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ABSTRACT Rolling bearings are crucial components in industrial applications, forming the core of modern
rotating machinery. The belief rule base with interval structure (IBRB-r) is a rule-based expert system
designed to describe the causality of bearing faults. It is mainly applicable in situations where data within
the intervals are relatively concentrated. However, in practical industrial applications, bearing operation data
is often dispersed. This leads to uneven data distribution within the reference interval, affecting the model’s
accuracy. Additionally, the interpretability of the parameters decreases after the IBRB-r model is optimized.
To address these issues, an adaptive rule matching interval structured belief rule (IBRB-Di) is proposed
for bearing fault diagnosis. First, a rule matching method that can be dynamically computed within an
reference interval is introduced. Also, a new computation method for the weights of rules activation within
an interval is presented. These methods adapt to the dispersion of data and simplify the number of rules.
Second, the projected covariance matrix adaptive evolution strategy with expert constraints (P-CMA-ES)
is adopted to optimize the model. This aims to balance accuracy and interpretability. Finally, the method
is experimentally validated using the Case Western Reserve University bearing dataset. This verification
confirms the effectiveness of the proposed method.

INDEX TERMS Belief rule base, rolling bearing fault diagnosis, interpretable modeling, rule matching.

I. INTRODUCTION
Bearings are the key support components of mechanical
rotating shafts [1]. They have a wide range of applications
in many fields such as aerospace, rail transport, advanced
machine tools, and construction machinery, and have a direct
impact on the normal operation and performance of large
equipment [2]. Given that bearing failures may lead to
equipment downtime, real-time monitoring and diagnosis
of bearing conditions are essential to prevent accidents and
ensure safety [3]. However, unreliable prediction results
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and unexplained prediction processes may pose significant
risks [4]. Therefore, utilising interpretable fault diagnosis
methods not only helps to identify problems in a timely
manner, but also further enhances the transparency and
effectiveness of maintenance decisions, thus effectively
reducing potential risks.

For the performance evaluation of rolling bearings, schol-
ars at home and abroad have conducted a lot of research.
In the current research, there are four main types of fault
diagnosis models: data-driven models, model-driven meth-
ods, knowledge-driven models and hybrid-driven models.

(1) Data-driven modelling for bearing fault diagnosis
method. This method relies heavily on a large amount of
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historical data, which is analysed to identify and predict
potential fault modes. He and He proposed a bearing fault
diagnosis method based on Large Memory Storage Retrieval
(LAMSTAR) neural network, and the experimental results
show its classification performance with high accuracy [5].
Sun and Li proposed a convolutional neural network (CNN)-
based bearing fault diagnosis method using a symmetric dot
pattern (SDP) to convert vibration signals into images for
analysis, and tests showed the method to be highly robust [6].
Jin et al. proposed mapping and untraceable Kalman filtering
(UKF). This method was able to successfully detect the bear-
ing degradation process [7]. Li et al. proposed a transformer
fault diagnosis method based on a hybrid kernel limit learning
machine optimization, which improves the performance of
the limit learningmachine in high-dimensional nonlinear data
processing [8]. This data-driven approach is also applicable
to rolling bearing fault diagnosis by optimizing model
parameters to improve fault identification accuracy. Zhao et
al proposed a combined model based on the Kernel Extreme
Learning Machine (KELM) and Weights at Failure Time
(WAFT). It effectively predicts the remaining life (RUL) of
rolling bearings [9]. Cui et al. proposed a three-stage learning
algorithm applied to wind turbine bearing fault diagnosis,
combining unsupervised learning, sensitivity analysis and
regression methods to effectively improve the accuracy of
fault detection [10].

(2) Model-driven fault diagnosis methods. Model-driven
fault diagnosis methods focus on the use of mathematical
or physical models to simulate and analyse the performance
of bearings and their potential failures. Liu and Gryllias
proposed an approach using a combination of physical
model-based simulation and domain adversarial neural
network (DANN) to successfully solve the problem of
insufficient data in industrial bearing fault diagnosis [11].
Ma et al. Combining Digital Twin (DT) techniques and
Enhanced Meta Migration Learning (EMTL) improves the
accuracy and adaptability of bearing fault diagnosis [12].
Hou et al. analyzed interaxle bearing failures under noisy con-
ditions via a feature extraction technique using the Laplace
wavelet and an orthogonal matched tracking algorithm
combined with sparse representation theory [13]. Zhang et al.
assessed the severity of rolling bearing faults by developing
a quantitative electrical model of stator currents. The method
was validated through experiments and simulations to provide
accurate fault indications under various operating conditions
[14]. Pham et al. proposed a three-stage approach combining
an identification model, a proportional risk model, and
a support vector machine to assess machine performance
degradation and predict remaining useful life (RUL). The
validation results show that this approach offers significant
advantages in reducing maintenance costs and improving
system reliability [15].

(3) Knowledge-based approach for fault diagnosis method
of bearings. Fault diagnosis based on knowledge-driven
models. The model needs to draw on the practical experience

and modelling knowledge of domain experts to determine the
relationship between attributes and fault states over time [16].
Yin et al. successfully incorporated a priori knowledge
into a deep model by means of a knowledge and data
dual-driven transmission network to improve machine fault
diagnosis performance [17]. Li et al. successfully improved
the generalization ability of a machine fault diagnosis
model trained with small sample sizes by integrating prior
knowledge and combining convolutional neural networks and
attention mechanisms [18].
(4) Bearing Fault Diagnosis Method for Hybrid-Drive

Models. Hybrid-driven models make full use of a variety
of information and effectively combine data-driven, model-
driven and knowledge-driven approaches, achieving effec-
tive complementarity between the models. The data-driven
approach is able to process and analyse large amounts of data
and identify potential patterns and trends, but it relies on the
quality and quantity of the data and may be ineffective in
the face of poor data quality or changing new environments.
At this point, the model-driven approach complements it by
providing stable and reliable predictions based on physical
and mathematical models, independent of data constraints,
ensuring that effective fault analysis can still be performed
despite insufficient data. However, model-driven approaches
may lack sufficient flexibility and adaptability, especially
under unknown or changing conditions, and this is where
the introduction of knowledge-driven approaches is crucial,
which utilise the experience and a priori knowledge of
domain experts to fill the gap between the theoretical model
and the practical application, increasing the adaptability and
explanatory power of the system. Eke et al. improved the
accuracy of transformer diagnosis through fuzzy C-mean
clustering and fuzzy logic [19]. Similarly, Soni and Mehta
combined fuzzy logic and fuzzy clustering to improve the
reliability of transformer fault diagnosis [20]. This hybrid
approach also has the potential to be applied in rolling
bearing fault diagnosis to improve the overall performance
of the diagnostic system. Hybrid drive models are more
advantageous in bearing fault diagnosis because they ensure
not only high accuracy but also interpretability, especially for
complex systems [21]. Therefore, the hybrid drive model is
more suitable for bearing fault diagnosis.

