
Received 1 July 2024, accepted 15 July 2024, date of publication 29 July 2024, date of current version 18 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3434743

D2NAS: Efficient Neural Architecture Search With
Performance Improvement and Model Size
Reduction for Diverse Tasks
JUNGEUN LEE , (Member, IEEE), SEUNGYUB HAN , (Student Member, IEEE),
AND JUNGWOO LEE , (Senior Member, IEEE)
Cognitive Machine Learning Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea

Corresponding author: Jungwoo Lee (junglee@snu.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) under Grant 2021R1A2C2014504 (30%); in part by
the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Ministry of Science and ICT
(MSIT), Institute of New Media and Communications (INMAC) under Grant 2021-0-00106 (70%); and in part by the Brain Korea 21
FOUR Program of the Education and Research Program for Future ICT Pioneers (BK21 FOUR), Seoul National University in 2024.

ABSTRACT Neural Architecture Search (NAS) has proven valuable in many applications such as computer
vision. However, its true potential is unveiled when applied to less-explored domains. In this work,
we study NAS for addressing problems in diverse fields where we expect to apply deep neural networks
in the real world domains. We introduce D2NAS, Differential and Diverse NAS, leveraging techniques
such as Differentiable ARchiTecture Search (DARTS) and Diverse-task Architecture SearcH (DASH) for
architecture discovery. Our approach outperforms existing models, including Wide ResNet (WRN) and
DASH, when evaluated on NAS-Bench-360 tasks, which include 10 numbers of diverse tasks for 1D, 2D, 2D
Dense (tightly interconnected data) tasks. Compared toDASH,D2NAS reduces average error rates by 12.2%,
while achieving an 85.1% reduction in average parameters (up to 97.3%) and a 91.3% reduction in Floating
Point Operations (FLOPs, up to 99.3%). Therefore, D2NAS enables the creation of lightweight architectures
that exhibit superior performance across various tasks, extending its applicability beyond computer vision
to include mobile applications.

INDEX TERMS DARTS, diverse task architecture search, gradient-based NAS, mutual information, neural
architecture search (NAS).

I. INTRODUCTION
In machine learning, there has been enormous demand for
automating the model architecture development process,
leading to the emergence of automated machine learning
(AutoML). AutoML aims to streamline and democratize the
intricate task of designing and fine-tuning machine learning
models, enabling practitioners across various domains to har-
ness the potential of advanced algorithms without requiring
expertise in the intricacies of model architecture. Among
the myriad approaches within AutoML, neural architecture
search (NAS) has emerged as a pivotal tool to automatemodel
development, aiming to streamline the design of deep neural

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

networks. This process ensures comparable performance to
handcrafted architectures while minimizing human effort
spent on intricate architecture tuning. As machine learning
applications become diverse, NAS has advanced signifi-
cantly in search space design [1], [2], efficiency [3], and
algorithms [4], [5], [6].

Among NAS methods, differentiable architecture search
(DARTS) [1] has been drawing much attention lately.
DARTS introduces differentiability into the architecture
search process, enabling the use of gradient-based optimiza-
tion methods and transforming discrete architecture search
into a continuous optimization problem. The implications
of DARTS extend beyond efficiency gains, offering a more
scalable and versatile framework for exploring neural net-
work architectures. However, despite the efforts to improve

127074

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-4099-5493
https://orcid.org/0009-0001-8704-8968
https://orcid.org/0000-0002-6804-980X
https://orcid.org/0000-0002-2298-5037

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

search speed and achieve cutting-edge performance on vision
datasets such as CIFAR and ImageNet, NAS methods,
including DARTS, often exhibit suboptimal performance
when applied to tasks beyond their original scope. Despite
the dominance of NAS methods in computer vision bench-
marks, NAS still has limited impact in under-explored or
under-resourced domains where architecture design patterns
are less understood. An analysis of NAS-Bench-360 [7],
a recent benchmark emphasizing task diversity in NAS
evaluation, revealed a significant performance gap between
NAS-discovered models (e.g., DARTS and DenseNAS
[8]) and hand-crafted expert architectures across various
applications.

The recent success in enhancing AutoML generalizability,
such as AutoML-Zero [9] and XD-operations [10], proposes
relaxing inductive biases in standard search spaces. How-
ever, practical deployment challenges hinder AutoML-Zero,
and XD-operations prove prohibitively expensive even for
straightforward problems such as CIFAR-100. In this context,
diverse-task architecture search (DASH) [11] has emerged,
offering expressivity for high accuracy across domains while
preserving the speed and efficiency of discrete architec-
ture search. DASH holds the potential to address com-
putational constraints inherent in traditional differentiable
NAS methods, producing high-quality models that rival
or surpass manually designed networks in various tasks.
However, DASH’s search efficiency and performance of the
final architecture may be influenced by the choice of the
backbone architecture, potentially leading to longer search
times.

In this work, we introduce D2NAS, an architecture
search method that outperforms DASH in diverse tasks
while maintaining the expressivity of AutoML-Zero and
XD-operation. Since DASH uses Wide ResNet (WRN)
[12], [13] as a backbone for kernel pattern optimization,
the final architecture cannot perform beyond the range
that WRN can express. In order to better solve diverse
problems, D2NAS uses cell-based architecture search to
initially find sub-optimal architecture and then use it
as a backbone for kernel pattern optimization instead
of WRN.

