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ABSTRACT This paper compares the analytical approach and optimization algorithm for designing a
two-bilinear-section-based two-port transfer function hinged on a numerical sweep with the intention
of implementing fractional-order (FO) systems in many sensing areas. The study compares analytical
and algorithm-based design approaches and tests their effectiveness in designing a two-port system that
accommodates phase shifts within the 10◦ to 80◦ range and with various phase ripple limits. The impact of
phase changes on usable bandwidth (yieldmaximization) is also explored. The proposed algorithm represents
the most optimal approach and calculates zeros/poles frequencies to precisely keep the required mean phase
value and phase ripple value for the defined center frequency. Experimental results are provided, utilizing
two bilinear sections featuring the current feedback amplifier. Moreover, the implementation of the novel
two-port Cole model as an application example of the proposed design is presented and evaluated. The
approaches presented are useful in sensing, modeling, and instrumentation.

INDEX TERMS Bilinear section, Cole model, constant phase range, current feedback OPAMP, fractional-
order, two-port.

I. INTRODUCTION
Fractional-order behavior, as documented in [1], widens its
influence across various domains of human life. Its sig-
nificance is evident in material studies [2], [3], [4], plant
dynamics [5], [6], studies related to biological tissues [7],
[8], [9], liquid impedance modeling [10], [11], applica-
tions in food sensing [12], [13], and material sensing [14].
Moreover, fractional-order principles find application in
conventional electronic systems, including regulators [15],
controllers [16], [17], [18], linear filters [19], [20], and oscil-
lators [21].
The FO device [1], also referred to as a constant phase

element (CPE) [22], [23], defines a distinct impedance char-
acterized by a flat phase ϕa ∈(0, ±90◦), where 0◦ represents
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resistor and ±90◦ represents inductor or capacitor. This ele-
ment is defined by impedance Za(s) = s±αXa, where s+α and
Xa = La are valid for an inductive character, and s−α and
Xa = 1/Ca denote a capacitive character. These devices are
intentionally designed using solid-state layers of specialized
materials [24], liquids [25], and standard lumped resistors and
capacitors (RC elements) arranged in ladder structures [22],
[23], [26], [27]. These structures create a series of alternating
zeros and poles in the symbolical impedance term, defined
by subsequently connected serial or parallel RC sections
[22], [23]. It’s important to note that the operational band-
width is limited due to the finite number of RC sections,
which also affects accuracy (allowed phase ripple). There-
fore, thementioned design approaches provide an approxima-
tion of an ideal FO device, which is not physically realizable,
as the ideal FO device exhibits a flat phase response across
an infinite frequency bandwidth. Some design and modeling
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tasks necessitate the use of FO two-ports for transfer
responses. The impedance formed by the fractional device
can be applied directly to special two-port transfer func-
tions or serve as part of an active circuit (e.g. feedback of
op-amp or current feedback op-amp) [20]. However, their
reconfigurability is usually very limited or requires entirely
new values of all RC elements in the ladder. There have
been efforts to propose direct electronic configurations for
the adjustment of zero and pole locations [28], providing
reconfigurability to the device. The first-order transfer block,
enabling independent adjustment of zero and pole frequen-
cies, is known as a bilinear section (or segment) [16]. Several
examples of such sections have been presented in recent years
[29], [30]. As previously mentioned, the number of sections
(either bilinear in two ports or RC in impedance) corresponds
to the operational bandwidth and phase ripple [22], [23],
[31], [32]. A previous study [32] has clearly explained and
illustrated this behavior. Many researchers’ primary focus is
maximizing the FO device’s operational frequency range.