As a typical hybrid-driven approach, the belief rule base
(BRB) is a complex system modeling method proposed by
Yang et al. [22] in 2006. The model is developed based on a
belief function and performs well in aggregating quantitative
data and qualitative information [3]. Belief rule base have a
wide range of applications in fault diagnosis. BRB models
are able to handle various uncertainties to guarantee the
accuracy of diagnostic results, and their reasoning process is
transparent and traceable. Currently, BRBs are widely used in
fault detection [23], safety in risk assessment [24], [25], and
medical diagnosis [3], [26].

Facing the current challenge of too many attributes, the
combinatorial rule explosion problem in the BRB model has
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become a key challenge in complex systems. To solve this
problem, He et al. [27] proposed the IBRB-r model, which
not only proposes a new method for constructing interval
rules with rule reliability, but also designs the corresponding
inference process. In order to avoid the exponential growth
in the number of rules caused by the traditional BRB
combining rules in the form of cartesian product, the method
of combining rules in the form of interval addition is adopted.

However, IBRB-r based bearing fault diagnosis still faces
two problems. First, since bearing fault diagnosis is usually
carried out in complex systems. Influenced by the environ-
ment, the measured vibration signal data fluctuates greatly
and lacks continuity [28]. This makes it difficult for themodel
tomaintain high accuracywhen dealingwith data fluctuations
and nonlinear trends. Secondly, existing models also have
difficulties in maintaining a balance between interpretability
and accuracy in the diagnostic process. To address these two
issues, an IBRB-Di bearing fault diagnosis method based
on adaptive rule matching degree of interpretable belief rule
base with interval structure is proposed. The method uses
dynamic rule mapping. The system dynamically calculates
the match between sample values and activation rules in
the interval. This adapts to different data variations within
the interval, thus mitigating the impact of data fluctuations
and non-linear trends on diagnostic accuracy.In addition, rea-
sonable interpretable constraints and optimisation objective
functions are constructed, and interpretable constraints are
added to the optimisation algorithm so that the parameters
in the optimisation process vary around the constraints. This
ensures a balance between interpretability and accuracy of the
model.

The remainder of the paper is structured as follows:
In Section II, problem description and IBRB-Di methodology
definition. In Section III, definition of Interpretable Predic-
tive Models.In Section IV, inference and optimisation of the
IBRB-Di. In Section V, the validity of the model is tested by
a case study. In Section VI, the paper is summarized, along
with an outlook for future work.

II. PROBLEM DESCRIPTION AND IBRB-DI
METHODOLOGY DEFINITION
This section describes the problems in the bearing fault
diagnosis process of IBRB-r and the definition of the
IBRB-Di method.

A. PROBLEM DESCRIPTION
There are still some issues that need to be addressed when
diagnosing faults with the IBRB-r:

Problem 1. when faced with the problem of model
accuracy. Especially when using the IBRB-r model, the
accuracy of themodel may be affected if the data distributions
within the intervals are less similar. The traditional approach
is to improve the model accuracy by increasing the number
of dense reference intervals. However, this method increases
the number of rules and is difficult to define. Therefore,
this paper proposes a method to dynamically calculate the

matching degree of rules in the intervals and assess the degree
of activation of rules in the intervals by different samples. The
accuracy and interpretability of the model are improved.

Problem 2. How to make sure the interpretability in the
process of constructing, reasoning and optimising the bearing
fault diagnosis model. Interpretability not only improves the
user’s trust and acceptance of the diagnostic results, but it also
helps the user understand the cause of the fault. It realises a
clear process from the indicator to the result and provides
convenient decision support. Therefore, the interpretability
of the bearing fault diagnosis model needs to be defined
based on the BRB interpretable model definition. The basic
interpretability requirements in the model modelling and
reasoning process must be clarified, as shown in Eq. (1).
In the process of model optimisation, the adjustment of model
parameters may affect its interpretability. Therefore, we need
to establish an effective mechanism to prevent the model
parameters from being corrupted and ensure that the model
parameters are consistent with the mechanism, as shown in
the following Eq. (2).

Principle :
{
c|c1, c2, . . . , cf

}
(1)

φbest = optimize (z, r, c) (2)

where f represents the number of interpretable criteria. φbest
represents the best parameters after optimization, optimize(.)
is the optimization function, and r is defined as the set of
parameters in the optimization process. z is the output of the
model.

Problem 3. How to construct a reasonable model for when
there are too many bearing feature attributes. The cartesian
product combination rules used in traditional BRB models
may lead to the generation of a large number of rules. This
may significantly increase the complexity of the model and
negatively affect its performance [29]. Therefore, in order
to satisfy the interpretability criterion, effectively deal with
the challenge of too many combining rules, and improve
the accuracy, we can adopt the following nonlinear mapping
relation:

z = h(X , c, φ0). (3)

where z is the model diagnostic result. c is an interpretable
group of constraint criteria. φ0 is the initial parameter set
by the expert. X = {x1, x2, . . . , xT } is a prerequisite
attribute of the model that serves as an input to the model.
h(.) denotes a nonlinear functional relationship between the
system characteristics and the predicted values.

