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ABSTRACT The cerebellum plays a crucial role in motor learning and memory, and recent studies have
proposed various cerebellar models to investigate these functions. This review examines the literature on
different levels of cerebellar modeling, including animal models, neuronal and synaptic plasticity models,
relevant artificial intelligence (AI) paradigms, and real-time applications. The development of cerebellar
models is discussed, from simple to complex and from theory to application. Optimization methods used
in Al for optimizing cerebellar neuronal electrophysiology parameters are also highlighted, allowing for the
prediction of difficult-to-observe neuronal features. Combining neuroscience and computer science-oriented
neural networks, such as the spiking neural network (SNN) and the artificial neural network (ANN), can
enable the cerebellar model to adapt to various applications, including robotic control, neurological disease
simulation, and drug delivery simulation. This review provides a useful guide for future research on cerebellar
modeling.

INDEX TERMS Cerebellar modeling, motor learning, synaptic plasticity, robotic control, artificial
intelligence.

I. INTRODUCTION

The cerebellum, located at the base of the brain where the
spinal cord meets the brain, is a critical structure in the
central nervous system. Anatomically, it consists of two
hemispheres connected by the vermis. Internally, it features a
complex arrangement of gray and white matter, including the
cerebellar cortex and deep cerebellar nuclei. The cerebellar
cortex has a simple structure with three layers: the molecular
layer, the Purkinje layer, and the granular layer, from the
outermost to the innermost. Interestingly, the Purkinje cell
(PC), the sole output of the cerebellum, has a large dendritic
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tree like a fan in the sagittal plane. Physiologically, the
cerebellum plays a pivotal role in coordinating voluntary
movements, maintaining balance and posture, and fine-tuning
motor activities. It receives sensory input from the spinal cord
and other parts of the brain, processes this information to
detect errors in movement, and sends corrective signals to
motor centers. This ensures smooth, precise, and coordinated
muscular activity, crucial for everyday tasks such as walking,
writing, and speaking.

The cerebellum has a crucial role in motor learning
behaviors, and its exploration has led to the development
of cerebellar modeling. Although the cerebellum has a
wide range of functions [1], [2], [3], [4], it can naturally
demonstrate motor learning and consolidation abilities better
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than the advanced microcontroller-equipped robot system
controller, despite significant progress in Al [5]. The study
of the cerebellum goes beyond animal behavior, anatomical
structure analysis, electrophysiology recording, behavior-
neural circuit analysis, and simple/complicated neural circuit
simulation to a more refined analysis and application [6], [7],
[8], [9], [10], [11], [12], [13]. In essence, cerebellar simu-
lation has undergone two major changes in two directions:
from simplicity to complexity, and from theory to application,
which have mutually benefited each other.

A. FROM SIMPLICITY TO COMPLEXITY
The modeling of the cerebellum initially focused on exploring
its function through anatomy and physiology, resulting in the
conceptualization of the cerebellum as a perceptron pattern
classification device based on its network structure, resem-
bling a top-down modeling approach [14], [15]. Top-down
modeling primarily emphasized the influence of network
structure on animal behavior, simplifying neuronal structure
and cellular properties for efficient signal transmission
between neurons (Fig. 1) and thus inspiring ANNs [16].
Over time, with the advancement of electrophysiology
and increased knowledge about neuronal ion channels and
receptors, cerebellar modeling has shifted towards a bottom-
up approach. This approach involves modeling the intricate
electrical features of individual neurons and considering
the connectivity between neurons with different rules [21],
[22], [23], [24], [25]. Various types of cerebellar neurons,
such as granule cells (GrCs), Golgi cells (GoCs), PCs, deep
cerebellar nuclei (DCN), inferior olive (I0), basket cells (BS),
stellate cells (SC), and unipolar brush cells (UBC), have
been modeled with greater subtlety (Fig. 1B) [12], [26], [27],
[28], [29], [30], [31], [32]. Furthermore, several neuronal and
network models of the cerebellum have been proposed, taking
into account the compartmental properties of neurons and
their interactions within the network (Fig. 2A) [12], [33].
Advancements in supercomputing have allowed for the
simulation of cerebellar networks with a larger number of
neurons and synapses, enabling the modeling of human-
scale neurons [34], [35]. Drawing inspiration from the
reconstruction and simulation of neocortical microcircuitry,
considering cell density and morphology [36], a brain
scaffold builder (BSB) approach has been proposed, which
takes into account the network volume, cell types, cell
placement, and cell connectivity [37] (Fig. 2B). This has
led to a shift in cerebellar modeling from simplicity to
complexity, encompassing both neuronal and network levels.

B. FROM THEORY TO APPLICATION
The modeling of the cerebellum is based on its unique proper-
ties, such as its neuronal structure, network arrangement, and
electrophysiology, as well as animal responses to neuronal
activity.

Itis important to note that as our theoretical knowledge and
simulation techniques improve, we can create more realistic
and complex models of the cerebellum.
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FIGURE 1. The neuronal modeling for GrC evolves from a simple spectrum
model to an integrate and fire (IF) model. A, spectrum model [17], [18]. B,
IF model for GrC with hardware implementation via FPGA [19], [20].

Practical applications of cerebellar modeling take advan-
tage of the structural properties of the cerebellar network. For
example, in SNN models for the cerebellum used in multi-
joint robotic control, the number of neurons and connections
depend on the variables being controlled (such as joint
position or velocity) (Fig. 3) [13], [40]. Neuronal properties
are often simplified to adapt them to specific applications,
such as neglecting pontine nuclei (PN) and granular layers
(GLs) in some cases, and replacing PF-PC plasticity with CS-
PC modality in a cerebellar neuroprosthetic system (Fig. 4A)
[41], [42], [43], [44].

Encoding and decoding methods differ from those of neu-
rons themselves. In more realistic modeling of GL, the GrCs
have various properties such as center-surround organization,
time-window matching, long-time constant of NMDAR and
high-pass filtering [33], [45], [46], [47]. However, such
properties may be averse to practical modeling, where GrCs
are used to convey spatial/temporal information for afferents.
Thus, the encoding of afferent signals is transformed as
ordered and similar GrC activities, and the decoding of yield
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FIGURE 2. Complicated neuronal model. A, GrC compartment model [31],

[38], [39]. B, BSB approach for neurons [37].
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tation of cerebellar models for real-time applications has
adopted more complex neuronal structures to exploit high-
performance computing technologies [50].

In real-time applications, timeliness, model size, hardware
platform, and computational method are important consider-
ations [19]. There is still debate over whether the cerebellum
operates in sparse coding mode [51], [52]. And thus, the
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FIGURE 3. Multi-joint robot control [13], [40].

spikes is transformed with a uniform rule for recognition
by lower devices [13], [40], [41], [48], [49]. Addition-
ally, biophysical models like Hodgkin-Huxley (HH) and
Markovian models have been proposed, and the implemen-
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more neurons with smaller chips to ensure the authenticity of
the simulation Moreover, real-time performance also varies
based on the application in which behavioral simulations
should be based on factual evidence whereas signaling
between devices may drive the model to work in a faster speed
(Fig. 4A and B) [19], [20], [53].