A single bilinear section crates a single-phase peak (having
a single zero and a single pole). When two bilinear sections
are cascaded, they generate two local maximums that can be
modified in range and frequency position based on specific
requirements. However, there has not been a presented study
targeting the optimal location of center frequencies, zeros,
and poles of both sections. This work compares two novel
methods (analytical and algorithmic search) for the optimal
design of a two-section-based FO system. The main goals
of this paper include: 1) evaluating bandwidth based on the
targeted phase shift, 2) assessing phase ripple on the targeted
phase shift, 3) experimentally verifying typical examples of
two-section-based operation using standard active elements,
and 4) providing an application example of the proposed
system of two bilinear sections in a novel Cole two-port
suitable for modeling in transfer systems.

We are comparing analytical and algorithm-based
approaches in terms of precision and complexity for cal-
culating zeros/poles frequencies for a two-port design. The
analytical approach is simple, fast, and evident and can
be completed by hand. Conversely, it is less precise than
the algorithm-based approach, which requires significantly
higher computing power. Moreover, the latter does not pro-
vide insight into the design. Another purpose of this paper
is to propose methods that are comparable with existing
techniques but superior in terms of computational efficiency,
alongside an analytical method that requires no computa-
tional device. The analytical method offers a manual design
approach, which is often not available in similar fractional-
order designs, allowing for hand calculations with acceptable
trade-offs in operational frequency range and phase ripple
balance of the resulting response.

The paper is organized as follows: Section II introduces
the parameters of a cascade of bilinear sections in overall and
partial phase responses. It explains both design approaches
(analytical and algorithm) and compares the obtained results.

Section III provides an example of experimental verification
and an application example in the novel implementation
of a two-port Cole model using standard active elements.
Section IV discusses obtained behavior, and Section V con-
cludes this paper.

II. CASCADE OF TWO BILINEAR SECTIONS
The further discussion involves the analysis of two bilinear
sections in cascade. The design targets include the center
frequency of the cascade, fs = 1 kHz (ωs = 2π fs), and a
phase value (at fs) of ϕ6 = 30◦. The ideal phase ripple
is intended to be as minimal as possible 1ϕ6 → 0. The
phase ripple is defined as the range of fluctuation around the
targeted ϕ6 , i.e., ϕ6± 1ϕ6 . The operational bandwidth is
determined by conditions depending on the specific ϕ6 in our
case. We consider two bilinear sections, i.e., the operational
bandwidth will be within one frequency decade. The cascade
of two ideal bilinear sections [32] has a symbolical transfer
response Ks(s) in the form:

Ks(s) =

(
s+ ωzA

s+ ωpA

)
·

(
s+ ωzB

s+ ωpB

)
, (1)

where ωzA,B and ωpA,B are the real zeros and poles, respec-
tively, of section A and B. The transfer response is shown in
Fig. 1 (considered as general for clarification of parameters).
It illustrates the magnitude and phase response of resulting
transfer of two bilinear sections in cascade (shown in red
color). The phase responses of both bilinear sections (A and
B, blue color) are also noted for their further importance in
the design. The description of section A is provided in form
of analytical term and formulas for further utilization in the
design. The phase response has the following form [32]:

ϕA(ω) =

[
tan−1

(
ω

ωzA

)
− tan−1

(
ω

ωpA

)]
. (2)

Themaximumphase shift ϕA(ωA) of the section (explained
for section A, section B is analogic) at the center frequency
ωA of the section (peak of the blue response) can be expressed

FIGURE 1. General example of frequency response (red color) formed by
two bilinear sections.
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by the zero ωzA and pole ωpA frequency as:

ϕA(ωA) =

[
tan−1

(
ωA

ωzA

)
− tan−1

(
ωA

ωpA

)]
=

[
tan−1

(√
ωpA

ωzA

)
− tan−1

(√
ωzA

ωpA

)]
. (3)

This form can be further simplified when the ratio of pole
and zero is considered as k = ωpA/ωzA:

ϕA(ωA)=
[
tan−1

(√
k
)
−tan−1

(
1

√
k

)]
= tan−1

(
k−1

2
√
k

)
. (4)