B. DEFINITION OF INTERPRETABLE BEARING FAULT
DIAGNOSIS BASED ON IBRB-DI
The a priori value of the IF-THEN based rules in IBRB-Di
is the fault feature xi. When a sample falls into a certain
interval it immediately activates the rules within that interval.
First, the fault features are divided into multiple reference
intervals (ci, di). To efficiently generate reasonable rules,
a rulematching degree coefficient δk is introduced to compute
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the degree of matching with the activated rules within the
interval. Further a new activation rule weight wk is formed to
calculate. Second, the fault feature is evaluated as an output
term in the diagnostic result θl of the rule with a certain belief
level βl,k . Finally, the ER method with rule reliability rk is
used to implement the inference of the rule-based system.

Therefore, the IBRB-Di model in the bearing fault
diagnosis model consists of a set of belief rules. The kth belief
rule is as follows:

Rule k :

IF x1 ∈ (c1, d1) ∨ x2 ∈ (c2, d2) ∨ · · · ∨ xT ∈ (cT , dT ),

THEN z is {(θ1, β1,k ), (θ2, β2,k ), . . . , (θN , βN ,k )},

with rk and wk ,

Rule matching degree δk ,

in c1, c2, . . . , cf ,

k ∈ [1, S],
N∑
l=1

βl,k ≤ 1 (4)

where x1, x2, . . . , xT denotes a prerequisite attribute for the
bearing failure characteristics to be used as input to themodel.
T is the number of prerequisite attributes. S denotes the total
number of rules. (ci, di) is the reference value interval, where
i = 1, . . . ,T .rk denotes the rule reliability.wk represents the
rule weights.c1, c2, . . . , cf are interpretable constraints on the
model. f indicates the number of interpretable guidelines.δk
is the rule matching degree factor. The modeling process of
the bearing fault diagnosis model is shown in Figure 1.

FIGURE 1. The overall structure of the IBRB-Di model.

To construct an interpretative and clear IBRB-Di model,
its initial structure needs to be built reasonably first. The
construction of the initial IBRB-Di model is divided into the
following two steps:

Step 1: Definition of the reference interval and determina-
tion of the reference values corresponding to the results.

In the process of rule-based modeling of bearing diagnosis
system, the causality of the system must first be determined,
that is, the prerequisite attributes of system diagnosis and

its associated results [22]. This step includes defining
the fault characteristics and fault results of the bearing
diagnosis system, dividing the fault characteristics into
several reference intervals, and setting the reference value of
the corresponding fault results as the evaluation level. Fault
characteristics are used as input of IBRB-Di model, and fault
results are used as output. When the fault feature sample
data of the prerequisite attribute matches a certain reference
interval, the relevant rules within the interval will be activated
immediately [27].

Step 2: Creation of a belief table.
The process of creating a belief table begins with struc-

turing each rule to include explicit conditions and outcomes.
The conditions usually relate to fault characteristics within a
previously defined reference interval, while the results are the
corresponding fault results or assessment levels. The initial
belief rule base contains a total number of rules S, determined
by the sum of the number of reference intervals for all
attributes. Next, a belief level is assigned to each rule, which
is a value based on expert in-depth analyses of the bearing
mechanism and accumulated experience from long-term
practice. It indicates the reliability and importance of the rule
in the diagnostic process. Finally, the belief table will clearly
list all rules and their corresponding conditions, results and
belief levels in a tabular format. Ensure that each rule can
accurately map the relationship between fault characteristics
and results. The process of creating the initial belief table is
also the formation of the initial belief distribution.

III. DEFINITION OF INTERPRETABLE PREDICTIVE
MODELS
In order to obtain reliable and interpretable models, the
factors that diminish the interpretability of BRB based
fault diagnosis models are first analyzed. The complexity
of rolling bearing systems makes it difficult for experts
to fully access and master the information of the system.
The accuracy of BRB models constructed based only on
limited expert knowledge may be limited. Therefore, the
structure and parameters of the initial model need to be
adjusted using optimization learning methods to improve the
accuracy of the model. However, optimization algorithms are
usually random searches for updating the initial parameters,
and such unconstrained random oscillations may reduce the
interpretability of themodel [30]. Interpretability is expressed
as the similarity between the optimized parameters and
the expert knowledge, as interpretability retains valuable
information from the expert insights. Therefore, ensuring the
accuracy and interpretability of the model is also one of the
objectives of this study.

Cao et al. developed eight criterions for BRB interpretabil-
ity by analyzing the modeling, reasoning and optimization
process of BRB models [30]. These criterions discuss
BRB interpretability in terms of knowledge base, inference
mechanism and model optimization. The IBRB-Di based
bearing fault diagnosis model is constructed on the basis of
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these interpretability criterions to ensure its transparency and
credibility in practical applications, as shown in Figure 2.
Interpretability criterion include whether the trend of the

optimized belief distribution is broadly consistent with the
initial expert’s belief distribution. The belief distribution
quantifies the belief level of different health states through
the form of probability distribution, which helps to deal with
the ambiguity between health states. The expert performs
mechanism analysis and trend analysis by constructing a
relationship table between attributes and health states.

Mechanism analysis involves converting the bearing’s
operation process into a belief distribution [30]. Through the
belief distribution, the system can more accurately determine
the health state of the bearing. Even in the case of incomplete
or noisy information, the belief distribution can still provide
a reliable diagnostic result.

In bearing fault diagnosis, there are four health conditions:
normal, inner ring failure, roller body failure, and outer ring
failure. When the belief distribution is 0.4 for normal, 0.4 for
roller body failure, and 0.1 for each of the remaining two
failures, the resulting belief distribution, as shown in Figure 3,
is concave. In this case, the health of the bearing may be
both normal and failed, which is actually unreasonable. There
is no uniform belief distribution format, but according to
Cao et al.’s study, the interpretable belief distribution should
be convex or monotonic.

FIGURE 2. Criteria for the interpretability of models.

IV. INFERENCE AND OPTIMISATION OF THE IBRB-DI
This section describes the method of calculating the dynamic
rule matching degree and rule weights within the interval.
The process of inference of IBRB-Di model. The process of
optimisation of IBRB-Di model.