We evaluatedD2NASon 10 datasets fromNAS-Bench-360
[7], including tasks such as PDE solving, protein folding,
and disease prediction, considering both accuracy and
performance aspects. Across all 10 tasks, D2NAS has an
error rate that is 12.2% lower than DASH, with an average
reduction of 85.1% in parameters and 91.3% in FLOPs. Con-
sequently, D2NAS, which utilizes task-specific backbones
discovered through architecture search, generates models
with better overall performance than both hand-crafted
architectures and models obtained through AutoML, as can
be seen in Fig. 1. On a task-specific level, D2NAS
surpasses hand-crafted architectures in 8 out of 10 tasks
and outperforms existing automated models in 9 out of 10
tasks.

FIGURE 1. (a) Comparison of the aggregate performance of the task-wise
automated methods, expert models, and D2NAS on ten diverse tasks via
performance profiles [14]. The y-axis is fraction of tasks on which a
method is within logτ -factor of the best. Larger values are better.
(b) Comparison of the number of parameters tested on CIFAR-100. D2NAS
creates a network with fewer parameters compared to other methods or
networks.

II. RELATED WORKS
A. NEURAL ARCHITECTURE SEARCH (NAS)
Neural architecture search (NAS) has emerged as a prominent
approach for automating the creation of task-specific archi-
tectures. The workflow of NAS is divided into three stages:
search space, search strategy, and performance estimation.
Various methods are employed in the search strategy stage.
Many popular search methods have adopted reinforcement
learning (RL) [4], evolutionary algorithms (EA) [5], [6],
or gradient descent algorithms [1], [15], [16], [17] to find
the best-performing candidate architecture. Among these
approaches, gradient descent-based architecture search meth-
ods consistently outperform alternative strategies in terms
of efficiency, simplicity, computational cost, and validation
error.

1) DIFFERENTIABLE ARCHITECTURE SEARCH (DARTS)
DARTS [1] is one of the most representative differentiable
NAS methods. It employs the technique of continuous
relaxation to transform the discrete selection of neural
operations into a well-defined optimization task, all within
a predefined candidate operation set. This process is made
end-to-end differentiable through the use of a softmax
function, allowing for optimization with standard gradient-
based methods.

The first NAS paradigm we consider is cell-based NAS
[4]. In this context, a ‘‘cell’’ is formally defined as a

VOLUME 12, 2024 127075

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

FIGURE 2. The 2-step search process of the proposed hierarchical architecture search. Since the operations at each node are fixed in the first step and the
convolutional operations are replaced by the summed convolution in the second step, the search space is not large, allowing for efficient architecture
discovery.

FIGURE 3. (a) Example of a normal cell with 4 nodes learned on 2D tasks. (b) Example of a normal cell with 3 nodes learned on 1D tasks.

directed acyclic graph (DAG) comprising several nodes.
The fundamental objective of these methods is to search
for a genotype, essentially a cell that encapsulates neu-
ral operations. Subsequently, during the evaluation phase,
an architecture is constructed by replicating the searched cell
and stacking them together.

Among the various search spaces available, DARTS search
space stands as the most prevalent choice. It involves the
assignment of one of eight operations to six edges in two
distinct types of cells. The ‘‘normal’’ cells primarily preserve
the input’s shape, whereas ‘‘reduction’’ cells serve to down-
sample it. P-DARTS [16] enhances both the generalizability
and accuracy of DARTS through a progressive approach that
incrementally deepens the network and refines the set of
candidate operations using a mixed operation weight.

B. ARCHITECTURE SEARCH FOR DIVERSE TASKS
While NAS methods have traditionally targeted computer
vision applications, recent research has explored their
applicability in broader domains such as automated machine
learning (AutoML). Three notable approaches in this direc-
tion are AutoML-Zero [9], XD-operations [10], and DASH
[11].

1) XD-OPERATIONS
XD-operations introduce a unique approach by utilizing
convolutional theorems in architecture discovery. They
expand the search space by expressing convolutions as
formulas involving discrete Fourier transforms and gener-
ating kaleidoscope matrices [18] during the search process.

However, XD-operations are computationally intensive and
may produce less efficient architectures due to the absence of
a discretization step.

2) DASH
DASH employs various techniques, including simplifications
of the discrete Fourier transform (DFT) similar to those used
in XD-operations, to efficiently search for convolutional pat-
terns and integrate them into existing backbone architectures.
DASH is promising in overcoming computational constraints
while achieving competitive accuracy levels. However, the
efficiency of DASH’s search process and the performance of
the final architecture can be influenced by the choice of the
backbone architecture.

3) NAS-BENCH-360
Benchmark datasets and evaluation protocols are crucial
for NAS research. Common benchmarks [19], [20] such
as CIFAR-10 and ImageNet are primarily focused on
computer vision, limiting their suitability for evaluating
diverse tasks. To address this limitation, NAS-Bench-360 [7]
was introduced as a comprehensive benchmark that explores
the potential of NAS in various domains beyond computer
vision. In our experiments, we utilize NAS-Bench-360 as a
benchmark and compare its performance to a state-of-the-art
AutoML baseline (details are in Table 1).