Note that the center frequency of section A can be
expressed as ωA =

√
(ωzA · ωpA). The previous derivation

results in a direct relation between the maximum phase of
section ϕA(ωA) and the ratio of pole and zero. This ratio k
can be expressed from (4) as:

k = tan
(

ϕA(ωA)
2

+
π

4

)2

. (5)

A. ANALYTICAL APPROACH
The analytical design approach supposes the discussed
parameters, resulting in specifications of zeros and poles for
bilinear sections. The resulting phase shift is a sum of both
responses: ϕ6(ω) = ϕA(ω) + ϕB(ω). The resulting phase
ϕ6(ωs) at the center frequency (fs) of cascade (both sections)
is given by ϕ6(ωs) = ϕA(ωs) + ϕB(ωs), and from Fig. 1
is visible that ϕs(ωs) = ϕA(ωs) = ϕB(ωs); consequently,
ϕ6(ωs) = 2ϕA(ωs) = 2ϕB(ωs) = 2ϕs(ωs).
The calculation of parameters can be divided into several

consequent parts: 1) The estimation of the phase value at fA
(fB respectively). To obtain minimal phase ripple, the sum
of phase contributions from ϕA(ωA) and ϕB(ωA) at the fre-
quency ωA, i.e., ϕ6(ωA) = ϕA(ωA) + ϕB(ωA), analogically
ϕ6(ωB) = ϕA(ωB) + ϕB(ωB), must be the lowest as possible.
It means that ϕA(ωA) and ϕB(ωB) must be lower than targeted
phase value ϕ6 . The contributions of ϕB(ωA) and ϕA(ωB) are
small but cannot be omitted. However, there is no possibility
to find out the value by simple calculation because features of
sections A and B are not known at the beginning of the design.
Therefore, some estimation must be provided at this stage:
ϕA(ωA) = ϕ6(ωs)/a. The parameter a represents decreasing
coefficient of the phase ϕA(ωA) compared to ϕ6(ωs) and
can be set empirically considering available phase ripple. For
example, a very small phase ripple below 1◦ results in a =

1.25, i.e., ϕA(ωA) = 30◦/1.25 = 24◦. 2) The next step is the

evaluation of required ratio of pole and zero k by (5), i.e.
k = tan(ϕA(ωA)/2 + π /4)2 = tan(24◦/2·π /180◦

+ π /4)2 =

2.37. The phase in the center of operational band allows us to
calculate the partial contribution from each section: ϕs(ωs) =

ϕA(ωs)= ϕB(ωs)= ϕ6(ωs)/2= 30◦/2= 15◦. 3) The equation
for zero frequency ωzA can be established from (2) for ωs as:[
tan−1

(
ωs

ωzA

)
−tan−1

(
ωs

k · ωzA

)]
−ϕA(ωA) ·

π

180
= 0. (6)

Because we know values of ϕA(ωA) = 24◦, ϕs(ωs) = 15◦

and k = 2.37, the equation (6) can be solved numerically to
obtain fzA = 217Hz (and fzB = 1.941 kHz as the second root).
The remaining parameters, with the help of ωs =

√
(ωA ·ωB),

can be evaluated as: fpA = fzA · k = 217·2.37 = 515 Hz,
fA =

√
(fzA · fpA) =

√
(217·1.941·103) = 334 Hz, fB =

f 2s /fA = (1·103)2/334 = 2.989 kHz and fpB = fzB · k =

1.941·103·2.37 = 4.602 kHz. All these values are valid for
characteristics shown in Fig. 1.

