness. The most common measure of fitness is the sum of
the squares of the errors leading to a least squares problem.
The following example highlights how least squares can be
applied to regression.
Example 1: Assume that one wants to fit a straight line

to a data set consisting of pairs of data points (xi, yi), i =

1, . . . ,N . Assuming a linear relationship between xi and yi
with an additive error ei yields

yi = axi + b+ νi = xia+ b+ ei.

Collecting all yi, i = 1, . . . ,N , in a vector y, and the
unknowns a, b in a vector θ , we can write an equation of the
form (4) where y = [y1 . . . yN ]T , θ = [a b]T and

H =

 x1 1
...

...

xN 1

 . (69)

Letting L = I and

M =

[ 1
2 0
0 1

]
,
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we will formulate a regularized least squares estimation
problem and write down the formula for the solution. Then
we will find the solution in the limiting case of the number of
data points converging to infinity. Note that

HTLH = HTH = N
[ 1
N

∑N
i=1 x

2
i

1
N

∑N
i=1 xi

1
N

∑N
i=1 xi 1

]
.

The inverse matrix in (11) is written as

(HTLH +M )−1
=

1
N

[ 1
2N +

1
N

∑N
i=1 x

2
i

1
N

∑N
i=1 xi

1
N

∑N
i=1 xi 1 +

1
N

]−1

.

The regularized least squares solution (11) for θ̂ = [a b]T is[
a
b

]
= (HTLH +M )−1

[ 1
N

∑N
i=1 xiyi

1
N

∑N
i=1 yi

]
.

When N → ∞ this solution conveges to[
a
b

]
=

[
x2 x
x 1

]−1 [
xy
y

]
=

1
σ 2
x

[
σ 2
xy

x2y− (x)(xy)

]
where

σ 2
xx = x2 − x2,

σ 2
xy = xy− (x)(y),

and an overline on top of a variable denotes the mean value.
Example 2: We now consider a least squares approxima-

tion of the natural logarithm of the number of covid-19
cases in the Canadian Province of Québec from the first
to the 13th of January 2023. The data can be found in
the link: https://www.donneesquebec.ca/recherche/dataset/?
groups=sante

The curve fit is a fourth degree polynomial and the obtained
coefficients are

a0 = 4.88, a1 = 1.58, a2 = −4.09 × 10−1,

a3 = 4.05 × 10−2, a4 = −1.36 × 10−3.

Figure 4 shows the data overplotted with the curve fit. It is
clear from the figure that the general trend of 9 out of 13 data
points is captured by the curve fit.
The next example uses quadratic neural networks to perform
regression of a set of data points.
Example 3: We assume a single input and single output

network. Since in this case the matrix Z̄ in equation (30) has
three parameters to be estimated, we collected N = 101 data
points, which is much greater than the number of parameters.
The neural network training was performed for a quadratic
activation function with parameters a = 0.0937, b =

0.5, c = 0.4688, a regularization coefficient of β = 0.001,
and a quadratic norm loss function l(·) to approximate the
function f (x) = x + 2 + e, where e ∼ N (0, 1). The
optimization problem (27) was solved in CVX [27] interfaced
with Matlab R2017a1 and using the convex optimization
solver MOSEK [28]. The symmetric matrix that describes the

1Matlab is a trademark of The Mathworks Inc.

FIGURE 5. Neural network approximation of f (x) = x + 2 + e, where
e ∼ N(0, 1) (black curve) and least squares approximation (red line).

neural network is

Z̄ =

[
0.0324 0.5241
0.5241 0.1619

]
.

The neural decomposition Algorithm 2 with a tolerance of
tol= 10−5 leads to a neural network with two neurons and
the weights

w+ =
1.1050
|1.1050|

= 1, w− =
−0.9357

| − 0.9357|
= −1

for the first layer. The weights for the second layer are

α+ = (1.1050)2 = 1.221, α− = − (0.9357)2 = −0.8755.

The neural network output is thus given by

ŷ(x) = 1.221σ (x) − 0.8755σ (−x)

= 0.0324x2 + 1.0482x + 0.1619.

The best-fitting line in the least squares sense is obtained
using the method described in example 1 and is given by

yls = 0.9677x + 2.1302.

Figure 5 shows the neural network regression and its
comparison to a best-fitting line in the least squares sense.
It is clear from the figure that the neural network regression
is not an affine line as it would be the case if one were to use
standard least squares line-fitting, as seen by the red line in
figure 5.

VII. CLASSIFICATION
Classification divides data into different pre-defined classes.
The next example shows an application of quadratic neural
networks to classification.
Example 4: In this example we will consider the classifi-

cation of handwritten digits from the MNIST database [29].
This database has 60, 000 digit samples for training and
10, 000 digit samples for validation. Each digit image has
28 × 28 = 784 pixels. The first step before the classification
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FIGURE 6. Number 5 after being downsampled.