III. UNIFYING SEARCH SPACES OF CELL AND OPERATOR
In this section, we first explain the problem of a large search
space required to simultaneously find two learnable optimal

127076 VOLUME 12, 2024

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

TABLE 1. Information about tasks in NAS-Bench-360. NAS-Bench-360 is a benchmark consisting of a setup consisting of 10 suitable datasets
representing different application areas, dataset sizes, problem dimensions, and learning objectives.

hyperparameters: cell and kernel. We then discuss how a
hierarchical search aids in finding architectures for diverse
tasks. By analyzing the information bottleneck property of
each architecture, we propose a search hierarchy. This begins
with learning promising local approximate cell architectures,
and then finding the optimal kernel of edges for each
task.

A. PROBLEM OF LARGE SEARCH SPACE
The potential search space for cells and operation patterns
(kernel patterns) for multiple diverse tasks, aimed at finding
the optimal architecture from scratch, is much larger than the
search space for DARTS and the multi-scale convolution cell
search space with a fixed backbone for DASH. DARTS starts
with the cell-based architecture search, as shown in Fig. 2-1.
As described in Fig. 3, we initialize the numbers of nodes N
and edge E as |N | = 7, |E| = 14 for 2D tasks as originally
used in DARTS and |N | = 5 and |E| = 9 for 1D tasks.
Since DARTS does not demonstrate the result of 1D tasks,
we design the above numbers for 1D task by empirically
searching on these unknown hyperparameters. The possible
choice of operation is given as 8 kernels, SDARTS =

(Conv3, Conv5, DilatedConv3,2, DilatedConv5,2,
AvgPool, MaxPool, identity, zero). In the case of
DASH, the fixed backbone is based on Wide ResNet,
we can only modify kernel pattern SAggConvK ,D which
denotes the aggregated convolution filter set that is defined
in DASH [11], and covers |K ||D| convolutions, such as
ConvK , DilatedConvK ,D.
We now define a cell as a directed acyclic graph, which

consists of nodes for latent representations and edges for an
energy-based mixed-operation ōi,j from node i to node j:

ōi,j(x) =
∑
o∈S

exp(αi,jo)∑
o′∈S exp(α

i,j
o′)
o(x),

where αo is the weight of a given operator o [1], [11].
To search the architecture of diverse tasks from scratch,

we define the search space S as the union of four

different operation sets: (SAggConvK ,D, AvgPool, MaxPool
identity, zero). As the proposed search space is pro-
portional to O(|E|(|K ||D| + |T |)), where |E|, |K |, |D|, and
|T | are the desired set of the number of edges in a cell,
kernel sizes, dilation rate, and the remaining operations,
respectively, searching on our extended operation search
space is computationally expensive with the differential
architecture search method. For example, the number of
possible combinations of 2-layered cell architectures, which
consist of one normal cell and one reduction cell for 2D
tasks (Fig. 3-(a)) can be computed as 2|E|(|K ||D| + |T |) =
2 ·14(4 ·4+4) = 560, which is 2.5 times larger than DARTS
(2|E||SDARTS | = 2 · 14 · 8 = 224) and 2.7 times larger
than DASH (|E||K ||D| = 13 · 4 · 4 = 208). To improve
upon the vanilla differential architecture search, we propose
the following techniques which build up to the extension of
DARTS and DASH.

B. HIERARCHICAL STRUCTURE FOR OPERATIONS
Since the extended set of possible operations is too large,
we describe a hierarchical structure for candidate operations
to reduce search wall-clock time. As the differential architec-
ture search for building block is based on a Boltzmann mixed
operation, which is also called softmax version of mixed
operators, we can generate a probabilistic graphical model for
our interested operator space S.
To define the proposed hierarchical search space rig-

orously, we introduce two sets: the operation type set
T ={zero, identity, AvgPool, SAggConvK ,D} and
the child set C of the kernel pattern SAggConvK ,D ,K ⊂ K×D =
{(k, d)|k ∈ K and d ∈ D}. Note that we can exclude MaxPool
for the smaller search space by observing that MaxPool is not
empirically critical. Now, we formally define our extended
search space SD2NAS as T × K = {(t, st)|t ∈ T , st ∈ K}.
Note that the child kernel pattern sets for the operation types
{zero, identity, AvgPool} are {default}, which have
no specific shape (only provide default setting). Then, we can
rewrite the probability of the operations o ∈ SD2NAS for

VOLUME 12, 2024 127077

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

edge (i, j) as

P(i,j)(type = t, pattern = s) = P(t|(i, j)) · P(s|t, (i, j)).

By applying the soft-version ofmixed-operations, we provide
the mixture version of operation ōi,j as

∑
t∈O

exp(αi,jt)∑
t ′∈O exp(αi,jt ′)

·

 ∑
s∈Ko

exp(β i,js)∑
s′∈Ko

exp(β i,js′)

 oi,j, (1)

where αt is the weight of a given operation type t and
βs is the weight of a given kernel pattern s = (k, d).
In terms of gradient based bi-level optimization problem for
differentiable architecture search, we can write our proposed
problem as

min
α,β

Lval(w∗(α, β), α, β)

s. t. w∗(α, β) = argmin
w

Ltrain(w, α, β). (2)

As noted earlier, to find the global optimal architecture in the
extended search space SD2NAS = ∪t∈T {(t, st)} is challenging
due to the high dimensional problems with a large sample
size.