B. ALGORITHM-BASED APPROACH
The design target is to develop an algorithm that can calculate
frequencies of zeros and poles (fpA, fzA, fpB, fzB) so that
phase characteristics are located as close as possible to the
user-defined phase ripple range, providing maximum cover-
age of the user-defined region. The total phase dependence
on frequency can be described as a sum of two-phase char-
acteristics with different central frequencies, as given by (2).
Using this, the total phase characteristic can be calculated as
follows: ϕ6(ω)= ϕA(ω)+ ϕB(ω). This form can be rewritten
as:

ϕ6(ω) =

[
tan−1

(
ω

ωzA

)
− tan−1

(
ω

k · ωzA

)]
+

[
tan−1

(
ω

ωzB

)
− tan−1

(
ω

k · ωzB

)]
. (7)

Differentiating (7) and setting it equal to zero with
respect to frequency allows us to find frequency loca-
tions of minimum and maximum of the phase characteristic
(∂ϕ6(ω)/∂ω = 0). The solution of this equation was obtained
using Wolfram Alpha [33]. It yielded three roots, where (8)
and (9), as shown at the bottom of the page, represent the
center frequency of the system and two local maxima (placed
symmetrically around center frequency), respectively. The
correspondence with the analytical approach is very high.
A MATLAB code [42] has been developed for the calcu-
lation of zero and poles of each section. The algorithm

ωs =
√
k · ωzA · ωzB =

√
ωpA · ωzB (8)

ωA,B =

√√√√√√1
2

 ±

√ (
−ω2

zAk + ωzAωzBk2 + 2ωzAωzBk + ωzAωzB − ω2
zBk

)2
−4 (ωzAωzBk)2

+

+ω2
zAk − ωzAωzBk2 − 2ωzAωzBk − ωzAωzB + ω2

zBk

 (9)
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consists of the following steps: 1) definition of user param-
eters (center frequency, phase shift, and ripple); 2) sweep
of zero/pole frequencies searched 1/1000·fs up to 1000·fs.
In each sweep point, three frequencies corresponding to the
maximum/minimum phase are calculated using (8) and (9).
Phase values are then calculated at these points by (7); and
3) the sum of absolute differences between the calculated
phase at these three points and target values (e.g., mean phase
± ripple) is calculated and set as an objective optimization
factor. The resulting parameters that led to the minimum
value of the objective factor (bandwidth, fA, fB, etc.) are
listed, and respective graphs of resulting phase response and
swept parameters are plotted.

C. COMPARISON OF BOTH APPROACHES
This section compares the results obtained by both
approaches for the same specification (fS = 1 kHz, ϕ6 = 30◦).
The phase ripple and bandwidth of the phase value within the
given limits are the subjects of investigation.

We conducted tests to examine the impact of the analytical
parameter a on a phase ripple and operational bandwidth,
considering a selected value of ϕ6 phase swept ranging
from 10◦ to 80◦ (Fig. 2). The phase ripple produced by the
algorithm shows no variation since this method maintains
this parameter constant in all cases (exactly defined design
target). Figure 2(a) highlights the considerable dependence of
the bandwidth on ϕ6 from the algorithm-based approach on
the targeted phase in comparison with the analytical approach
(difference in type of trace). The operational bandwidth is
determined by the maximally available phase ripple 1ϕ6

obtained in each specific case of ϕ6 and a. We tested three
different values of a: 1.25, 1.21, and 1.15. The phase ripple
1ϕ6 is studied in Fig. 2(b) in all mentioned cases. Based on
these experiments, the optimal value for a for high values
of ϕ6 and the widest bandwidth requires a modification
to a = 1.15. However, this value also corresponds to the
largest phase ripple. The value a = 1.21 appears to be the
most optimal for sufficiently acceptable phase ripple (around
1◦) while still achieving a good bandwidth (3.5 kHz, valid
from 10◦ up to 60◦). On the other hand, a value of a =

1.25 results in the narrowest bandwidth (remaining constant
up to 50◦) and the lowest phase ripple, significantly below 1◦.

FIGURE 2. Features of the obtained phase response when overall phase
shift of cascade of two section is varied: a) operational bandwidth,
b) phase ripple.

To conclude, bandwidth can be adjusted and optimized in
analytical approach (by a) while it strongly depends on ϕ6

phase and phase ripple 1ϕ6 values in algorithm.