of the digits is to downsample the images. We have chosen
to only use the rows and columns 5 to 24 of each image
and then downsample this smaller image so that it would
only have 10 × 10 = 100 pixels. This downsampled image
has therefore only 12.76% of the pixels of the original
image. Figure 6 shows one of the downsampled images for
the number 5. The reason to perform the downsampling
operation is because the neural network parameters will be
the entries of the (n + 1) × (n + 1) symmetric matrix
in expression (30), where n is the number of pixels. The
larger the number of pixels the larger this matrix will be and
therefore the slower will be the training of the neural network.
The training was done for a quadratic activation function
with parameters a = 0.0937, b = 0.5, c = 0.4688 using
a regularization coefficient of β = 590 and an infinity
norm loss function l(·). The results of the neural network
training and digit classification (testing) for different batches
of 10 × 10 images are presented in table 1. The percentages
of testing are calculated based on the number of correctly
classified digits out of the 10, 000 validation set that was
not used to train the neural network. The training time was
measured on a MacBookAir 1.6GHz with 16GB memory.
Note that although a success rate of 93.31% is smaller than
the typical 96 − 98% of a feedforward (non-convolutional)
neural network using deep learning [30], only 5.37% of
the total number of training images were used to achieve a
93.31% success rate. This shows that for this particular case
a quadratic feedforward neural network is promising in terms
of obtaining very good results with only a fraction of the total
data available for training.

VIII. IDENTIFICATION OF DYNAMIC MODELS
We start this section by going back to the example 2 and
identifying the parameters of a state space model.
Example 5: We use again the data from example 2 for

the number of covid-19 cases in the Canadian Province of
Québec. The data runs from the 19th of December 2022 to
the 13th of January 2023. With this data we will now build
a (SIR) state space model with three classes: susceptible,

TABLE 1. Digit classification results.

infected, and recovered people.We assume that once a person
is infected it stays infected for two weeks. After these two
weeks the person is recovered and will not be susceptible
again for an entire month due to immunity to infection. The
number of recovered people for a given day will thus be the
total number of cases two weeks prior to that day. Once a
person is recovered it will not go back to being susceptible
for the period of one month for which the model is being
built. The model (38) with B = 0 will therefore have a
state x(t) = [S(t) I (t)]T , where S(t) is the number of
susceptible and I (t) is the number of infected people on day
t . Given that the available data does not provide the number
of susceptible, this number can be estimated as the total
population minus the number of infected people minus the
number of recovered people. The total population of Quebec
is considered to be 8.5 million people for this model. Using
the data and equation (48) we get the estimated A matrix to
be

A =

[
1.00 −0.16
0.00 0.89

]
.

The entry in row two and column two is usually called the
R0 factor, which in this case is R0 = 0.89. This factor means
that from each nine infected people in a given day there will
be 9 × R0 ≃ 8 infected people in the next day.
We will now present an example on identifying the

parameters of a quadratic neural network that approximates
the nonlinear function of a dynamic model.
Example 6: This example considers the problem of system

identification of a flexible robot arm whose input-output
data with reference [96 − 009] is available at the website
of the Database for the Identification of Systems (DaISy)
at the university of KU Leuven [31]. The input is the
measured reaction torque of the arm structure on the ground
and the output is the acceleration of the flexible arm. The
applied input was a periodic sine sweep for which an output
consisting of N = 1024 data points was collected. The
input and output matrices for the neural network training
are the ones from (62) with n = 1. The training was
done for a quadratic activation function with parameters
a = 0.0937, b = 0.5, c = 0.4688, using a regularization
coefficient of β = 0.01 and an infinity norm loss function
l(·). Only the first 122 data points were used to train the
neural network, which represents approximately 12% of all
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FIGURE 7. System identification (black) and data points (blue circles).

FIGURE 8. Clustering of covid-19 data for Canada over the period
26 − 01 − 2020 to 11 − 06 − 2022.

data points. The resulting (one state x(t) = y(t)) model is
described by

y(t + 1) =

 u(t)
y(t)
1

T

Z̄

 u(t)
y(t)
1

 ,

where

Z̄ =

 −0.0989 0.5030 −0.1682
0.5030 0.1599 1.8265

−0.1682 1.8265 0.0610

 .

The prediction is compared with the data in figure 7.

IX. CLUSTERING
We now use k−means clustering applied to the number
of covid-19 cases in Canada to cluster the data into three
classes: small, medium, and large number of cases. The
source of the data can be found at the World Health

OrganizationWebsite: https://covid19.who.int/WHO-COVID-
19-global-data.csv. The data is organized in pairs (i, xi) where
i is the day and xi is the number of cases for that day. The
result of the clustering is shown in figure 8. The three clusters
correspond to the data below the lowest horizontal line, the
data between the two horizontal lines, and the data above the
highest horizontal line. The values for the number of cases
corresponding to the centroids of the three regions are

xc1 = 848, xc2 = 4528, xc3 = 15273.

X. CONCLUSION
This paper provided a general framework for predictive
analytics based on optimization. Four main optimization
problems were introduced: least squares, the training of
neural networks and support vector machines, and k-means
clustering. Case studies were shown in the main applications
of predictive analytics: (i) regression, (ii) time series and
state space models, (iii) classification and clustering. The
paper stressed that while convex optimization problems can
be solved efficiently and are therefore a preferred modelling
choice, the formulation of certain predictive analytics prob-
lems as convex optimization programs may be challenging.
Such is the case of k-means clustering, which was disussed
in section II-B. Except for this case all other problems in
the paper were formulated as convex optimization programs.
There are also some convex relaxations of k-means clustering
in the literature. However, it is important to note that
approximating a non-convex optimization as a convex
problem may result in suboptimal solutions to the original
problem. Such approximations should thus be considered on
a case-by-case basis taking into account the benefits and
drawbacks of convex relaxations. The paper also presented
several examples from many different areas, which showed
how predictive analytics can provide useful information to
decision makers in several fields of knowledge.
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