C. INFORMATION BOTTLENECK ANALYSIS ON CELL AND
KERNEL
In this section, we discuss the information bottleneck
properties among input data X , the lth hidden layer Hl and
prediction logit Ŷ with given operations S. The information
bottleneck method for each hidden layer l introduces the
following problem with the lagrange multiplier λ as

max
w∗(α,β),α,β

I (Hl, Ŷ ;w∗(α, β))− λI (Hl,X;w∗(α, β)) (3)

to learn the optimal hidden layer Hl which is both maximally
expressive about Ŷ and maximally compressive about X .
Recent studies [31], [32] have shown that the feature
compression effect by lower I (Hl,X;w∗(α, β)) has high
correlation with better generalization performance.

We leverage the above result to measure the feature
compression property evolving through the hidden layers
and compare the performance of each architecture. Further,
we empirically demonstrate that the operation type T is
more principal component of varying I (Hl,X;w∗(α, β)).
In Fig. 5, we present the mutual information estimates of the
first four layers of D2NAS by varing cell architecture and
kernel pattern, respectively. As we note in Fig. 4, the mutual
information estimates diminishes over time, sowe provide the
values of the first four layers for better visualization. We note
that the differential architecture search updates the values
of operation weight and parameters simultaneously, making
the proposed problem of Eq. (2) is a bi-level optimization
problem. For better efficiency, we need to optimize the high
varying variables first. Therefore, our search strategy is to
make the cell search priority higher and search the kernel
pattern based on the cell architecture obtained from the earlier
stage.

Algorithm 1 Differentiable and Diverse Neural Architecture
Search (D2NAS)
1: Initialize: architecture parameters α1, model weights θ1.
2: Split dataset into training and validation sets.
3: while not converged do
4: Sample a mini-batch of training data.
5: Compute the gradient ∇α1Lval(θ1, α1).
6: Update architecture parameters α1 ← α1 −

η∇α1Lval(θ1, α1).
7: Compute the gradient ∇θ1Ltrain(θ1, α1).
8: Update model weights θ1← θ1−η∇θ1Ltrain(θ1, α1).
9: end while
10: Derive the semifinal architecture by selecting

argmaxo∈O α
(i,j)
1o for each edge (i, j).

11: Prepare the set of kernel sizes K and the set of dilation
rate D.

12: Replace each Conv layer in the semifinal architecture
with the mixed operation AggConvK ,D

13: Initialize: architecture parameters α2, model weights θ2.
14: while not converged do
15: Sample a mini-batch of training data.
16: Compute the gradient ∇α2Ltrain(θ2, α2) and
∇θ2Ltrain(θ2, α2)

17: Update architecture parameters α2 ← α2 −

η∇α2Ltrain(θ2, α2).
18: Update model weights θ2← θ2−η∇θ2Ltrain(θ2, α2).
19: end while
20: Derive the final architecture by selecting

argmaxk∈K ,d∈D α2k,d for each AggConv layer.
21: Tune hyperparameters on a subset of the training data.
22: Retrain the discretized model with all training data.

Fig. 4 shows the important relationship between the
generalization performance and information bottleneck. The
architectures with higher prediction performance in Table 2
compress the information of the last hidden layer feature
better. The mutual information I (X ,Hl) decreases more as
the network evolves the deeper layer whether the networks
are trained or not. It implies that the hidden layers compress
the information in the input features to help the final
fully-connected layer to predict values more easily. All layer
outputs of learned cells or blocks at the front have relatively
large mutual information with the input data compared to the
internal layers, because the front layers try to capture the
input feature to predict result successfully by maximizing
I (Hl, Ŷ ;w∗(α, β)) which increases the correlation among
X ,Hl, and Ŷ in Eq. (3). Although the proposed method
D2NAS has fewer parameters than baselines, the repetitive
proposed cell architecture effectively compress the mutual
information I (X ,Hl). It implies that the backbone operator
type is more critical than the kernel pattern when we
consider the comparison between Wide ResNet and DASH
in CIFAR100.

127078 VOLUME 12, 2024

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

FIGURE 4. Results of I(X , Hl) for three types of benchmarks, CIFAR100, DarcyFlow, ECG. Dashed line denotes the initialized model parameters for all
architecture search algorithms. The X axis is normalized to represent the relative depth for each network, and the dots indicate the result of each hidden
layer.

FIGURE 5. Variances of mutual information estimates of the first four
layers of D2NAS for CIFAR100 for 10 random choices of operation type T
and kernel pattern K.

IV. PROPOSED METHOD
In this section, we describe the details of D2NAS in
Algorithm 1, a fast and stable search algorithm designed
to generate a lightweight and high-performance network
architecture for various domains.

A. HIERARCHICAL ARCHITECTURE SEARCH: D2NAS
As discussed in Section III-C, the weight parameters α and
β have different amounts of effect on feature compression
performance, we propose a novel hierarchical differentiable
architecture search algorithm that consists of the two-level
hierarchy (see Fig. 2). This approach is significant for the
architecture search across diverse tasks because the full
combination of operator types and shapes is too large for
the existing NAS methods, where select a small subset
heuristically to reduce the search time. To tackle this problem,
we first optimize on the operator type set T , which has the
lower varying feature compression performance, using initial
choices of kernel pattern for SAggConvK ,D . Note that these

initial choices are only used for finding the operator types
of each node (i, j) on the first stage. After the first stage for
the semi-final architecture with searched operator type t in
line 10 in Algorithm 1 by discretizing cell architecture as
explained in the retrain part in Section IV-B, we then optimize
on the kernel pattern st ∈ K for the cell architecture with the
above searched operator types t . The detailed pseudo-code is
provided in Algorithm 1.