A. RULE MATCHING FACTOR CALCULATION
In practical bearing operations, harsh environmental changes
can cause discontinuities in the detected vibration signals.
This results in a very broad sample data distribution, leading

to a low degree of similarity in the data distribution within
the intervals in the interval structure. In IBRB-r, He et al.
set a large number of reference intervals densely to maintain
the accuracy of the model [27]. However, this approach leads
to higher model complexity. For this reason, a method to
calculate from static rule matching degree to dynamic rule
matching degree is proposed in IBRB-Di.When different data
sample values are in the same reference interval, the rules
within the interval are activated. The degree of matching of
the corresponding activated rules in the interval is calculated
differently by using the samples falling into the interval.
Further calculations are used to compute the weights of the
activation rules.

(1) Calculation of the rule match factor: When the sample
value X = {x1, x2, . . . , xT } of each attribute is input, the rule
in the corresponding interval is activated immediately when it
is determined to fall into the corresponding reference interval
based on the judgment. The rule matching degree of the
data sample is calculated dynamically to indicate the degree
to which the rule is activated to understand how well the
rules generated by the sample match the rules in the interval.
The rule matching degree is calculated by determining the
position of the sample relative to the midpoint of the interval.
The following formula gives the rule matching degree of the
interval corresponding to the rule:

δi = 1 −
|xi − med |

(ci−di)/2
,

xi ∈ (ci, di) , δi ∈ [0, 1] ,

where med =
ci + di

2
(5)

where δi denotes the degree to which the sample data for
ith attribute falls into a certain interval of rule matching.
med = (ci + di) /2 indicates the center of the reference
interval. (ci, di) denotes that xi falls into this reference
interval.

The key concept of the formula is that the closer the sample
is to the center of the reference interval, the better its match
to the rule, and in turn the better its match to the interval
rule. This indicates that the stronger the influence of the rule
relative to other rules in the problem decision. Conversely,
the farther the sample is from the center of the interval,
the lower its match and the less influence the rule has on
problem solving. The process of calculating the degree of rule
matching in the interval can be divided into the following four
steps, as shown in Figure 4.

(2) By calculating the rule matching coefficients within
an interval, a new method for calculating the activation rule
weights within an interval is designed. When the attributes of
the input samples are located in a certain interval, the method
for determining the activation rule weights within a specific
interval is as follows:

wi = [ϵ + (1 − ϵ) × δi] × w, {ϵ,wi,w} ∈ [0, 1] (6)

where wi denotes the value of the rule weights that
are computed after the attribute sample xi falls into the
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FIGURE 3. Reasonableness of belief distribution.

FIGURE 4. Dynamic rule matching calculation process.

ith reference interval.w denotes the weight value after the
initial rule weight optimisation. Because when the sample
of the attribute falls into the interval, the rule in the interval
will be activated immediately so ε denotes the minimum
activation weight in the interval which is set by the expert.

Based on the data distributionwithin the interval, the expert
sets the minimum activation rule weight within the interval.
When the data distribution is more similar, it indicates that
the sample is located in the interval with higher matching.
Therefore, the rules within the interval are critical to the
decision result, and the expert will increase the weight value
accordingly. On the contrary, if the data distribution similarity

is low, the expert will set the activation rule weights within the
interval to smaller values.

B. THE REASONING PROCESS OF THE MODEL
The IBRB-Di model builds a transparent and intuitive
reasoning framework by adopting the ER rules as the
reasoning process for evidence. The ER rules take full
account of the reliability of evidence. This framework is
capable of effectively describing, transforming, and inte-
grating multiple pieces of information under uncertainty,
and ultimately forming a unified conclusion. This feature
enables the IBRB-Dimodel to process information accurately
and efficiently in complex and changing environments,
providing strong support for decision making. The model’s
ER rule inference process is shown in Figure 5. The IBRB-
Di model performs well in following the interpretability
criterion proposed by Cao et al. [30]. It ensures a reasonable
transformation of the model input and output information
during the inference process, which not only maintains the
information characteristics of the original samples, but also
makes the inference results closer to the actual situation.
At the same time, the reasoning process of the model
maintains a high degree of interpretability, which enables
users to clearly understand each step and basis of reasoning.
From Figure 2 the reasoning process is required to satisfy the
interpretability criterion 6 and criterion 7:

Criterion 6 (Information equivalence and reasonableness
conversion): This criterion requires that input and output
information be transformed into belief distributions that
maintain the characteristics of the original sample informa-
tion to ensure that the reasoning process is rational.

Criterion 7: (Interpretability of the reasoning engine): An
reasoning engine that uses ER rules as a model ensures
that the reasoning process must be transparent, traceable and
logically sound.

The specific reasoning process of the ER rule is as follows:
Step 1: Converting rules into belief distributions in a

bearing fault diagnosis system:
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A piece of evidence ℓk (k = 1, . . . , S) in the bearing fault
diagnosis system is converted into a belief distribution as
shown below:

ℓk =
{(

θn, βn,k
)
, n ∈ [1,N ];

(
2, β2,k

)}
0 ≤ βn,k ≤ 1;

N∑
n=1

βn,k ≤ 1 (7)

where 2 = {θ1, . . . , θN } denotes the identification
framework.θn (n = 1, . . . ,N ) a represents the level of assess-
ment of the results of the diagnosis of bearing faults.N
indicates the number of evaluation levels.βn,k denotes the θn
belief level for the outcome. β2,k denotes that the kth attribute
in the recognition framework is globally ignorant.