The interplay between cerebellar models and Al is an
intriguing research topic [54]. The cerebellum’s vast number
of small GrCs enables high-dimensional computation, which
bears similarities to AI’s deep learning. Researchers have
employed various optimal algorithms to fine-tune cerebellar
model parameters. These findings beg the question of
whether neuronal modeling in the cerebellar model can be
supplanted and to what degree artificial models can capture
motor learning.

This study reviews literature on cerebellar modeling from

animal models to the modelling of neuronal and structural of
the cerebellum as well as its applications in Al and real-time
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FIGURE 5. Two kinds of animal models (dEBC and VOR) for the cerebellar
related studies.

scenarios. We will draw conclusions based on our findings
and propose future directions for research.

Il. ANIMAL MODELS FOR CEREBELLAR MODELING
Animal models for cerebellar modeling are mainly derived
from the models used for cerebellar motor learning, including
delay eyeblink conditioning (dEBC), vestibular ocular reflex
(VOR), optokinetic response (OKR), and the saccade. The
common feature of these models is simplicity, a single and
pure mode of motion, and usually a relatively passive motion.
These models provide insights into the cellular and molecular
mechanisms underlying cerebellar processes.

A. dEBC

The cerebellar neural circuits are widely recognized for their
role in cerebellar motor learning, due to the simplicity of
the cerebellar circuit and the straightforward paradigm of
motor learning behavior, such as dEBC in mice [6], [17],
[46], [56], [57], [58], [59], [60], [61]. The micro-complex
responsible for dEBC is the zebrin-negative area of lobule IV
(lobule simplex) in the cerebellum’s two hemispheres [5], [7].
In dEBC, mice learn a timed response to a neutral stimulus
that would not normally trigger an eyeblink (Fig. 5). The
conditioned stimulus (CS) and unconditioned stimulus (US)
are conveyed by the mossy fiber (MF) and climbing fiber
(CF), respectively. Repeated paired stimuli to the relayed
parallel fiber (PF) and CF diminish the simple spikes of
PCs in response to the US, making the modeling of dEBC
centered around balancing the timing of reducing PC simple
spikes [56], [57], [59], [62]. However, traditional PC models,
such as time derivative models, resemble models used in
cybernetic theories and lack biological plausibility [18], [63].
To address this, a PC model with metabotropic glutamate
receptor activation was proposed and the learning in this
model is based on population voltage changes induced by
Na't/Ca?* exchange currents [58], [64]. To incorporate more
biological evidence [65] while simplifying the molecular
and cellular machinery, SNN models accompanied by
conductance-based leaky integrate and fire (CLIF) models for
each neuron were proposed [46], [60], [61]. These models
strike a good balance between biological plausibility, the
scale of the neural network, and running speed [19], [20],
[42]. Furthermore, SNN models allow for the design of

170724

learning rules to validate the impact of synaptic changes on
dEBC motor learning and memory consolidation [66], [67],
and can even be pruned to model deficient cerebellum in
gene knockout mice or cerebellar pathologies [61], [68], [69].
With the ongoing research on the structure, function, and
dynamics of cerebellar circuits, the development of BSBs
has enabled the reconstruction of cerebellar dEBC neural
networks, taking into account the morphology of neurons
within the network, including their anisotropy and regular
geometry [37], [70], [71]. Recently, the understanding of
bidirectional plasticity in different microzones has become
crucial for motor learning. This has led to more refined
simulations of delay eyeblink conditioning (dEBC), where
synergetic downbound and upbound areas of the cerebellar
nuclei are modeled. These simulations contribute to a finely
tuned associative motor learning behavior [72].

B. VOR AND OKR

Animal models for the VOR and OKR are often used to
demonstrate how the cerebellum functions as a controller
for motor learning, regulating both gain and timing (Fig. 5)
[9], [73], [74]. These two paradigms have distinct neural
circuits but are mediated by the same controller: the
cerebellum. The zebrin-positive area of the floccules in the
cerebellum’s two hemispheres mediates rate coding for VOR
or OKR [9]. In a feedforward system, the afferent signal
to the cerebellum for VOR is derived from head movement
conveyed by the semicircular canal and floccular projection
neurons. Conversely, the afferent signal for OKR comes
from the accessory optic system, which supports a feedback
neural circuit [75]. Unlike dEBC, VOR and OKR require
a continuous experimental protocol, making a rate-based
scheme more suitable for simulation since it can omit the
transformation between neural spikes and firing rates [73],
[76], [77]. However, simulating VOR/OKR with SNNs has
drawbacks, such as determining the baseline firing rate of
PC, requiring an additional item of current to be added
into CLIF equations [78]. Another example is modeling
phase reversal learning (PRL) of VOR [73], [79] with a
SNN model (Fig. 6A) where the phase reversal is rapid
because the subtle retina slip induced by learning cannot be
accurately translated by neural spikes innervating PC through
climbing fiber leading to large variations in gain and phase
(Fig. 6B and C) [55], [80]. Furthermore, the phase cannot be
completely reversed to 180° due to a lack of delay of error
feedback [77], [81], [82].

C. SACCADE

Saccadic eye movements are crucial for efficient visuo-motor
control, allowing for rapid focusing on new targets [83],
[84]. The cerebellum is also involved in saccades, control-
ling eye movement amplitude, peak speed, and duration
[85], [86], [87]. The cerebellar control of saccades is a
feedforward system, with errors induced by the difference
between the shifting target on the retina and the shifting
eye position input to PCs via CF afferents in the posterior
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vermis of the cerebellum. Several models have been proposed
for the cerebellar control of saccades [88]. The midbrain
superior colliculus (SC) is also involved in saccadic eye
movement control, and pure SC component models have
been proposed [89], [90]. Synergistic models considering
the interaction of the SC and cerebellum have also been
proposed [91], [92], [93]. A feedforward and feedback
loop model considering the cascade of retina, cortex, SC,
cerebellum, brain stem, and the eye has been suggested [94],
[95]. However, these models lack the influence of SNNs on
saccadic behavior. Gad et al. proposed integrated models of
PC and fastigial oculomotor region cells with neural plasticity
and a parallel pathway of SC and cerebellum shifting to a
cascade one, where the cerebellum relays information from
the SC [75], [96]. More recently, Fruzzetti et al. proposed
a cerebellar SNN with LIF model considering the joint
influence of neural plasticity to the eye movement speed [97].
The PF-PC plasticity mechanisms are similar to that in the
VOR adaptation and dEBC, indicating that the cerebellar
neural circuit implements general computational algorithm
but with different cerebellar regions and diverse plasticity
constituting high dimensional representation.