B. FULL PIPELINE
For the proposed method, D2NAS, we evaluate the possible
combinations for searching as follows. In the first stage,
we consider 2|E1||T | = 2 · 14 · 5 = 140 combinations and
apply the intermediate results with the reduced numbers of
edge in the second stage. Then, we have the possible combi-
nations for the second stage as 2|E2||K ||D|Pconv = 2 · 8 · 4 ·
4 ·Pconv = 256 ·Pconv, where E2 and Pconv denote the reduced
number of edges and the selected proportion of Conv3 and
DilatedConv5,2, which are the convolution operators with
arbitrary patterns for selecting operator type in the first stage.
The range of combinations for the second stage lies between
0 and 256 considering Pconv varies within [0, 1]. For the
total search complexity, we aggregate the complexities of the
two stages: O(2|E1||T |) + O(2|E2||K ||D|Pconv). This yields
a simplified range of 140 + 0 = 140 to 140 + 256 = 396.
We note that the achievable complexity is remarkably lower
than 560 in Section III-A even if we have 396 for the number
of choices.

1) CELL-BASED ARCHITECTURE SEARCH
Before initiating cell-based architecture search, it is necessary
to define the cell, including the number of nodes and
edges, and specifying the types of operations. Subsequently,
we determine the number of layers, denoted as L, to ensure
an appropriate combination of normal cells and reduction
cells. For 2D dense tasks (details are in Table 1), the
architecture exclusively comprises normal cells, as these
tasks necessitate the preservation of the input data’s shape.

VOLUME 12, 2024 127079

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

TABLE 2. Comparison of error rates (Lower is better) on NAS-Bench-360 tasks. D2NAS(common) utilized the same hyperparameter set for each group,
categorized by dataset type such as 2D, 2D Dense and 1D, while D2NAS(custom) employed a distinct hyperparameter set for each individual dataset.
Scores of D2NAS are averaged over three trials. Scores of the baselines are from Tu et al. [7] and Shen et al. [11]. D2NAS surpasses expert architectures in
8 out of 10 tasks and outperforms automated models in 9 out of 10 tasks.

TABLE 3. Comparison of the number of parameters and FLOPs. D2NAS(custom) is superior to the original architecture in terms of the computational cost.
D2NAS significantly reduces the number of parameters and FLOPs on average by 85.1% and 91.3%, respectively.

However, in all other scenarios, we identify the layer with
an index i corresponding to the element in the following set,
which then becomes a reduction cell: i ∈

[
L
3 ,max

(
3, 2·L

3

)]
.

In this work, for the 2D task, a single cell is composed of
2 inputs and 4 nodes, following the approach established in
DARTS. However, in the case of the 1D task, we reduced the
number of nodes to 3 (see Fig. 3). While the edge connection
method remains consistent with DARTS, we modified the
set of 8 operations to either 5 or 4 operations based on the
necessity of including pooling operations to reduce the time
required for cell searching.

2) KERNEL PATTERNS SEARCH
In this phase, the network obtained from the preceding
cell-based architecture search step serves as the backbone.
During this stage, DASH conducts joint optimization of both
model weights and architecture parameters through direct
gradient descent, guided by the loss function specific to the
target task to find improved kernel patterns.

3) HYPERPARAMETER TUNING
Incorporating a hyperparameter tuning stage before retraining
allows us to methodically identify the optimal values for

critical parameters, including learning rate, momentum,
weight decay, and dropout rate. This is achieved through a
grid search process.

4) RETRAIN
In the last step, we retrain the model, which has undergone
two stages of discretization, using the optimal hyperparame-
ters along with the complete training dataset. Discretization,
defined in DARTS, is the process to select the most probable
operator from the soft-version of mixed operations in Eq. (1).
The resulting model demonstrates enhanced efficiency when
compared to the original supernet.

V. EVALUATION
In this work, we conducted experiments using 10 datasets
from NAS-Bench-360 [7]. Instead of employing conven-
tional backbone networks such as Wide ResNet (WRN),
we used networks discovered by the progressive architecture
discovery method used in P-DARTS [16] as the backbone.
Subsequently, we evaluated the performance and GPU
latency of the architecture after enhancing the kernel pattern
with DASH [11] and reported the aggregate performance
results via performance profiles [14] to compare performance
of D2NAS and other methods across multiple tasks.

127080 VOLUME 12, 2024

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

FIGURE 6. Discovered cells in cell-based architecture search stage.

VOLUME 12, 2024 127081

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

TABLE 4. Task-specific Hyperparameters.

TABLE 5. Full-pipeline runtime in GPU hours for NAS-Bench-360 tasks
evaluated on a NVIDIA A5000. In 8 out of 10 tasks, runtimes are similar or
shorter than DASH. While D2NAS is inferior to ECG and satellite in
runtime, this is not a serious disadvantage as it can create a very
lightweight architecture with improved performance.