Step 2: Calculate the basic probability mass of the
rule from the evidence weights wk (k = 1, . . . , S) and the
evidence reliability rk (k = 1, . . . , S). where wk ∈ [0, 1],
rk ∈ [0, 1]:

m̃n,k =


0, θn = φ

brw,kmn,k , θn ⊆ 2, θn ̸= φ

brw,k (1 − rk) , θn = β (2)

(8)

brw,k = 1/ (1 + wk − rk) (9)

mn,k = wkβn,k (10)

where brw,k is the normalization factor and satisfies the
condition

∑N
n=1 m̃n,k + m̃β(2),k = 1.m̃n,k denotes the mixed

probability mass of the evaluation level θn under the kth rule.
mn,k denotes the probability mass under rule kth at assessment
level θn.
Step3:For S independent rules ℓ = {ℓ1, ℓ2, . . . , ℓS}, the

joint support for outcome θ is obtained by aggregating all
rules through ER rule inference βθ,ℓ(S):

∀θn ∈ 2,

m̂n,ℓ(k)
=
[
(1 − rk )mn,ℓ(k−1) + mβ(2),ℓ(k−1)mn,t

]
+

∑
C∩D=θn

mC,ℓ(k−1)mD,k (11)

m̂β(2),ℓ(k) = (1 − rk )mβ(2),ℓ(k−1) (12)

mn,ℓ(k) =


0, θn = φ

m̂n,ℓ(k)∑
C⊆2

m̂C,ℓ(k) + m̂β(2),ℓ(k)

, θn ̸= φ (13)

βθ,ℓ(k) =


0, θn = φ

m̂n,ℓ(k)∑
C⊆2

µC,ℓ(k)

(14)

where the variable k = 1, 2 . . . , S.βθ,ℓ(k) denotes the joint
belief level of the combination of k pieces of evidence for
the evaluation level θ . denotes the joint probability quality of
k pieces of evidence.Ulfill the condition mn,ℓ(1) = mn,1 and
mβ(2),ℓ(1) = mβ(2),1. The belief distribution of the relative

FIGURE 5. The reasoning process of the ER rule.

results can be derived:

ℓ(k) =
{(

θn, βn,ℓ(k)
)
, n ∈ [1,N ] ,

(
2, β2,ℓ(k)

)}
(15)

Step 4: Combining the above arithmetic processes, the
expected utility value obtained can be considered as the final
output:

z =

N∑
n=1

u(θn)βn,ℓ(k) + u(2)β2,ℓ(k) (16)

where z denotes the final expected utility value.u(θn) denotes
the utility of θn.

C. OPTIMIZATION OF MODELS
The model is difficult to accurately describe the real
health condition of the bearing due to the environmental
factors during bearing rotation and the limitation of expert
knowledge. Searching the optimal region more efficiently
through optimisation algorithms can improve the diagnostic
efficiency and the accuracy of the model [32]. Therefore,
in order to further improve the accuracy of the model, the
optimisation of the model is also considered in this paper.

Due to its efficient parameter optimization performance,
P-CMA-ES can quickly converge to the global optimal
solution or local optimal solution in most cases [33], [34].
Therefore, after reasoning about the IBRB-Di model, the
P-CMA-ES optimization algorithm is used to optimize the
model parameters. The optimized parameters include rule
reliability, rule weights, and the belief rule table. However,
since the parameters of the original P-CMA-ES algorithm’s
optimization process randomly oscillate throughout the
solution space, expert subjectivity is ignored [35]. This
approach aims to achieve high model accuracy but may lead
to a loss of interpretability of the optimized IBRB-Di model
parameters. Therefore, interpretability constraints are added
to the optimization algorithm, and the Euclidean distance
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FIGURE 6. Improved P-CMA-ES algorithm optimisation process.

set by the experts is used to limit the search range of the
population. The role of setting interpretability constraints
in the IBRB-Di model is to balance the interpretability and
accuracy of the model to prevent potential failures in complex
systems. The flow of the P-CMA-ES optimization algorithm
with interpretability constraints is shown in Figure 6.
To construct an optimization model, the function to

be optimized needs to be specified first, and the model
is expected to be more and more accurate during
the optimization process. In addition, parameters such as
the belief level of the rule, the weight of the rule, and the
reliability of the rule should be controlled within the expert
constraints. The difference between the predicted and actual
values of the IBRB-Di model of the bearing fault diagnosis
system is denoted byMse(∗). Then, the objective function can
be expressed as:

Min {Mse (β,w, r)}

s.t.(β,w, r)low ≤ (β,w, r)initial ≤ (β,w, r)up,

(β,w, r)low ≤ (β,w, r)optimal ≤ (β,w, r)up,
N∑
l=1

βkl ≤ 1, βkl ∼ C8 (l = 1, 2, . . . ,N ) (17)

where C8 represents interpretable guideline 8 in Figure 2.
βkl ∼ C8 denotes that βkl is the belief distribution kth that
satisfies the interpretable criterion C8. where Mse(.) can be
expressed as:

Mse (β, r,w) =
1
G

G∑
u=1

(
zu − z∗u

)2 (18)

where G denotes the total number of training samples.zu
denotes the predicted value of the output of the IBRB-Di
model, and z∗u denotes the true value of the whole system.

Therefore, the operational steps of the improved
P-CMA-ES optimization algorithm are as follows:

Step 1: Initialize the parameters to be optimized:

ι0 = φ0 (β,w, r) (19)

where ι0 denotes the set of initial parameters.
Step 2: Perform sampling operations to generate

populations:

φs+1
j = ι(s) + υ(s)N

(
0,B(s)

)
, j = 1, 2, . . . , h (20)

where φs+1
j is the jth solution in the first (s+ 1)th generation

optimization. υ(s) represents the mutation strength of the
sth generation is also the global step size. ι(s) represents
the vector of search directions for the generation.B(s) is
the covariance matrix.N (.) is the normal distribution.h a
represents the magnitude of the stock.

Step 3: Add interpretable constraints:
Constraint 1. Expert knowledge is an important part

of interpretability, and the optimization process for local
searches should be based on expert judgment. Therefore,
expert knowledge is introduced in the initial population, and
the introduction of the Euclidean distance for further local
optimization can be described by the following:

ι(s) =

{
EK , ifs = 1
ι(s), ifs ̸= 1

(21)

where ι(s) is the sth generation population.EK denotes expert
knowledge, and the local search is to be carried out within the
scope of expert knowledge Eq.(22):

p
(
xn, x ′

n
)

=

√√√√ n∑
i=1

(xi − x ′
i)
2

≤ d (22)

where p
(
xn, x ′

n
)
denotes the euclidean distance between

the parameters obtained by the optimization algorithm
through the population and the parameters set by the expert
knowledge; d denotes the distance determined by the expert.
When the value of d is set small, it means that the optimized
parameters are closer to the expert knowledge. In this way,
by the distance d set by the expert, limit the possibility that the
parameters produced by the optimization algorithm deviate
from the expert knowledge and reduce the effect of random
vibrations.