IIl. NEURONS AND STRUCTURES FOR MODELING

The cerebellum has a relatively simple structure, consisting
of the deep cerebellar nuclei and the cerebellar cortex, which
is composed of three layers: the ML, the PC layer, and the
GL from outermost to innermost. Modeling of the cerebellum
primarily focuses on the GL and the PC layer due to the
numerous but tiny GrCs and the complex morphology of PCs.
This complexity contributes to the intricate electrophysiology
of the cerebellum, leading to its various motor functions.
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A. GL

The Marr-Albus computational cerebellar model suggests
that the GL processes afferent information from the MFs as
sparse coding although it contains small but dense GrCs [98].
However, the small size of GrCs makes it challenging to
record in in-vivo experiments and thus, the modeling of the
GL has evolved from a simple hypothesis to a fine inference
based on electrophysiology recordings [8].

Prior to structuring a specific GrC model, Moore et al. pro-
posed tapped-delay-line models in which the input afferent
to PC is sequentially conveyed by different elements [57],
[59]. This method is an embryonic form of a liquid-state
generator for the GL, which was proposed by Yamazaki and
Tanaka [99]. Although the tapped-delay-line model lacks
biological plausibility, its evolutionary version, labeled-line
coding (LLC), can be well adapted to various cerebellar-
related robotic applications due to its simplicity and well-
timed properties [41], [48], [49].

The core idea behind these modelings for the GL is to
transform the afferent signal via MF into the sequential
activation of GrCs, known as the passage-of-time. The
passage-of-time within the GL is attributed to the high-
dimension representation of GrCs, so that computations of
representative behavior states are distributed into orthogonal
subspaces [100]. With the breakthrough of electrophysiology
recording, the modeling of the GL considers more about
the electrophysiological characteristics of neurons, the spa-
tiotemporal property, the influence of neural plasticity, and
even realistic morphological features of the neurons. Table 1
shows a comparison of different models [101], [102], [103],
[104] for the GL with various types of neurons [30], [33],
[38], [105], [106].

B. PC

The PC plays a crucial role in motor learning, acting as the
sole output of the cerebellum and determining the activity of
downstream nuclei and the whole network property through
its integrator-like function [107], [108]. For example, the
PC spike burst-pause dynamics are critical for sensorimotor
adaptation: gating the vestibular-motor response association
during VOR acquisition, mediating the LTD/LTP balance for
VOR, and reshaping synaptic efficacy distributions for the
PRL of VOR [109]. Another example shows that the PC
dynamics like PC firing rate, firing phase, and temporal spike
pattern can be modulated by the integration of PF-PC and
MLI-PC pathway together with short-term plasticity at both
single neuronal level and network level [107].

Due to its intricate neuronal morphology and multiple ion
channels, modeling PC requires assembling different parts
of a neuron. A PC compartment model called R-DB model
which contains more than 1600 compartments was proposed
by De Schutter and Bower based on the extended work of
Rapp et al. [12], [110], [111], [112]. The complicated model
endows the PC modeling to replicate physiological responses
under multiple possibilities [113], [114]. Furthermore, var-
ious dynamic properties of PC [115], [116], [117], [118],
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[119] which are derived from experimental methods can
be revealed with models [120], [121], [122], [123], [124],
[125] to imply the capability of strong computation of PC
at both single neuronal level and network level (Table 2)
[108], [122], [123], [126]. Moreover, the compartment model
is more suitable for studying local characteristic subcellular
mechanisms of PC in terms of connectivity and discharge
instead of merely yielding somatic properties of PCs within
a large-scale network [127], [128], [129], [130]. Such a
modeling can augment our recognition of the fine-tuning
of PC during motor learning as well as the functional
organization of cerebellar cortical circuitry. Further studies
have extended the model compartment to include axon initial
segments (AIS), paraAlS, nodes of Ranvier (RN), and non-
myelinated collateral to study the localization and gating of
PC ionic channels [131].

Although the complicated compartment model can well
describe the input and output transformation of the PC, the
information processing of the cerebellar may not merely
depend on PC complex structure [73], [132]. As a result,
a simplified model may well illustrate the essence of PC
dynamics. For example, an adaptive exponential IF model
was adopted to explain the relationship between the intrinsic
property of PC bistability and inverse stochastic resonance
(ISR) which is a possible mechanism for information
processing in the cerebellar cortex [126]. Furthermore, only
a few studies use a full compartment model to build network
level simulation [133], [134]. Instead, researchers have used
simplified models for specific application scenarios [135].
When studying PC at the network level or network-based
applications, the modeling will be further simplified to
adapt to real-time requirements and corresponding firing
patterns [13], [17], [41], [46], [56], [60], [62], [66].

C. CEREBELLUM WITH OTHER NEURAL CIRCUITS
Although different modules within the cerebellum are
responsible for the execution of various motor tasks [136],
[137], [138], [139], the motor planning proceeding the
movements or the movements initiation are maintained by
neural circuits that span multiple brain regions [140], [141],
[142]. The connectivity between the cerebellum and cerebral
cortex is organized in parallel loops [143], [144], [145],
[146], [147], [148], one of which is the cerebello-thalamo-
cortical circuit that facilitates goal-directed action initiation
[140], [149]. This circuit can simulate cerebellar ataxia [150]
and be modeled with refined neuronal models to integrate
with other neurological disorders for more refined treatment
methods [151], [152]. The cerebellum works as a motion
execution unit, receiving information from the visual cortex
network and yielding output together with prefrontal cortex
planned signals as the control signal for a collision-free
robot task, highlighting the synergy of different brain regions
in motor tasks [11]. Other circuitry, such as cortico-spino-
cerebellum, is also applied in cerebellar learning of arm
control [153].
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In addition, there are local circuits within the cerebellum
that enhance the performance of cerebellar associative learn-
ing by providing feedback [154]. The nucleo-cortical circuit
involves the DCN providing feedback to key components
like GoCs [155], MFs [156] and PN [157], which can also
be measured through network simulations. The convergence
of input signals from three different similar cortical regions
with different inputs, including external afferents and internal
feedback, amplifies cerebellar motor learning through the
DCN [158]. However, current modeling techniques tend
to oversimplify this process by focusing solely on linear
summation, ignoring the critical balance and feedback
mechanisms within the cerebellar circuit [159], [160].

Another way to model the cerebellum is by creating a brain
functional connectome (FC) using non-invasive data such
as electroencephalography (EEG), magnetoencephalography
(MEG), or functional magnetic resonance imaging (fMRI).
This involves representing different brain regions as nodes
and connecting them with wires based on their correlation
values during a specific task [161], [162], [163], [164].
This type of modeling goes beyond simple motor learning
tasks and can also be used for cognitive tasks such as
working memory, [165], driving fatigue [166], and even
disease detection [167]. However, it is important to note
that there are differences between the neural circuit scale
of the cerebellum and other circuits (macroscale) and the
microscale of cerebellar motor learning function. Integrating
data from both scales can be challenging due to differences
in spatio-temporal resolution and bridging gaps between
Al and neuronal modeling. Nonetheless, understanding how
different brain regions coordinate in terms of both macroscale
and microscale during a task is crucial for advancing our
knowledge of the brain.