FIGURE 7. Comparison of the aggregate performance of D2NAS and other
competing method on ten diverse tasks via performance profiles [14]. The
y-axis is the fraction of tasks on which a method is within logτ -factor of
the best. The larger the value is, the better.

A. EXPERIMENTAL SETUP
1) SEARCH SPACE
In our cell-based architecture search, we defined a funda-
mental search space consisting of five operations: separable
convolution with a kernel size of 3, dilated separable
convolution with a kernel size of 5, average pooling with a

FIGURE 8. Comparison of architectures including lightweight
architectures tested on CIFAR-100. D2NAS is the most advantageous in
terms of number of parameters and creates an architecture that is not
particularly inferior in terms of performance, FLOPs, and GPU latency.

kernel size of 3, identity, and zero. It is worth noting that the
‘average pooling’ operation can be excluded when working
with datasets that do not require pooling operations. This
omission helps reduce the search space and, consequently, the
search time.

During the kernel search stage, we defined an aggregated
convolution search space with the following parameters: For
2D tasks, we considered kernel sizes ranging from K =
{3, 5, 7, 9} and dilations from D = {1, 3, 7, 15}. For 1D
tasks, our search space encompassed kernel sizes from K =
{3, 7, 11, 15, 19} and dilations from D = {1, 3, 7, 15}.

As part of the DASH method, we replaced each convolu-
tion layer in the cell-based architecture with the aggregated
convolution, while we left convolutions with a kernel size of
1 unchanged, as these kernels serve specific purposes. The
details of all configurations are in Table 4.

2) ARCHITECTURE PARAMETERS
To initiate experiments without prior knowledge of the
datasets, we defined a common set of hyperparameters.
We categorized the 10 datasets in NAS-Bench-360 into
three groups based on their types: 2D, 2D Dense, and

127082 VOLUME 12, 2024

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

TABLE 6. Common hyperparameters for D2NAS pipeline.

TABLE 7. Custom hyperparameters for D2NAS pipeline.

1D (see Table 1). Within each group, we applied common
configurations for the number of cell layers and channels.

Given that we utilized P-DARTS for our cell-based
architecture search, we structured the entire search process
into two stages. The size of the operation space was set to
5 or 4 in stage 1 and reduced to 3 in stage 2, respectively.
We imposed a minimum requirement of 2 layers and 4 input
channels. In the common configuration, the number of layers
L was constrained to the range L = {l|2 ≤ l ≤ 4} at each
P-DARTS stage, while the input channels were set to 8 and
16 for each stage.

During the search for kernel patterns, we kept the same
number of layers and channels as those used in the last
stage of the P-DARTS process. To enhance architectural
capacity, we increased the number of channels several times
during hyperparameter tuning and retraining. In the common
configuration, the number of input channels was initially set
to 16 during the kernel pattern search and later increased to
48 after completing the kernel pattern search.

Following the evaluation, we identified several tasks of the
10 tasks that needed improvement and reran the full pipeline
with custom configurations. The details of all architecture
parameters are in Tables 6 and 7.

B. RESULT AND DISCUSSION
We first study the overall performance of NAS algorithms
over diverse types of tasks in NAS-Bench-360. Table 2
provides the error rate results for all tasks of NAS-Bench-
360. D2NAS outperforms expert architectures in 8 out of
10 tasks and surpasses other automated baseline models in
9 out of 10 tasks. For more details, we conduct the aggregate
performance [14] visualization in Fig. 7. As demonstrated
in Table 2, D2NAS has the largest area under curve, which
means that all tasks can achieve less than 0.4-suboptimality.
The τ−optimality implies that a given algorithm achieves a
worse error rate by the value of τ than the best performance
among all algorithms for comparison, and the fraction of
τ−suboptimal tasks means that the algorithm performs better

VOLUME 12, 2024 127083

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

than τ -suboptimality in the given fraction of tasks. Compared
to other baselines, it is remarkable that D2NAS shows
0-suboptimality in 60% of NAS-Bench-360 tasks and also
reaches 1.0 at the lowest value of τ . For example, while
DASH achieves the second-lowest τ value of 1.0, it does not
achieve 0-suboptimality in any tasks.

For other considerations for the NAS algorithm, Table 5
shows that D2NAS has a shorter full-pipeline runtime in
GPU hours for searching and training than DASH. In detail,
D2NAS outperforms on 5 out of 10 tasks and achieves
similar efficiency to DASH on 3 out of 10 tasks. We also
report the test-time considerations in Table 3. We note that
D2NAS significantly reduces the number of parameters by an
average of 85.1%, with reductions up to 97.3%, and reduces
FLOPs by an average of 91.3%, with reductions up to 99.3%.
This is notable given that D2NAS reduces average error
rates by 12.2% compared to DASH. Despite D2NAS having
larger runtimes in ECG and Satellite, it is not a significant
drawback because we can create a substantially lighter
architecture with improved performance as demonstrated in
Fig. 8, Furthermore, D2NAS has fewer parameters and excels
in terms of GPU latency at test time. Therefore, it can be
considered a viable option for mobile applications as well,
and we report the detailed architectures for all tasks in Fig. 6.
The experimental results demonstrate that our approach

facilitates the creation of more lightweight architectures
compared to the conventional DASH approach, without
incurring significant runtime penalties, while maintaining
generally acceptable performance. Through the definition of
a ‘custom’ hyperparameter set for datasets requiring further
enhancement, we achieved superior performance or even
more lightweight architectures than the common settings,
without experiencing a significant drop in performance.