Constraint 2: The initial and optimal parameters should be
within the feasible region initially determined by the experts
to ensure that the model parameters remain interpretable after
optimisation, as in Eq. (23):

(β,w, r)low ≤ (β,w, r)initial ≤ (β,w, r)up,

(β,w, r)low ≤ (β,w, r)optimal ≤ (β,w, r)up (23)

where (β,w, r)initial denotes the initial parameter values set
by the expert knowledge, while (β,w, r)optimal denotes the
optimized expert knowledge parameter values. (β,w, r)low
and (β,w, r)up denotes the interval of variation of the given
parameter of the expert.
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Constraint 3: A reasonable belief distribution can be
monotonic or convex and cannot be concave:

βk ∼ Gk (k = 1, . . . , S)

Gk ∈ { {β1 ≤ β2 ≤ . . . ≤ βN } ,

{β1 ≤ . . . ≤ max (β1, β2, . . . ,) ≥ . . . ≥ βN } }

{β1 ≥ β2 ≥ . . . ≥ βN } (24)

The interpretability constraint Gk is a constraint on the
distribution of beliefs under rule k . There is no uniform
fixed pattern for its form, but rather it is determined by
experts’ analysis of complex systems and long-term practical
experience [36].

Step 4: Project the solution onto the hyperplane using the
following:

ηeφ
(s+1)
j (1 + ne (t − 1) : net) = 1, t ∈ [1,N + 1] (25)

where N denotes the number of constraint variables.ηe is the
set of parameters. ne and t denote the number of variables
in the equational constraints and equational constraints in
φ

(s+1)
j , respectively. The projection operation:

φ
(s+1)
j (1 + ne (t − 1) : net) = φ

(s+1)
j (1 + ne (t − 1) : net)

− ηTe

(
ηeη

T
e

)−1
× φ

(s+1)
j (1 + ne (t − 1) : net) ηe (26)

Step 5: Select the optimal solution, update the mean value,
and calculate and sort the value of Mse according to the
following Eq. (27):

Mse
(
φ

(s+1)
1:h

)
≤ Mse

(
φ

(s+1)
2:h

)
≤ · · · ≤ Mse

(
φ

(s+1)
h:h

)
(27)

where
(
φ

(s+1)
a:h

)
is the ath solution among the h solutions.

The subgroup density was calculated by the following
Eq. (28):

ι(s+1)
=

ρ∑
i=1

ςiφ
(s+1)
i:h (28)

where the weighting coefficients are denoted as ςi and the
size of the progeny population is ρ.φ(s+1)

i:h is the ith solution
out of h solutions of the (s+ 1)th generation.

Step 6: Update the overall covariance matrix with:

B(s+1)
= (1 − c1 − c2)B(s)

+ c1p(s+1)
c

(
p(s+1)
c

)T
+ c2

ρ∑
i=1

ςi

(
φ

(s+1)
i:h − m(s)

υ(s)

)(
φ

(s+1)
i:λ − ι(s)

υ(s)

)T
(29)

p(s+1)
c = (1 − cc) p(s)

c +√
cc (2 − cc)

(
ρ∑
i=1

ς2
i

)−1 (
ι(s+1) − ι(s)

)/
υ(s) (30)

where the step size υs+1 is updated by the following:

υs+1
= υs exp

 cσ
dσ


∥∥∥p(s+1)

σ

∥∥∥
E ∥N (0, 1)∥

− 1

 (31)

p(s+1)
σ = (1 − cc) p(s)

σ +

√√√√cc (2 − cc)

(
ρ∑
i=1

ς2
i

)−1

(
B(s)

)− 1
2
(
ι(s+1) − ι(s)

)/
υ(s) (32)

where c1 and c2 denote the learning rate and pc denotes the
evolutionary path.cc is the evolutionary path parameter.dσ is
the damping parameter.

V. CASE STUDY
In this section, the validity of the established IBRB-Di fault
diagnosis model is verified using the bearing fault diagnosis
as an example.

Bearings are the most critical mechanical components in
large rotating machines such as wind turbines, aircraft turbine
engines, and high-speed trains [37]. Therefore, bearing
failure is one of the main causes of rotating machinery
failure [38]. Diagnosing bearing faults in an interpretable
manner ensures that the diagnostic outcome is credible.

In addition, interpretable evaluation results are highly
important, and the specification of interpretable criteria is
important for the diagnosis of bearing failures. A clearer and
more transparent understanding of bearing failures can be
provided by users andmaintenance personnel, making it more
credible.

A. EXPERIMENTAL DATA SET
The monitoring data of rolling bearings under various
working conditions were obtained on the simulation test
bench of Electrical Engineering Laboratory of Case Western
Reserve University. The rolling bearing type is SKF 6205 and
the sampling frequency is 12 kHz. The running conditions of
rollers, inner rings, and outer rings under normal operating
conditions and three fault operating conditions (motor load =
735.49875, approximate speed = 1772 r/min) are simulated.
The diameter of the fault point is 0.1778 mm. In general,
the amount of experimental data is relatively large. However,
the high sampling frequency results in short sampling
intervals and insignificant differences between sampling
points. Therefore, each sample needs to contain additional
sampling points to ensure that the extracted features are valid.
The sum of the three faulty and normal data collected is
1236 samples. To sum up, this experiment set 70% of them
as training data and 30% as test data. The training set and test
set for each fault level are shown in Table 1.

In this experiment, vibration signals of rolling bearings
under different working conditions recorded in public data
sets were analyzed. Identify and distinguish the operating
state of bearings under normal and fault conditions, and
then verify the effectiveness of vibration signal analysis for
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TABLE 1. Experimental data distribution.

FIGURE 7. Feature system framework of mechanical equipment for
vibration signals.