FIGURE 3. Dependences of important frequencies on overall phase
response of cascade for: a) variation of center frequencies of sections,
b) first zero and last pole frequencies.

As visible in Fig. 3, the center frequencies of bilinear
sections A and B exhibit an increasing distance from each
other as ϕ6 increases. The same trend is observed for the first
zero fzA and last pole fpB frequencies. The algorithm-based
results are shown in green, while analytical results are repre-
sented with indicated value of parameters a. Results in Fig. 4
show the general trend of increased bandwidth with increased
phase ripple. Fig. 5 shows the dependence of the bandwidth
on the targeted phase, with the phase ripple set constant
1ϕ6 = 10◦ in all tested cases. The resulting bandwidth
initially decreases with the setting of phase ϕ6 up to 45◦;
afterward, it increases again. This behavior can be attributed
to the trend of a frequency difference between the two maxi-
mum peaks (see Fig. 5(b)) of sections, presented in Fig. 6(c).

FIGURE 4. Dependence of bandwidth on targeted phase ripple value
(algorithm): a) nomogram, b) example of behavior for three selected
phase ripples.

FIGURE 5. Dependence of bandwidth on targeted phase value
(algorithm): a) nomogram, b) example of behavior for several selected
phases with a highlight of maximum peak frequencies.
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FIGURE 6. The bandwidth evaluation for phase shift and phase ripple
(algorithm): a) 3D plot, b) example for two ripples in 2D plot. c) The
difference between phase maximum peaks for two ripples.

For both phase ripple values, the smallest frequency differ-
ence is observed at 45◦, leading to the smallest bandwidth
at this phase value. The 3D plot in Fig. 6 visually depicts
the simultaneous effects of the targeted phase, bandwidth,
and phase ripple. These results clearly confirm an increase
in bandwidth with an increase in phase ripple. The narrowest
bandwidth with a fixed phase ripple is obtained for ϕ6 = 45◦

in all cases.

III. EXPERIMENTAL VERIFICATION
A. TWO-PORT USING TWO BILINEAR SECTIONS
The topology in Fig. 7, consisting of two bilinear sections,
was established for experimental tests using two AD844 cur-
rent feedback operational amplifiers (CFOAs).

FIGURE 7. Circuit topology used for experimental verification.

This circuit has the transfer function:

Ks(s) =

(
sCARzA + 2
sCARpA + 2

)
·

(
sCBRzB + 2
sCBRpB + 2

)
, (10)

as described in [29]. The features discussed in the previ-
ous section were obtained using the presented algorithm

TABLE 1. Resistance values for different sets of phase.

(fs = 1 kHz, ϕ6 = 30◦, 1ϕ6 = 2◦, 10◦, and 20◦). The
capacitor values were chosen to optimize the expected oper-
ational bandwidth: CA = 1 µF, CB = 10 nF. Then, the
values of resistors were computed for 1ϕ6 = 10◦ and pre-
sented in Table 1. The Keysight DSO-X 3022T oscilloscope
with Frequency Response Analysis (FRA) function was used
for measurements. The block scheme of the measurement
principle is shown in Fig. 8. The input of the tested circuit
was connected to the first channel (CH1) and the internal
generator (needed for automatic FRA measurement). The
input amplitude of a signal was set to 100 mV, and the phase
responsewasmeasured in a frequency range of 10Hz - 1MHz
(an oscilloscope frequency range limits lower bound). The
output of the circuit was connected to the second channel
(CH2) with further phase calculation using an internal mea-
surement function. The experimental workspace is shown in
the Fig. 9.

FIGURE 8. Principle of measurement of frequency response.