The advantages of our approach can be attributed to the
remarkable capabilities of hierarchical architecture search,
which enables the transcending of limitations inherent in
the WRN. This approach allows for the identification and
enhancement of sub-optimal architectures that are well-suited
to serve as a robust backbone.

An in-depth study of cell structures shown in Fig. 6 and
convolution patterns offers valuable insights into dataset
characteristics. In our future work, we plan to analyze
these patterns further. This study holds the potential to
unveil innovative architectural enhancements, providing a
deeper understanding of how these structures adapt to diverse
datasets. Such insights can guide the design ofmore adaptable
neural networks.

As mentioned in SectionV-A2, the first stage of our
method for searching cell architecture is based on P-DARTS.
For future work, it may be beneficial to extend the first
stage beyond this framework by studying other variations of
DARTS or alternative methods, as the optimization strategies
of cell architecture are crucial, as shown in Fig. 4. This
approach could allow various optimization algorithms to
reveal more efficient and effective network configurations,
fostering continuous improvement in the field.

VI. CONCLUSION
In this work, We have addressed the challenge of finding
models tailored to underexplored domains through neural
architecture search (NAS). Our proposed method, D2NAS,
not only generates new architectures, but also enhances their
performance. We have demonstrated that D2NAS achieves
comparable or even superior accuracy while significantly
reducing the number of parameters and floating-point opera-
tions per second (FLOPs) compared to existing methods that
do not generate architectures.

One of the noteworthy aspects of D2NAS is its versatility
as well as its practicality. This method can be effectively
employed in mobile applications, where resource constraints
are a crucial consideration. By achieving a balance between
model complexity and performance, D2NAS appears to be
promising for enhancing the efficiency and effectiveness
of deep learning in mobile contexts. In summary, D2NAS
addresses the challenges of custom architecture generation,
model enhancement, and resource efficiency simultaneously.
For novel domains and applications of deep learning, D2NAS
may be effective in tailoring models to specific needs and
constraints.

REFERENCES
[1] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture

search,’’ 2018, arXiv:1806.09055.
[2] H. Cai, L. Zhu, and S. Han, ‘‘ProxylessNAS: Direct neural architecture

search on target task and hardware,’’ 2018, arXiv:1812.00332.
[3] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, ‘‘Efficient

neural architecture search via parameters sharing,’’ in Proc. 35th Int. Conf.
Mach. Learn., 2018, pp. 4095–4104.

[4] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforcement
learning,’’ 2016, arXiv:1611.01578.

[5] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ in Proc. AAAI Conf. Artif. Intell.,
2019, pp. 4780–4789.

[6] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
‘‘Hierarchical representations for efficient architecture search,’’ 2017,
arXiv:1711.00436.

[7] R. Tu, N. Roberts, M. Khodak, J. Shen, F. Sala, and A. Talwalkar, ‘‘NAS-
Bench-360: Benchmarking neural architecture search on diverse tasks,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 12380–12394.

[8] J. Fang, Y. Sun, Q. Zhang, Y. Li, W. Liu, and X. Wang, ‘‘Densely
connected search space for more flexible neural architecture search,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 10625–10634.

[9] E. Real, C. Liang, D. So, and Q. Le, ‘‘AutoML-zero: Evolving machine
learning algorithms from scratch,’’ in Proc. Int. Conf. Mach. Learn., 2020,
pp. 8007–8019.

[10] N. Roberts, M. Khodak, T. Dao, L. Li, C. Ré, and A. Talwalkar,
‘‘Rethinking neural operations for diverse tasks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 34, 2021, pp. 15855–15869.

[11] J. Shen, M. Khodak, and A. Talwalkar, ‘‘Efficient architecture search for
diverse tasks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 16151–16164.

[12] S. Zagoruyko and N. Komodakis, ‘‘Wide residual networks,’’ 2016,
arXiv:1605.07146.

[13] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber,
G. I. Webb, L. Idoumghar, P.-A. Müller, and F. Petitjean, ‘‘InceptionTime:
Finding AlexNet for time series classification,’’ Data Mining Knowl.
Discovery, vol. 34, no. 6, pp. 1936–1962, Nov. 2020.

[14] E. D. Dolan and J. J. Moré, ‘‘Benchmarking optimization software with
performance profiles,’’ Math. Program., vol. 91, no. 2, pp. 201–213,
Jan. 2002.

127084 VOLUME 12, 2024

J. Lee et al.: D2NAS: Efficient NAS With Performance Improvement and Model Size Reduction

[15] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong, ‘‘PC-
DARTS: Partial channel connections for memory-efficient architecture
search,’’ 2019, arXiv:1907.05737.

[16] X. Chen, L. Xie, J. Wu, and Q. Tian, ‘‘Progressive differentiable
architecture search: Bridging the depth gap between search and evalu-
ation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1294–1303.

[17] S. Xie, H. Zheng, C. Liu, and L. Lin, ‘‘SNAS: Stochastic neural
architecture search,’’ 2018, arXiv:1812.09926.

[18] T. Dao, N. S. Sohoni, A. Gu, M. Eichhorn, A. Blonder, M. Leszczynski,
A. Rudra, andC. Ré, ‘‘Kaleidoscope: An efficient, learnable representation
for all structured linear maps,’’ 2020, arXiv:2012.14966.