IV. SYNAPTIC PLASTICITY IN CEREBELLAR MODELING

There are various types of synaptic plasticity within the
cerebellum which play important role in cerebellar motor
learning. Two reviews expound the neural plasticity within
the cerebellum with both in-vivo and in-vitro experiments
according to the neuron type and network structure [67],
[169]. As mentioned in the review [45], both short-term and
long-term plastic change exist at almost all synapses within
the cerebellum but may be adaptive to different circum-
stances [45], [67], [170]. In the modeling of these synaptic
plasticity, the function of LTD at PF-PC sites is the most
explicit which manifests the acquisition of a motor learning
behavior. On the other hand, the acquisition of motor learning
also needs to be stored as memory consolidation which
behaves as long-term plastic change at MF-nuclear outside
the cerebellum in the neuronal level. The learning process and
the memory process is linked by PC spike pattern [41], [48],
[53], [55], [60], [76]. Moreover, the direction of plasticity at
MF-nuclear sites is variable according to different tasks. For
example, in the OKR adaptation, LTP at MF-VN strength the
memory consolidation of such adaptation. However, in the
simulation of PRL of VOR, the gain alteration of MF-VN
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TABLE 1. Different models for the GL.

Contributor Neuron type and model, network structure model Behavior Influence Ref
Fujita CrC, Golgi cell (GoC), rate-based scheme, oscillator VOR An individual GrC is an oscillator with a frequency specified by a [63]
model MEF signal representing the head velocity and with a different time
lag
Moore et al PN, GoC, time derivative model, delay line model dEBC This model can perform learning of conditioned response [57,
59]
Bullock et al CrC, GoC, rate-based scheme, spectral timing model nictitating The model is based on the widely distributed membrane time [18]
membrane constant of different GrCs
response
Yamazaki GrC, GoC, rate-coded scheme, random projection dEBC Time passage from the trigger of an external signal could be [99]
model represented by the sequence of activity patterns
Yamazaki GrC, GoC, conductance-based integrate and fire model, dEBC, VOR Passage of time (POT) was represented by GrC spikes and a long [46,
random projection model time constant of NMDA receptor contributes to GrCs’ POT 78]
Sudhakar et al MF, GrC [33, 38, 105], GoC [30, 106], leaky integrate- No A large-scale 3D network model is constructed so that GrCs and [101]
and-fire model for MF, HH model for GrC, HH and GoCs oscillates with mossy fiber inputs of a wide variety of firing
Markovian model for GoC, random projection model patterns
Rossert et al one-population and two-population model [99] No A random projection network can generate the necessary signal [102]
transformation as long as it operates in a state close to chaotic
behavior
Mapelli et al GrC [33, 38, 105], GoC [30, 106], HH model for GrC, No the effect of LTD and LTP in modulating MF input converged to [103]

Schepper et al

Solinas et al

Barri et al

HH and Markovian model for GoC, random projection

model

GrC, GoC, Markovian and HH model, random

projection model

GrC [33, 38, 105], GoC [30, 106], HH model for GrC, No

output GrC that regulates the gain and timing of output firing

PC firing They proposed a structure-function network model for the cerebellar [37]
pattern for cortical microcircuit which focuses on studying the impact of
dEBC and VOR realistic morphologies as well as multi-compartment neurons with

cell-specific membrane and neurotransmitter release mechanisms on

cerebellar motor behaviors
A modeled GL possesses various properties

HH and Markovian model for GoC, random projection

model

MEF, GrC, rate-based scheme, similar to spectral timing

model

dEBC

The short-term plasticity of MF-GrC is sufficient to enable GrCs to

[33]

[104]

reproduce various temporal sequences supporting PC to learn
precisely timed pauses without the help of GoC inhibition

TABLE 2. Modeling of various PC dynamic properties.

Author

Dynamic property

Implication

Model type

Phoka et al [108]

Buchin et al [126]

Luque et al [109]

Roth and Héusser
[115]

Khaliq et al [122]
Akemann and
Knopfel [123]

Fernandez et al
[116]

Loewenstein et al

[117]

Ostojic et al [118]

Couto et al [132]

Zang et al [119]

Zang et al [168]

Phase response curve (PRC)

Inverse stochastic resonance

Spike burst-pause

Steady-state electrotonic
structure of PCs

High frequency firing with
resurgent Na” current
Spontaneous firing rate of
PC

Saddle-node
bifurcation/homoclinic
bifurcation

Bistability of PC

Morphology-induced
resonance of PC

PRC

PRC

PC response from voltage
and branch specific CF

PC shows different dynamic behavior depending on their firing rate.
at high firing rates PCs can transmit information via a temporal code
whereas at low firing rates they are well-suited for rate coding
Synaptic noise allows PCs to quickly switch between functional
regimes, so that the synaptic noise in particular amplitude can
significantly enhance the transmission of information across the PCs
to downstream neurons

PC spike burst-pause is important to normal VOR adaptation and
phase reversal version

Synapses located in close proximity to the soma have a privileged
position to exert a precise temporal influence on the membrane
potential of the soma

Na'" currents with a resurgent kinetics boost and accelerate PC firing

Kys.3 can increase the spontaneous firing rate via cooperation with
resurgent sodium currents.

PC firing dynamics are consistent with a system undergoing a saddle-
node bifurcation in the transition from rest to firing and a saddle
homoclinic bifurcation from firing to rest and thus PC firing is
related to the underlying bifurcation structure

PC bistability may have a key role in the short-term processing and
storage of sensory information in the cerebellar cortex

Cellular morphology induces high frequency resonance

PC phase response curve depends on PC firing rate which influence
the transition of phase independent integrator to a phase dependent
mode of a PC

PRC changes lead to oscillations and spike correlations mainly at
high firing rates. The rate adaptation of PRCs can help organize the
spatio-temporal input from PCs to the DCN

PC voltage can mediate both the amplitude and the spatial range of
CF-evoked Ca*" influx by the availability of K* currents

single compartment
model/ Morris-Lecar
model [120]

adaptive exponential IF
model [121]/R-DB
model

Compartment model/IF
model

single compartment and
two-compartment
model

single compartment
model

single compartment
model

HH model

Single compartment
model

Single/multi-
compartment model
[122], [123], adaptive
exponential IF model
[124]

Single compartment
model

Watts-Strogatz model
[125]

Compartment model

decrease followed by an increase which resembles an erase
of VOR memory and then adding an OKR adaptation [77].
The synaptic plasticity at other sites within the cerebellum is
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still indispensable [41], [73], [77], [171] especially in the area
where extracerebellar signals import as the plasticity involves
signal coding. For instance, the MF-GrC synapse together
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with GoC inhibition regulates GrC activities. It generates
bidirectional synaptic change at MF-GrC sites to fine-tuning
the spike timing of GrC in/beyond a window set by GoCs
in response to specific motor behavior [33], [47]. Due to
the variability of GrC firing pattern, the plasticity at MF-
GrC sites is a short-term one which can be donated as
small value of time constant of presynaptic facilitation and
vesicle inactivation [33]. On the other hand, DiGregorio et al
validated short-term synaptic property of MF-GrC sites with
both experimental and numerical methods. The short-term
plasticity of MF-GrC is sufficient to enable GrCs to reproduce
various temporal sequences supporting PC to learn precisely
timed pauses without the help of GoC inhibition [104],
[172]. However, there still remains long-term plastic change
at MF-GrC sites which are confirmed to influence the
burst initiation and frequency of GrCs in terms of both
experimental observation and theoretical analysis [105].