The measurement results are shown in Fig. 10 and com-
pared with ideal expectations. The experimental verification
was made for points ϕ6 = 20◦, 30◦ and 60◦ to cover the
entire range of phase value. The phase ripple variation is
tested for ϕ6 = 30◦ (see in Fig. 11) with the same capac-
itor values CA = 1 µF, CB = 10 nF and the resistance
parameters listed in Table 2. For Fig. 10(b), Fig. 10(c) and
Fig. 11(b), Fig. 11(c) only two datasets with the smallest
and highest parameter values were plotted for visual
inspection.

The experimental verification was conducted for points
1ϕ6 = 2◦, 10◦ and 20◦. In one case, the bandwidth had to
be estimated because it was partly out of the bandwidth of
the measuring equipment. Particularly for 1ϕ6 = 20◦, the
bandwidth value was predicted based on the symmetry of the
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FIGURE 9. Experimental workplace with the constructed protoboard and
FRA analysis mode on the oscilloscope DSO-X 3022T.

FIGURE 10. The dependencies on the phase value: a) nomogram of
bandwidth, b) phase responses, and c) magnitude responses for two
selected phase shifts.

TABLE 2. Resistance values for different sets of ripple.

operational band around the center frequency and the right
part of the characteristics (the oscilloscope range limitation
is 10 Hz). The experimental results closely align with sim-
ulations, showing differences in percentage units. However,
discrepancies in high-frequency behavior are evident in phase
responses, influenced by additional parasitic elements such as
stray capacitances on the PCB.

FIGURE 11. The dependencies on the phase ripple value: a) nomogram of
bandwidth, b) phase responses, and c) magnitude responses for two
selected phase ripples.

B. SENSITIVITY ANALYSIS OF THE CIRCUIT
The relative sensitivity of all component values (RzA, RpA,
CA, RzB, RpB, CB) of the circuit, presented in Fig. 7, was
evaluated with respect to the frequency of zero and pole.
In general, the relative sensitivity can be defined as:

SR,x =
1y/y
1x/x

=
∂y
∂x

·
x
y
, (11)

where y is the observed parameter of the two port (zero/pole
frequency in this case), and x is the circuit element
parameter/value (which variation impacts the function).
Considering the magnitude function of the two-section case
of the proposed scheme (10), the zero frequency of each
section can be defined as fzi = 2/CiRzi, and the pole frequency
fpi = 2/CiRpi, for i = A,B, . . . . The relative sensitivity (for
RpA, for example) of the pole frequency can be evaluated
as SR,RpA = [−2/CAR2pA]·[RpA/(2/CARpA)] = −1. Here, the
first term [−2/CAR2pA] is the derivative of the pole frequency
with respect to RpA, and the second term [RpA/(2/CARpA)]
is the circuit element parameter RpA divided by the pole
frequency. Consequently, all relative sensitivities of zero and
pole frequencies can be obtained for each circuit parameter.
The results are presented in Table 3.

TABLE 3. Relative sensitivity values for two-section bilinear circuit.
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C. COLE TWO-PORT MODEL
The previously described approaches to the design of a
constant phase device can be applied to the so-called Cole
impedance model [34]. Recently, researchers have defined
numerous situations involving materials, biological entities,
mechanical systems, etc., where this model is significant
for providing real and accurate behavioral descriptions [35],
[36], [37], [38], [39]. Its importance is particularly notable
in sensing applications based on electrical impedance spec-
troscopy [40]. However, the Cole impedance model charac-
terizes the impedance of the system. Our focus and intention
are directed towards developing a new transfer model better
suited for describing the signal transfer response of a two-
port system, with clear definitions of input and output. Such
a model may offer useful features for investigating exter-
nal influences, signal variations, etc., compared to a simple
impedance model. Additionally, it is well-suited for signal
processing and control purposes. The Cole impedance model
is shown in Fig. 12, and its impedance can be expressed as:

Zcole(s) = R∞ +
1

sαCα + GP
, (12)

FIGURE 12. The Cole impedance model [11] used for biological, material
and tissue representation.