[19] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
‘‘NAS-bench-101: Towards reproducible neural architecture search,’’ in
Proc. Int. Conf. Mach. Learn., 2019, pp. 7105–7114.

[20] X. Dong and Y. Yang, ‘‘NAS-Bench-201: Extending the scope of
reproducible neural architecture search,’’ 2020, arXiv:2001.00326.

[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[22] T. S. Cohen, M. Geiger, J. Koehler, and M. Welling, ‘‘Spherical CNNs,’’
2018, arXiv:1801.10130.

[23] D. Josephs, C. Drake, A. Heroy, and J. Santerre, ‘‘sEMG gesture
recognition with a simple model of attention,’’ in Proc. Mach. Learn.
Health, 2020, pp. 126–138.

[24] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, ‘‘FSD50K: An open
dataset of human-labeled sound events,’’ IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 30, pp. 829–852, 2022.

[25] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart,
and A. Anandkumar, ‘‘Fourier neural operator for parametric partial
differential equations,’’ 2020, arXiv:2010.08895.

[26] B. Adhikari, ‘‘DEEPCON: Protein contact prediction using dilated
convolutional neural networks with dropout,’’ Bioinformatics, vol. 36,
no. 2, pp. 470–477, Jan. 2020.

[27] K. Zhang and J. Bloom, ‘‘DeepCR: Cosmic ray rejection with deep
learning,’’ J. Open Source Softw., vol. 4, no. 41, p. 1651, Sep. 2019.

[28] S. Hong, Y. Xu, A. Khare, S. Priambada, K. Maher, A. Aljiffry, J. Sun,
and A. Tumanov, ‘‘HOLMES: Health OnLine model ensemble serving for
deep learning models in intensive care units,’’ in Proc. 26th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2020, pp. 1614–1624.

[29] A. Dempster, F. Petitjean, and G. I. Webb, ‘‘ROCKET: Exceptionally
fast and accurate time series classification using random convolutional
kernels,’’ Data Mining Knowl. Discovery, vol. 34, no. 5, pp. 1454–1495,
Sep. 2020.

[30] J. Zhou and O. G. Troyanskaya, ‘‘Predicting effects of noncoding variants
with deep learning–based sequence model,’’ Nature Methods, vol. 12,
no. 10, pp. 931–934, Oct. 2015.

[31] M. Gabrié, A. Manoel, C. Luneau, N. Macris, F. Krzakala, and
L. Zdeborová, ‘‘Entropy and mutual information in models of deep neural
networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018,
pp. 1826–1836.

[32] K. Kawaguchi, Z. Deng, X. Ji, and J. Huang, ‘‘How does information
bottleneck help deep learning?’’ 2023, arXiv:2305.18887.

JUNGEUN LEE (Member, IEEE) received the
B.S. degree in electronics and communication
engineering from Hanyang University, Seoul,
South Korea, in 2013. She is currently pursuing the
M.S. degree with the Department of Electrical and
Computer Engineering, Seoul National University,
Seoul. Additionally, she has been a Staff Engineer
with the Modem Development Team, System LSI
Division, Samsung Electronics Company Ltd.,
since 2013. Her research interests include neural

architecture search and machine learning.

SEUNGYUB HAN (Student Member, IEEE)
received the B.S. degree in electrical and com-
puter engineering from Seoul National University,
South Korea, in 2016, where he is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering. His
research interests include reinforcement learning
and deep learning. He is currently a Reviewer of
NeurIPS, ICML, and ICLR.

JUNGWOO LEE (SeniorMember, IEEE) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, South Korea,
in 1988, and the M.S.E. and Ph.D. degrees in
electrical engineering from Princeton University,
in 1990 and 1994, respectively. He is currently a
Professor with the Department of Electrical and
Computer Engineering, Seoul National University.
He was a member of Technical Staff working on
multimedia signal processing with SRI (Sarnoff),

from 1994 to 1999, where he was the Team Leader (PI) of an $18M NIST
ATP Program. He has been with the Wireless Advanced Technology Lab-
oratory, Lucent Technologies Bell Laboratories, since 1999, and worked on
W-CDMAbase station algorithm development as the TeamLeader, for which
he received two Bell Laboratories technical achievement awards. He holds
21 U.S. patents. His research interests include wireless communications,
information theory, distributed storage, and machine learning. He is also a
member of the National Academy of Engineering of Korea. He received the
QualcommDr. Irwin Jacobs Award, in 2014, for his contributions in wireless
communications. He was a co-recipient of the 2020 IEEE Communications
Society Fred W. Ellersick Prize. He has also been the General Chair of
JCCI 2019 and the Track Chair of IEEE ICC SPC (2016–2017) and was
a TPC/OC Member of ICC 2005, ISITA 2005, PIMRC 2008, ISIT 2009,
ICC 2015, ITW 2015, and VTC 2015s. He was an Editor of IEEE WIRELESS

COMMUNICATIONS LETTERS (WCL), from 2017 to 2021. He was an Associate
Editor of IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (2008–2011) and
Journal of Communications and Networks (JCN) (2012–2016). He has also
been a Chief Editor of KICS journal and an Executive Editor for ICT Express
(Elsevier-KICS), since 2015.

VOLUME 12, 2024 127085