FIGURE 8. Bearing vibration signal dataset by attribute.

detecting bearing faults. We analyzed the vibration signals
under different fault characteristics in the data set, and used
a time-domain feature extraction method similar to that
proposed in reference [39]. After time domain analysis of
bearing vibration signals, the system framework of bearing
vibration signal characteristics is shown in Figure 7. Bearing
fault characteristics and fault results used in this experiment
are shown in Figure 8 and Figure 9.

B. BEARING FAULT DIAGNOSIS USING THE IBRB-DI
MODELS
The initial parameters of the model are set by the domain
expert as shown in Table 2.

FIGURE 9. Fault status of bearing vibration.

The rule kth representation of the IBRB-Di-based bearing
fault diagnosis model is Eq.(33):

Rulek : IF



Mean ∈ (c1, d1) ∨ Skewness ∈ (c2, d2)∨
Kurtosis ∈ (c3, d3) ∨ Peak ∈ (c4, d4)∨
RMS ∈ (c5, d5)∨
Impulse factor ∈ (c6, d6)∨
Margin factor ∈ (c7, d7)∨
Waveform factor ∈ (c8, d8)


,

Then power fault detection results is

{(θ1, β1,k ), (θ2, β2,k ), (θ3, β3,k ), (θ4, β4,k )},

with rk and rule weight wk ,

rule matching degree δk ,

in interpretable constraint c1, c2, . . . , cf ,

k ∈ [1, S],
4∑
l=1

βl,k ≤ 1 (33)

Description of the formula:
Where θ1, θ2, θ3, θ4 are the four evaluation levels of

normal, inner ring fault, outer ring fault, and roller body
fault, corresponding to reference values of 0, 1, 2, and 3,
respectively.

As an example to validate the effectiveness of themodel for
bearing fault diagnosis, three evaluation metrics were used to
validate it. The first one is the overall accuracy(ACR ), which
can be described:

ACR =

∑N
i=1 TPi∑N

i=1 (TPi + FPi + FNi + TNi)
(34)

where TPi is the number of true positives for category θi. FPi
is the number of false positives for category θi. FNi is the
number of false positives for category θi. TNi is the number of
true negatives for category θi. The second evaluation indicator
is the positive predictive value (PPV):

PPVi =
TPi

TPi + FPi
(35)
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TABLE 2. The initial rules of the IBRB-Di.

TABLE 3. Optimized model parameter table.

TABLE 4. Optimisation algorithm parameter settings.

is calculated separately for θi categories. where the PPVs for
all categories are averaged to obtain them:

PPVavg =
1
N

∑N

i=1
PPVi (36)

The third is the True Positive Rate (TPR):

TPRi =
TPi

TPi + FNi
(37)

is calculated separately for θi categories. where the TPRs for
all categories are averaged to obtain the values:

TPRavg =
1
N

∑N

i=1
TPRi (38)

C. RESULTS OF THE EXPERIMENTS
The initial parameters of the model based on expert
knowledge analysis are shown in Table 2. The constraints of
rule reliability and rule weights are given by the experts. The
parameters after optimization by the improved P-CMA-ES
algorithm are shown in Table 3. The initial parameters in the
optimization algorithm are set as in Table 4.

(1) Parameters of the optimized model:
Themodel is optimized using P-CMA-ESwith constraints,

constraining both rule weights and rule reliability to be
optimized in the range of 0.5-1. The belief degree associated
with the outcome in the belief distribution in each rule
was also constrained and the optimization range fluctuated
within the range of the initial values. The parameters after
optimization are shown in Table 3. The observed results
show that all the parameter variations remain within the
constraints set by the expert, which ensures that the optimized
parameters are well interpretable. This ensures that the
optimized parameters of the IBRB-Di model are reasonable
and feasible in real systems.

(2) Curve fitting results of predicted versus actual values
of model diagnostic results:

The fitting results of the model predicted value and the
real value are shown in Figure 10. The accuracy of curve
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TABLE 5. Fault diagnosis performance of IBRB-Di.

FIGURE 10. Results of the IBRB-Di diagnosis.

fitting is 98.74%. This is due to the dynamic rule matching
degree and the new rule weight calculation method used by
the model, which enables it to better adapt to data fluctuations
and non-linear trends. As can be seen from Figure 10, there is
a good fit between the predicted value of the IBRB-Di model
and the actual annotation of the real value of the system.
From Table 5, we can see in detail how the model behaves
under different fault types (normal, inner ring, outer ring,
roller body). TP, FN and FP represent the total number of true
positive, false negative and false positive results respectively.
In particular, for θ1 (normal), θ2 (inner ring failure), and θ4
(roller body failure), the PPV of the model reached 100%,
indicating that it predicted these fault types almost perfectly.
In the case of θ3 (outer ring failure), although the PPV
decreased slightly to 91.74%, The TPR remained above
94%, indicating the model’s high sensitivity to failure. These
data clearly demonstrate the ability of IBRB-Di model to
diagnose bearing faults under various conditions, and confirm
its reliability and effectiveness in industrial applications.

(3)Analysis of belief distributions for modeling rules:
As can be seen from Figure 11, with the P-CMA-ES

optimisation algorithm with expert constraints, the IBRB-Di
model maintains the interpretability of the parameters during
the optimisation process. Thus, the belief distribution of the
output results is highly consistent with the belief distribution
initially set by the experts. It also shows that even after com-
plex algorithm optimization to improve the model accuracy,
the IBRB-Di model can still accurately reflect the expert’s

FIGURE 11. Output belief distribution of the IBRB-Di model.

TABLE 6. Comparison of different model rules and accuracy.

judgment and knowledge structure. The interpretability of the
diagnostic results of the model is guaranteed, thus ensuring
the transparency of the decision-making process and the
reliability of the results.

D. COMPARATIVE EXPERIMENTS
In order to demonstrate the effectiveness of IBRB-Di in
bearing fault diagnosis, it is analyzed in this subsection in a
three-part comparative study.

In Part I, is a comparative experimental analysis with the
traditional BRB, IBRB-r, the model IBRB-D without the
addition of the improved P-CMA-ES to optimize the model,
and the model IBRB-Di optimized by the improved P-CMA-
ES.Next, we will compare the performance of the IBRB-Di
model with other models in three key areas: rule complexity,
model interpretability, and model precision.