where the parallel resistor RP is expressed as the con-
ductivity GP for better correspondence with the following
explanations. In general, there are two possibilities for cre-
ating a two-port Cole model. The first solution, as it is
shown in Fig. 13(a), implements the Cole impedance as the
feedback impedance of an operational amplifier (OA) or
a current conveyor of second generation (CCII) [41]. The
transfer response of the OA-based concept has the form of
Kcole (s)= −Zcole(s)/Rref = −1/Rref · (R∞ + 1/(sαCα +Gp)),
where parameters can be interpreted as K∞ = R∞/Rref,Dα =

Cα · Rref, Kp = Gp · Rref = Rref/Rp. The same equation is
valid for CCII, except for the negative polarity (CCII has a
noninverting character) of the transfer. The second solution
in Fig. 13(b) benefits from the simple possibility of adjusting
each parameter of the model electronically, as shown in its
transfer response:

Kcole(s) = K∞ +
1

sαDα + KP
. (13)

The application example assumes a specific slope of
phase (linear increase of 3◦ with frequency) in a single
decade from 200 Hz up to 2 kHz. Note that this behavior

(smooth phase slope settings) cannot be easily obtained in
integer-order systems and without Cole model. The param-
eters of the model in Fig. 13(b) are as follows: K∞ = 3,
KP = 0.01, Dα = 0.15, α = 0.33 (ϕ6 = 30◦, 1ϕ6 =

2◦ from the previous test, see Fig. 11). The amplifiers K∞

and KP are implemented using an inverting amplifier with
OA TL072, summing operation by AD830 and a differentia-
tor by the circuit in Fig. 7 connected in negative feedback
of OA TL072. The single-decade operation can be easily
approximated by the proposed two-bilinear section-based
system on abovementioned Cole model. The operational
range is defined by a maximal phase error up to 10%
from 130 Hz up to 5.5 kHz. The magnitude, phase response
andNyquist plot are shown in Fig. 14. The notable differences
between the simulated and theoretical traces are caused by
the limited applicability of the Cole model, which employs
only two sections for approximating the fractional-order
differentiator.

FIGURE 13. The Cole two-port model: a) based on Cole impedance,
b) utilizing complete signal processing operations.

IV. DISCUSSION
The analytical approach limits the maximum phase ripple,
directly influencing the intended bandwidth. As shown, the
value of the empirical coefficient a is crucial for both ripple
and bandwidth. The almost constant phase ripple (around
1-1.2◦) is achieved with the optimal a value of 1.21, ensuring
a consistently flat bandwidth of 3.5 kHz from 10◦ up to 60◦.
The minimal phase ripple occurs at the low and high corners
of the targeted phase value (below 15◦ and above 70◦), while
the maximal ripple is observed around 45◦. The analytical
approach provides empirical flexibility (through parameter a)
for manual bandwidth optimization (extension). However,
determining the optimal value for parameter a requires the
designer’s experience and multiple design simulations.

The algorithmic approach adapts the phase ripple to the
required bandwidth for all selected phase shifts. This means
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TABLE 4. Comparison of the existing solutions.

FIGURE 14. Analysis of the Cole two-port model: a) magnitude response,
b) phase response, and c) Nyquist plot.

that a high-phase ripple allows for the design of a wide-
band response and vice versa. Therefore, a requirement for
a very small phase ripple decreases operational bandwidth.
Although the algorithmic approach results in a constant phase
ripple, it also leads to a variation in bandwidth (decreas-
ing with increasing phase). However, the function has a
local minimum, after which the bandwidth increases again.
The decrease of phase ripple 1ϕ6 for identical phase value
ϕ6 means decrease of bandwidth. Both approaches have a

theoretical calculation limit of usability up to ϕ6 = 90◦

due to overlapping locations of zeros and poles. To keep
the feature of a constant-phase element with a fixed ripple
value, zeros and poles should alternate between each other.
This theoretical maximum phase value is limited to 90◦.
In practice, the mean phase limitation is also defined by the
phase ripple, so their sum (ϕ6+ 1ϕ6) cannot exceed 90◦.
Additionally, the algorithm-based approach has a limit on
maximal phase ripple, up to1ϕ6 = 25◦, which was obtained
by sweeping phase ripple values and evaluating parameters at
each point. A comparison between both proposed solutions
and already existing solutions is presented in Table 4. There,
an algorithm-based approach shows decent performance and
stands as one of the best available methods for cascades of
bilinear sections design in terms.