V. NON-MAINSTREAM MECHANISMS FOR CEREBELLAR
MOTOR LEARNING

The mainstream theory of cerebellar motor learning proposes
that the synaptic plasticity between PF and PC is responsible
for this process, while the GL provides POT representation.
However, there is a non-mainstream theory that suggests that
motor learning comes from an internal timing mechanism
within the PC itself, rather than through traditional synaptic
changes. This is supported by evidence showing that PC can
learn well-timed pause responses to different inter-stimulus
intervals even with direct stimulation to PF and CF [173],
[174]. Additionally, interrupted CS still generates CRs at
the same learned interval, and changing the stimulation
frequency does not affect the timing of the CR [174], [175]
whereas blocking GABAergic interneurons and glutamater-
gic AMPAR in the molecular layer did not affect PC pause
responses to unpaired CS [173], [176]. If the PF-PC plasticity
were the only mechanism for cerebellar motor learning, then
the timing of the CR would be affected by the duration
and frequency of the stimulation. Therefore, it is likely that
mechanisms located within the PC complement this main
machinery [177] (Fig. 7B).

Nevertheless, the well-trained PC response to CS can
be abolished by antagonists of the specific metabotropic
glutamate-based receptor type 7 (mGluR7) manifesting that
mGluR7 mediates an adaptively timed learned response. And
thus, a model of PC that can encode time interval was
proposed where the temporal memory is embedded within the
dynamics of a set of proteins like mGluR7, G-protein, protein
kinase A (PKA), etc. [178] (Fig. 7A).

Another biochemical model of PC has been presented
as a complementary mechanism of motor learning with
the modification of synaptic weights, where five elements,
a decoupling mechanism, a “clock”, a coincidence detector,
and a positive and a negative feedback loop are in accordance
with interactive biochemical candidates like CaZt, IP3,
adenylyl cyclase, PKA, regulators of G protein signaling
(RGS) [177].
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Furthermore, a proof-of-principle model of POT for PC
has been proposed. When CS onset occurs, the PC releases
a batch of evolving “recorder units”, which contribute to the
inhibition of the cell at the interval it has coded. The strength
of inhibition is decided by the repetition of CS-US pairs [179]
(Fig. 7C).

VIi. DIFFERENT NEURONAL MODELING

The neuronal modeling for cerebellar model varies from
simple algebraic summation to ionic simulation for different
neuronal compartments depending on its complexity [26],
[311, [37], [46], [57], [180], [181]. Usually, the neuronal
modeling can be classified into rate-based one and SNN
according to model tasks. The advantage of SNN is not
limited to its biological plausibility but the ability to handle
continuous afferent streams from outside world which is the
major problem for the robot control that it should confront a
time series evolution of dynamics [11], [182], [183]. The LIF
model is a basic neuronal modeling that can make a trade-
off between neuronal/network complexity and biological
plausibility. To better understand the property of neuronal
network, the LIF has derived many variants such as CLIF
and extended-generalized LIF, which can be well integrated
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into SNNs saleably to mimic motor behavior and close-loop
applications [19], [41], [46], [184].

A. HH MODEL

The HH model is a conductance-based model functioning on
the gating of various ionic channels with different conduc-
tance state and numbers of subunit so that the biophysical
mechanism of a cell can be represented in details (Fig. 2A).
The membrane voltage of a compartment can be obtained
with the time integral of different ionic currents which depend
on the gating variables (Fig. 2A, Eq. 1-6). In this way, the
neuronal modeling can be represented by the assemble of
ionic channel opening and closing. In the cerebellar neuronal
modeling, the PC, GrC, GoC and even SC/BC are simulated
with HH model so that the electrophysiological property and
the neural network characteristics can be well presented [26],
[30], [33], [38], [106], [131], [181].

B. MARKOVIAN MODEL

While ion channels can basically switch in two states:
open and closed, ligand-gated receptors can switch between
multiple states. Markov chains, a type of Markovian model,
can be used to model the complex state transitions of
synaptic receptors (Fig. 2A). The complexity of a Markov
chain depends on the type and subtype of synaptic receptors
like AMPARs, NMDARs and GABA, [185]. In cerebel-
lar neurons which contain various postsynaptic receptors,
Markov chains are used to model the state transitions of
aforementioned receptors in complex neuronal models [26],
[331, [37], [39], [105], [181], [186]. In addition, regenerative
Ca’* signaling in IP3 pathway, a critical procedure for cere-
bellar LTD, can also be simulated with Markov chain [187].
However, to simplify computing, the presynaptic vesicle
cycle and the neurotransmitter diffusions are often replaced
with presumptive parameters [26], [39], [187], unless the
presynaptic dynamics need to be explicitly modeled [101],
[103], [105]. Moreover, Markov chains are also applied in
modeling the ionic channels with multiple states such as
Kanp current in GoCs [30], [106] and Nav1.6, Kcal.1, 2.2 in
PCs[131]. This enables a more comprehensive understanding
of neuronal signaling and neuronal modeling.

VIl. CEREBELLAR MODELING AND Al

Al and neuroscience have a long history of collaboration
which has led to advancement in the field of Al visual
processing [188], [189], motor control [190], behavior and
its neural correlates [191], [192] and even the development
of Al and brain theory [193]. Here we mainly focus on the
reviewing cases of application of Al in cerebellar models.