(1) Firstly, the complexity of the model is analyzed, that
is, the number of rules. According to the data in Table 6,
BRB-D and IBRB-Di have the same number of rules, 72 rules
for combining rules using interval addition. While the
traditional BRB model has 262,144 rules using the Cartesian
product combination rule, resulting in a huge number of
rules. The main difference between the IBRB-r and IBRB-
Di models is that they significantly reduce the number of
rules and decrease the complexity of the model through
the dynamic rule matching degree and the new method of
calculating the rule weights.

(2) Secondly, from the analysis of model interpretability:
The IBRB-Di model not only improves the accuracy and
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TABLE 7. Comparing the accuracy of the IBRB-Di model to the original IBRB-r.

TABLE 8. Comparison of the performances of various methods.

FIGURE 12. The belief distributions of each rule.

adaptability of the model, but also ensures interpretability
in the parameter tuning process by introducing the P-CMA-
ES optimisation algorithmwith expert constraints. Compared
with the IBRB-D model, it can be seen from Figure 12
that the IBRB-Di model has the same trend in the belief
distribution with the belief distribution of the initial expert
knowledge setting. However the belief distribution results
of the optimization algorithm for rules 5, 7, 8, and 9
of IBRB-D in Figure 12 defeat the original purpose of
interpretability. A detailed comparison between IBRB-D and
IBRB-Di in terms of rule weights and reliability is shown
in Figure 13. IBRB-Di shows a higher reliability and a
more stable distribution of weights for most of the rules,
which reflects the IBRB-Di model’s transparency and

interpretability.interpretability of the IBRB-Di model in
terms of rule application.

(3) Finally, In terms of model accuracy: From Table 7,
it can be seen that the PPV on θ3 and the TPR on θ2 and θ4 of
IBRB-D are slightly higher than that of IBRB-Di. This is due
to the fact that in the absence of an expert set optimisation
range IBRB-D ignores interpretability in order to just go for
accuracy. IBRB-Di, on the other hand, makes the accuracy
too high while maintaining the interpretability of the model
at the same time. The overall accuracy of IBRB-Di is higher
than that of IBRB-r.

Since IBRB-Di can dynamically adjust the rules according
to the fluctuation and non-linear trend of the actual data. This
flexibility allows the model to maintain high accuracy when
dealing with complex data without being affected by uneven
data distribution. Finally, as can be seen from the results of
the 20 repeated experiments in Figure 14(a), the accuracy of
the IBRB-Di model is almost always maintained above 95%,
showing its excellent robustness in complex fault situations.
In contrast, the accuracies of the IBRB-D and IBRB-r models
fluctuate considerably, especially the IBRB-r model performs
poorly in the detection of all fault types.

In Part II, different optimization algorithms such as
WOA-IBRB, DE-IBRB, and PSO-IBRB are compared with
IBRB-Di. The different optimization algorithms use the same
training samples and the same model. All the IBRB-Di
algorithms have higher accuracy than the other algorithms,
as shown in Table 8, Part II. The IBRB-Di optimization
algorithm adds interpretability constraints, which makes the
optimized parameters interpretable.

In Part III, IBRB-Di is compared with Backpropagation
Neural Network (BPNN), Random Forest (RF), and Extreme
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FIGURE 13. Comparison of the rules reliabilities and rules weights of IBRB-D and IBRB-Di.

FIGURE 14. Comparison of the accuracy of different models.

LearningMachine (ELM). (1) In terms of accuracy: as shown
in Part III of Table 8, the IBRB-Di model outperforms the
other models in predicting bearing fault diagnosis. (2) In
terms of model interpretability: all three models compared
are black-box models and cannot be interpreted. (3) Most
of the data-driven models require a large amount of data;
however, IBRB-Di can maintain high accuracy even under
small sample conditions. Figure 14 (b) shows that after
20 repetitions of the experiment, the accuracy of IBRB-Di
is higher than other models.

E. EXPERIMENTAL SUMMARY
Through the above analysis, several significant advantages
of IBRB-Di model in bearing fault diagnosis can be
summarized:

(1) Improve accuracy and reduce the number of rules:
As shown in Table 6, the IBRB-Di model optimizes the
model structure by effectively reducing the number of
rules. It realizes the simplification of rules by dynamically
calculating the matching degree and weight method between
samples and rules in each interval. This method not only
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TABLE 9. Definition of numeric symbols.

significantly reduces the complexity of the model, but also
enhances the accuracy of the diagnosis.

(2) Enhanced model interpretability: IBRB-Di model
effectively retains expert knowledge in the process of model
fault diagnosis. Thus, the transparency and interpretability
of the model are improved. In addition, it also improves the
understanding and trust of decision-makers in the decision-
making process of the model. Is a transparent and explainable
decision support system. A balance has been struck between
interpretability and accuracy. The accuracy of the model is
improved, and the interpretability of the model is ensured.

VI. CONCLUSION
Based on IBRB-Di model, a new bearing fault diagnosis
model is developed in this paper. The goal of the model is to

enable decision makers to effectively predict bearing failures
in an easy-to-understand manner.

Firstly, the IBRB-Di model introduces a new method to
dynamically calculate the rule matching degree and rule
weights of data samples within a reference interval. This
method allows the model to dynamically adjust the matching
degree and weight according to the actual data distribution,
which maintains high accuracy and reliability even in the
case of extremely heterogeneous data. Secondly, this method
also effectively simplifies the number of rules and ensures
the effectiveness of fault diagnosis. Finally, the optimisation
algorithm using expert knowledge constraints to adjust the
model parameters not only further improves the accuracy
of the model, but also enhances the interpretability of the
model.
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At present, although the reference interval is a key
parameter in the model, it is not directly involved in
the optimization process, and its influence on the model
interpretation has not been fully played. Future research
needs to explore how to integrate the reference interval values
into the optimization process of the model while maintaining
their contribution to the interpretation of the results to further
improve the adaptability and accuracy of the model.

APPENDIX
See Table 9.
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