For both approaches, a general recommendation can be
defined: if the widest BW is required, the maximum pos-
sible phase ripple should be set with the minimum mean
phase. This can be clearly seen in Fig. 4(a) and Fig. 5(a) for
algorithm-based approach and in Fig. 3 for analytical-based.

V. CONCLUSION
A. APPROACHES HIGHTLIGHTS
The presented results highlight the advantages of a two
bilinear section (two real zeros and two real poles) -based
two-port in designing for more than one frequency decade
validity of a constant phase range, tested between 10◦ and
80◦ with various phase ripples. The analytical approach yields
very low and flat phase ripple (up to 2◦) dependence on the
target phase value, while the bandwidth (3-5 kHz) does not
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significantly change up to 60◦ of the targeted phase value.
The phase ripple changes within a certain range, from very
low values around the low and high corners of targeted phase
values (below 15◦ and above 70◦) to a maximum of around
45◦. On the other hand, the algorithm operates with a constant
phase ripple in any case, resulting in a significant bandwidth
variation (4-7 kHz). The phase ripple is constant across the
full operational frequency range and for all targeted phase
values. The bandwidth dependence on the targeted phase
has a minimum in the middle (45◦) of the tested range.
Based on the observed behavior, the analytical approach
provides the widest frequency operational range for many
targeted phase values. In addition, the design parameters can
be calculated in a simple, straightforward way without the
necessity of an algorithm using iteration cycles (are required,
for example, in [22] and [32]), which was the goal of its
proposal. However, some estimation is required based on
the designer’s judgment and experience (i.e., parameter a).
On the other hand, the algorithm here provides a more exact
solution based on the most optimal automatic numerical
design of zero/poles locations (by least square method) for
two-section-based examples than the analytical approach.
The more precise result for two sections (in bandwidth and
ripple) is also obtained here compared to the typical method
presented in [22].

B. ALGORITHM-BASED APPROACH APPLICATION
The proposed algorithm effectively and precisely designs
bilinear sections by specifying the central frequency, phase
mean value, and phase ripple value. The proposed method is
suitable for the design of fractional order two-ports, filters,
and impedances of specific purpose [15], [16], [17], [18],
[19], [20], [21]. It can also be used by designers of
fractional-order circuits for a quick calculation of zero/poles
frequencies of two sections in a cascade. The proposed
two-port structure is applied to design a novel Cole model
to evaluate two-port signal operations. The transfer response
instead of impedance can offer advantages in various
modeling situations.

C. LIMITATIONS AND CONSTRAINTS
The algorithm-based approach, while highly precise, can be
inefficient due to the significant computational and process-
ing power it requires. Additionally, this approach necessitates
input data (mean and ripple phase values) within a specific
range, as shown in Fig. 6(a). The sum of the phase ripple and
mean value would not exceed 90◦, and their difference should
be positive. The current algorithm and analytical-based
approach assume two bilinear-section structures, limiting the
constant-phase operating range. Furthermore, approximating
more complex models, such as the transmission-line circuit
(which consists of LC components and is a second-order
system), is not feasible with the proposed approaches, as they
require more sections with complex roots (more complex
zero/poles) than those used in this work.

In conclusion, the algorithm-based approach should be
employed in designing systems where accuracy is the most
crucial parameter. In contrast, the analytical-based approach,
though less effective and accurate, can be used for calcula-
tions without a computational device, making it preferable
when computational resources are limited.
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