A. CEREBELLAR MODEL FOR Al BASED APPLICATION

Because of the excellent control ability of cerebellum for
motor behavior, a series of cerebellum-related controller were
proposed based on cybernetics and algebraic methods [14],
[194], [195], [196], [197], [198], [199], [200], [201]. How-
ever, in this review, we do not aim to review control theory
based cerebellar model as it only adapts a similar structure
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of the cerebellum while neglects the property of a biological
neuron such as the neural plasticity thus lacks biological
plausibility [202]. Due to that the cerebellum possess large
numbers of tiny GrCs which resembles the neural scale of an
ANN, it is rewarding to study the link of cerebellar neural
network to an artificial one. Medini et al. proposed a spike
encoding model inspired from the cerebellum GL which can
be decoded by various classification algorithms [203]. The
LTD at the PF-PC site together with large numbers of PF is
easy to be evolve into an artificial one as it is an adjustable
feedforward convergence from a large scale of neurons to a
single one [204]. Additionally, a systems-level computational
model of cerebro-cerebellar interactions was proposed where
the biological circuits were mapped into deep learning model
such as cerebral area simplified with long short-term memory
recurrent neural network (LSTM) and cerebro-cerebellar
interaction modeled with recurrent neural network (RNN)
[205]. The most commonly used Al scenario for cerebellar
models is the control of robotic arms as the model can
overcome drawbacks of the nonlinear property of elastic
joints and owns a predictive motor control ability confronting
uncertain time delay [13], [40], [206], [207], [208], [209].
Specifically, the cerebellum cooperates with other brain
regions like visual cortex and prefrontal cortex together to
complete collision-free movement planning in which the
visual information processing, movement coordination and
decision making can be tackle smoothly [11]. Although
such a model adopts a SNN, the training process uses
supervised learning and reinforcement learning [210] for
different modules, which is a combination of Al and brain-
inspired structure. In addition, due to the cerebellum work
as a liquid state machine, it works inherently as a sequential
supervised learner and thus the cerebellar model can be
used for limited static pattern recognition (Boolean function
and MNIST digits recognition) and limited temporal pattern
recognition [209], [211]. Compared with well-tuned ANNSs,
the cerebellar network did not outperform in terms of signal to
noise ratio and accuracy [204], [209]. However, the advantage
of biological cerebellar model lies in the good coordination
capability in multi-joint robotic control. Furthermore, the
structure of the cerebellar neural network is simple so that
tuning of parameters becomes easy and can be adaptive to
various tasks behaving a good learning ability for different
tasks.

B. OPTIMIZE CEREBELLAR MODEL

Moreover, the application of Al techniques can aid in
deepening our understanding of the cerebellum’s structure
and electrophysiology. Neuronal modeling involves various
ionic channels that contribute to the final output of different
compartments of a neuron. To match the firing pattern with
electrophysiology recordings, maximum ionic conductance
values for different channels must be adjusted. Optimization
algorithms like genetic algorithm and particle swarm opti-
mization algorithm, commonly employed in Al classification
problems, can be utilized for neuronal parameter optimization
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of neurons within the cerebellum [31], [212]. This provokes
inquiry into whether an artificial model can substitute the
neuronal one when modeling cerebellar motor learning
Furthermore, an ANN can be established by recorded data
with transformation to analyze the correlation between neural
electrophysiology and animal behavior. This method directly
finds the relationship between corresponding neurons in
a network structure without considering the dynamics of
relay neurons between them [213]. In terms of neuronal
connectivity, neuroimaging techniques like transmission
electron microscopy (TEM) and serial-sectioning scanning
electron microscopy (ssSEM) together with convolutional
neural network (CNN) can benefit the structural cognition
of cerebellar neurons [214], [215]. By simple modeling
with recognized neuronal connectivity, researchers found that
the redundant, non-random cerebellar connectivity motifs
increase the signal to noise ratio at a negligible cost to the
overall encoding capacity. The application of Al focuses on
the neuronal structural recognition and such exploration for
cerebellar connectivity [214], [215] can also benefit motor
learning related modeling of the cerebellum in a network
level simulation. In addition, the combination of Al modeling
and neuroscience-inspired modeling is a new trend for the
solution of complex dynamic problems [216]

VIil. REAL-TIME APPLICATIONS WITH CEREBELLAR
MODEL

Due to the motor regulatory role of the cerebellum itself,
the application of cerebellar models mainly emphasizes
their real-time and adaptability and thus the accuracy of
the cerebellar model is relatively low. Here, we mainly
introduce the real-time applications of the cerebellar model
from the perspectives of implementation, control theory with
applications, and the potential applications for future work.

A. IMPLEMENTATION OF CEREBELLAR MODEL

In order to test how well the cerebellar model performs
in real-time applications, researchers have been exploring
different hardware implementations such as graphic process
units (GPUs), very-large-scale-integration (VLSI), FPGAs,
supercomputers, and event-driven lookup tables (EDLUTS).
There are five main areas (Table 3) where the cerebel-
lar model has been applied: humanoid robot simulation
(red), obstacle avoidance or tracking cars (orange), robot
arm control (Cyan), network level simulations with large
scale neurons (aquamarine), and cerebellar neuroprosthetic
system development (no background color) [217], [218],
[219], [220], [221], [222], [223], [224].

One thing that these models have in common is that
they tend to use simplified neuronal models, except for the
PC representation for humanoid eye movement [53], [56],
[225]. To encode temporal information more effectively with
GrCs for robot arm control, researchers have implemented
the labeled-line model so that the time cost and accuracy
of the GrCs can benefit each other [49], [206] and the
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number of GrCs used depends on the degree of freedom of
the robot [13], [40]. However, to test the performance of
architecture design for a cerebellar network, neuronal models
with more complex structures should be designed to ensure
the flexibility and scalability of the platform [20], [34], [70],
[226]. Additionally, the complexity of the cerebellar model
used in a neuroprosthetic system depends on whether the
research is focused on engineering or scientific issues [43],
[44], [156].

B. FEEDFORWARD CONTROL AND FEEDBACK CONTROL
FOR REAL-TIME APPLICATIONS

Previous studies believe the cerebellum functions as the
loci of internal-forward-models [227], [228], [229], [230].
Neuroanatomically, the cerebellum receives input from the
cerebral cortex and processes sensory feedback from periph-
eral systems [147]. This positioning allows the cerebellum,
particularly the PC, to integrate motor commands from
the motor cortex and sensory feedback from movement.
The internal-forward-model for motor control within the
cerebellum suggests that MF relays the delayed state and
control signal, while the predicted state corresponds to the
output of the dentate nucleus cells (45 = ! KK 2| 5| FHIE. A)
[148]. However, the cerebellum is known to perform both
feedforward and feedback control functions. Examples of
cerebellar feedforward and feedback control include the VOR
and OKR. Although both error signals in VOR and OKR
afferent into PC through the dorsal cap, their sources are
different.

Nevertheless, in real-time applications using cerebellar
models, due to the lack of necessary neural modules, most
works adopt cerebellar feedforward control. The control
method depends on whether there is a comparison for the
afferents at the input terminal of the cerebellar model.
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For example, in torque control for a multi-joint robot,
the afferents to the cerebellar model are both the desired
trajectory and velocity of the joint, together with the current
ones, whereas the control strategy transmitted to the 10 of
the cerebellar model is the difference between the desired
(trajectory and velocity) and current one (Fig. 3) [13], [40],
[49]. Due to the trial-and-error learning process for the
feedforward control of the cerebellar model, a feedback
controller can be added to stabilize the plant influenced by
perturbations (Fig. 8B) [45], [49], [231]. Additionally, the
cerebellar feedforward control strategy or feedback control
strategy acts as a learning or refining process of the skeletal-
muscular system. Therefore, a coarse inverse dynamic model
derived from the motor cortex can be added to the control
loop to increase convenience in dealing with changeable
environmental features, as several different corrections can
easily be accomplished by the adaptable forward controller
(Fig. 8B). In contrast, switching or interpolating between
different inverse models to deal with these changes would
require a large amount of storage capacity [49], [232], [233],
[234], [235], [236].

C. POTENTIAL APPLICATIONS FOR THE CEREBELLAR
MODEL

The cerebellar model has been used in a wide range
of real-time applications, particularly those that involve
control systems and robotics. And thus, we suppose that the
cerebellar model can be applied in the following aspects:

Autonomous vehicles: The cerebellar model can be used to
develop control systems for autonomous vehicles that enable
them to navigate through complex environments and avoid
obstacles. As mentioned before, the cerebellar model-based
obstacle avoidance car have been developed with camera.
Likewise, the electric vehicle equipped with multi-camera or
multi-radar can provide environmental information for the
decision make of the cerebellar modeled control system.

Humanoid robot: in the present study, the cerebellar model
can support the VOR based eye movement tracking and the
perturbed reaching tasks [206]. And the multi-joint robotic
arm controlled by the cerebellar model implies that the
cerebellar model is able to provide control for synergistic
motion which can be applied on humanoid robots [40].
Therefore, researchers can create more sophisticated robots
that can perform complex movements and interact with
humans more effectively.

Sports training: The cerebellum is heavily involved in
motor learning and coordination, making it an ideal target for
sports training. By developing cerebellar models that simulate
specific sporting movements, coaches and athletes can use
these models to improve their technique and performance.
In addition, the sports training like hurdle refers to both rate
coding and temporal coding which belong to different regions
of the cerebellum [9]. Therefore, such a modeling will be
challenging in that brain regional electrophysiology feature
as well as the interaction between these regions should be
considered.
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IX. FUTURE WORK FOR CEREBELLAR MODELING
There are some new challenges that may be faced by
cerebellar modeling which will be summarized here.

Modeling the cerebellum is a complex task due to the
intricate cellular division and migration events that occur
during its development. For instance, during postnatal devel-
opment [237], [238], [239], [240], GrC progenitors undergo
significant changes while located in the germinal external
GL, which affect the 3D structure and electrophysiology of
cerebellar neurons.

While both immature and mature neurons play critical
roles in motor learning, their differences make modeling
challenging. Currently, researchers have figured out the 3D
ultrastructure of GrCs in the cerebellar cortex during early
stages of postnatal development [214], and GrC migration
model and PC growth model was proposed for the modeling
of the cerebellum during early cerebellar development [241],
but compartment modeling is still lacking. Additionally, there
is a lack of electrophysiological modeling for cerebellar
neuronal development at both the neuronal and network
levels, which is essential for understanding the motor learning
process [242].

Although a refined model for most types of neurons within
the cerebellum, such as GrC, GoC, PC, SC, and IO, has been
established, along with an understanding of the structure-
function-dynamics of the cerebellar cortical microcircuit,
there still exists a weak link between neuronal dynamics,
network characteristics, and animal behavior. For example,
rate-based modeling schemes for PRL of VOR emphasize
the plastic changes of various synapses and the gain and
phase changes of neurons for motor learning while neglecting
neuronal electrophysiological properties [77]. In contrast,
cerebellar modeling with accurate HH and Markovian models
can accurately replicate neuronal electrophysiology, such
as irregular firing of PCs induced by ablated GABAj
inhibition from molecular layer interneurons (MLIs), but it
is challenging to balance such properties in network-level
modeling for PRL of VOR [37], [171].

Furthermore, recent discoveries have raised significant
issues that require more attention, such as MLIs suppressing
CF-evoked dendritic Ca>* spiking in PCs and graded climb-
ing fiber Ca®* signaling by MLIs expanding error coding in
the cerebellum [243], synaptic AMPA receptor endocytosis
in LTD of VOR motor learning [244], intrinsic excitability
increases after dEBC [245], bidirectional plasticity of PCs
in dEBC [82], intact VOR but impaired dEBC for the mice
with PC-specific knockout of calcium-activated K™ channel
SK2 [246], presynaptic NMDAR within GrC to cerebellar
PC in motor learning [247]. These issues are concerned with
subtle cellular machineries at both the neuronal and network
levels, which require more realistic models [45]. All in all, the
experimental progress is ahead of the computational model of
the cerebellum [248].

With the development of realistic models for most
cerebellar neurons and their successful application in various
automation tasks such as SNN for multi-joint robotic
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TABLE 3. Hardware implementation of cerebellar model with its applications.

Scale, Function,

Contributor Platform, applications Neural model Speed Main contribution Ref
- - oT - - -
Yarlnazakl fmd GPU, 1D robotic control 10°, dEBC, 0.985/1s Reall time cerebelllunln can provide supervised learning towards [42]
garashi CLIF engineering application
Luo et al FPGA, simulation of 10%, GL, 0.2565/1s An efficient FPGA-based network on chip architecture was [20]
passage-of-time CLIF : proposed for a large-scale cerebellar GL
. 10°, dEBC, An in-vivo experiment of dEBC was implemented so that rat
Xuetal FPGA, neuroprosthesis CLIF 6dus/ls cerebellum can be replaced by a silicon one (1]
. PEZY-SC processors, 10%, OKR, The cerebellar network which contains more than 1 billion
Yamazaki et al . . 1s/1s . . [226]
model simulation CLIF neurons can work in real time
%1010
Yamaura et al I CO‘T‘p“‘err 6.8*10%, OKR, 425+s/1s The cerebellar network can work with human-scale neurons [34], [35]
model simulation CLIF
GPU, . . .
g il Spepi¥teliting el 96000, OKR, 375ms/1s Scaffoldlpg model was 1mp1emem§d with GPU so that the [70]
. . CLIF running time was accelerated 100 times
simulation
SpiNNaker, scaffolding 97000, Real-time execution of large-scale, bio-physically constrained
gHmatel model CLIF IHE cerebellum model run on SpiNNaker 27
FPGA, neuromorphic 3.5*107, dEBC and OKR, Mapping the cerebellar anatomical structure into the large-scale
Vg il model CLIF = integrate and fire model 2]
Verschure IQR421, robot learning task NM. NM. Alreal-tlmelmode} of the cerebgllar circuitry underlying dEBC [219]
with both simulation and robotic studies
.. . 500, dEBC, A computational model was proposed for cerebellar associative
Loty UQ P, Tl i s IF/rebound NG learning with both simulation and robotic studies 561
. q 500, dEBC, An analog VLSI implementation of a cerebellar model of
Hofstotter VLSI, robot learning task IF/rebound N.M. dEBC [225]
500. dEBC A simple cerebellum model was interfaced with anesthetized
Herreros et al 'VLSI, neuroprosthesis ’ ’ N.M. rat to perform acquisition, retention, and extinction of the [220]
IF/rebound dEBC
500. dEBC A VLSI chip was designed to implement essential cerebellar
Hogri et al VLSI, neuroprosthesis ’ ; N.M. synaptic plasticity rules and was interfaced with cerebellar [43]
IF/rebound X n X
input and output nuclei in real time
Kumar ct al FPGA, neuroprosthesis DCN-deep brain stimulation NM. A real-time FPGA'based closed-loop DBS targeting the DCN [224]
(DBS) for cerebellar ataxia rescue
Carrillo et al EDLUT, robot arm control 2000, dEBC, NM. The cerebellvar model in a robot control system can complete a [221]
IF target-reaching task
C++ controller. robotic arm N.M., A feedforward block, a feedback controller and a cerebellum-
Casellato et al cont;ol 8-like trajectory tracking N.M. like learning module have been integrated and tested with an [222]
Non-spiking model anthropometric robotic arm
C++ based Simulink S N.M., dEBC, . .. o . .
Garrido function, simulated robot Non-spiking model, LLC for N.M. Multlpl? plast1C} ty 'w1th1n.thc sl contlings i g [48]
control in robotic simulation
arm control GL
. . N.M., dEBC,
Luque et al IR S{mulated ligii Non-spiking model, LLC for N.M. 10-DCN plasticity accelerates convergence of learning [49]
weight robot GL
Casellato et al EDLUT, robot arm control 1580, QEBC and VOR, NM. A spllfmg neural network can reproduce dEBC and VOR with a [206]
spiking model robotic system
C++ controller, robot arm 2000" q'EBC ! VIO, The cerebellar controller can reproduce human-like behavior in
Casellato et al Non-spiking model, LLC for N.M. . [41]
control GL real-robot sensorimotor task
Abadia, et al EDLUT, robot arm control 61440, dEBC, NM. A noxfcl blolf)glcal a_pproach for the compliant control of a [40]
IF robotic arm in real time
They propose a cerebellar-like spiking neural network
Abadia, et al O ard ‘S’Egolr chodan 614401'1;1 BIEC N.M. controller which is adaptive, compliant, and robust to variable [13]
sensorimotor delays
EDLUT, humanoid eye 2, WOI, I, HH ikl A real-time SNN dominates the VOR adaptation of the
Naveros et al GrC, state generator; others, <85ms . L . [53]
movements LIF humanoid eye movements mimicking a human being
300, saccade, leaky-integrator The saccade can be implemented with cerebellar model which
Kalidindi et al N.M. saccade adaptation el : y-nteg 100 Hz learns to compensate for the missing sensory feedback, while [223]
units for rate-based model fre g S
also maintaining the movement optimality
GPU, . L .
Torti et al IFE el i @ 1-10980, PC, 107.73s/1s They deISIgn?d a corr}ple.x PC model considering morphological [50]
compartment model detail with different ionic channels
morphology
McKinstry Segway robotic, 27688, similar to dEBC, 40ms/cycle The reflex control of cerebellum can be replaced by the [208]

Traverse S shape courses

rate-based scheme

predictive control

control [13], [40], [49], [53], [206], it is now possible
to create a hardware-in-the-loop system that can test ion
channel influence or cellular/synaptic mechanisms related to
cerebellar behaviors. Using consistent neural spike decoding
methods, we can simulate a series of drug tests on cerebellar
function with this system. For instance, Yamazaki and Tanaka
have simulated dEBC by ablating NMDAR within GrCs
and GoCs to mimic receptor blockade influence [46]. With
a refined model, we can intuitively observe the impact of
NMDARSs within the cerebellum in real-time using such a
robotic system. When it comes to recording neural activity,
there are two main methods: invasive and non-invasive.

170732

Non-invasive methods like EEG and fMRI are used for
complex tasks in which different regions of the brain are
activated together. To analyze these signals, researchers
commonly use functional and structural brain network
connectivity methods. Researchers have also found that non-
invasive electrodes placed on the scalp of the inferior parietal
lobule (which includes CP1) can improve auditory-verbal
working memory in aging individuals [165], [249]. These
macro-level analyses can also be extended to the cerebellum
using fMRI/MRI data [250]. It is important to understand
how micro-level neuronal computation within a local brain
region contributes to macro-level brain activity. A prime
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way to explore this relationship is to model with shared
data between these two levels. Recently, transcranial direct
current stimulation (tDCS) under MRI-based segmentation
are imposed on human cerebellar neurons throughout the
region and then the resulted parameters like extracellular
potential can be applied on 3D multicompartment cerebellar
model with quantitative analysis [250]. Such a combined
methodology protrudes the important of 3D model in real
applications and such a modeling can deepen our under-
standing of mechanisms of the tDCS for neuromodulation
therapy in clinical applications [251], [252]. Furthermore,
understanding the relationship between micro-level neuronal
computation and macro-level brain activity could lead to
more dynamic brain simulations, which would help us better
understand the workings of the brain and the pathogenesis of
neurological diseases.

Here we give some suggestions to different groups.
Firstly, for the neuroscientists who have been engaging
in computational neuroscience, as more and more subtle
regulatory mechanisms are being discovered [253], [254],
computational models need to be enriched to become useful
tools for predicting phenomena that cannot be observed
experimentally. Additionally, simplified aspects in previous
simulations should be re-evaluated, as some seemingly rea-
sonable practices have been shown to be poorly considered.
For example, in cerebellar modeling for motor learning, the
CF inputs to PCs are often modeled as binary (0 or 1) upon
IO firing. The mechanism involved is complex, and whether
CF can serve as the sole instructive signal for all motor
learning processes has not yet been determined [254], [255],
[256]. Secondly, for robotic engineers, cerebellar modeling
can be applied to robots with complex or non-rigid structures.
Cerebellar control excels in flexibility rather than precision.
Neuroprosthetics using cerebellar modeling and control are
particularly worth studying. Additionally, humanoid robots
may benefit from cerebellar control, as this could enhance
emotional acceptance. Thirdly, for theoreticians, cerebellar
modeling may be combined with deep learning theory,
especially with large models. Similar to the large models
used in deep learning, the cerebellum contains an extremely
large number of neurons, with each neuron considered a
dimension. However, it is still unknown how the cerebellum
utilizes numerous neurons for fine regulation. For instance,
a person can write beautifully with a pencil, and after
some practice, can also write beautifully with a pen. Except
for the PF-PC regulation, how this adaptation occurs for
numerous GrCs, and whether there is a paradigm for neuronal
coordination within the cerebellum, requires theoretical
validation.

X. CONCLUSION

In this study, we have focused on reviewing literature related
to cerebellar modeling. Our review covers a range of topics
including animal models, neuron types, network structures
for modeling, neuronal modeling, and the application of
cerebellar modeling in Al and real-time settings. Over the

VOLUME 12, 2024

past 40 years, there has been extensive development in
cerebellar cortex theory, leading to more complex mecha-
nisms being explored and an increased focus on practical
applications. The emergence of Al has further propelled the
exploration of refined network structures and electrophysi-
ology characteristics in cerebellar modeling. This progress
holds significant promise for various areas such as cerebellar-
related neurological disorders, precision robotic arm control,
and computational processes involved in drug metabolism
within the cerebellum. Our research aims to promote the
development of cerebellar modeling by summarizing the
current state of research and identifying key areas for future
investigation.
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