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ABSTRACT Device-to-device (D2D)-assisted 6G networks are expected to support the proliferation of
ubiquitous mobile applications by enhancing system capacity and overall energy efficiency towards a
connected-sustainable world. However, the stringent quality of service (QoS) requirements for ultra-massive
connectivity, limited network resources, and interference management are the significant challenges to
deploying multiple device-to-device pairs (DDPs) without disrupting cellular users. Hence, intelligent
resource management and power control are indispensable for alleviating interference among DDPs to
optimize overall system performance and global energy efficiency. Considering this, we present a Federated
DRL-based method for energy-efficient resource management in a D2D-assisted heterogeneous network
(HetNet). We formulate a joint optimization problem of power control and channel allocation to maximize
the system’s energy efficiency under QoS constraints for cellular user equipment (CUEs) and DDPs.
The proposed scheme employs federated learning for a decentralized training paradigm to address user
privacy, and a double-deep Q-network (DDQN) is used for intelligent resource management. The proposed
DDQN method uses two separate Q-networks for action selection and target estimation to rationalize the
transmit power and dynamic channel selection in which DDPs as agents could reuse the uplink channels
of CUEs. Simulation results depict that the proposed method improves the overall system energy efficiency
by 41.52% and achieves a better sum rate of 11.65%, 24.78%, and 47.29% than multi-agent actor-critic
(MAAC), distributed deep-deterministic policy gradient (D3PG), and deep Q network (DQN) scheduling,
respectively. Moreover, the proposed scheme achieves a 5.88%, 15.79%, and 27.27% reduction in cellular
outage probability compared to MAAC, D3PG, and DQN scheduling, respectively, which makes it a robust
solution for energy-efficient resource allocation in D2D-assisted 6G networks.

INDEX TERMS 6G, device-to-device communications, double deep Q-network (DDQN), energy efficiency,
federated-deep reinforcement learning (F-DRL), resource allocation.
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I. INTRODUCTION
The upcoming sixth generation of wireless networks (6G) is
envisioned as an indispensable element in various fields of
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the cyber-physical world. It will address the end-to-end con-
nectivity concerning humans and AI-powered autonomous
machines to support ever-present intelligent communica-
tion and contribute towards a human-friendly, sustainable,
and efficient society [1]. It envisages delivering a truly
omnipresent wireless intelligence to unleash various emerg-
ing services such as cyber-physical continuum, green com-
munication, zero-touch cognitive networks, extended reality
(XR), internet of senses (IoS), holographic projections, etc.
[2], [3]. However, ensuring sustainable end-to-end connec-
tivity for massive machine-type communications imposes
stringent QoS requirements in 6G wireless network design
guidelines that emphasize the significance of energy-efficient
resource management to contribute towards self-sustainable
networks (SSNs). Furthermore, it requires privacy-aware and
intelligent context-aware communication links to accommo-
date substantial and heterogeneous traffic demands and mini-
mize energy consumption through machine learning-assisted
communication protocols. In the sight of green communi-
cation, a core economic incentive lies in reducing energy
consumption and global carbon emissions [4].
D2D communication paves the way for minimizing the

system energy consumption and improving spectrum effi-
ciency by connecting the proximity devices through a direct
link without routing the base stations [5], [6]. The dense
deployment of multi-tier heterogeneous devices with diverse
QoS requirements in 6G wireless networks motivates the
implementation of underlay D2D-enabled communication to
overcome the challenges of ubiquitous connectivity, energy
efficiency, latency minimization, and spectral efficiency.
Moreover, the trade-off between spectral and energy effi-
ciency is critical in designing D2D-assisted 6G wireless
networks [7]. However, this trade-off can be addressed by
considering the energy consumption and minimum spectral
efficiency constraints in the energy-efficient resource alloca-
tion problem [8]. Additionally, in underlay communication,
D2D users share licensed spectrum with cellular users, lever-
aging spatial diversity to reuse the spectrum, which enhances
overall network capacity. Nevertheless, employing multi-
ple DDPs for spectrum reuse without interrupting cellular
transmission is challenging because it potentially leads to
interference [9]. Therefore, intelligent resource management
is essential to mitigate interference among UEs and enhance
system performance considering global energy efficiency and
network sum rate [10].
Resource management problems in wireless networks are

conventionally solved using heuristic or suboptimal strate-
gies. However, the emergence of 6G networks presents
joint optimization problems in mixed-integer non-linear pro-
gramming. It involves joint optimizations of resource and
power allocation under computation efficiency constraints.
Moreover, global optimization techniques, such as branch-
and-bound algorithms, heuristic algorithms, etc., face chal-
lenges in solving NP-hard problems due to their exponential
complexity and stringent requirements, including robustness,

resource efficiency, and reliability. To address this, machine
learning (ML) algorithms are considered prospective con-
tenders to bridge the gap between computational complex-
ity and optimal performance [11]. Furthermore, intelligent
resource management enables energy-efficient end-to-end
(E2E) seamless connectivity in multi-tier heterogeneous 6G
networks [12], [13]. Therefore, to jointly optimize network
resources in 6G wireless networks, ML-driven intelligent
resource management requires a paradigm shift in conven-
tional resource management techniques. In addition, many
researchers explored ML-enabled resource management
across different network layers in 6G wireless networks [14],
[15]. Nevertheless, the optimization challenges associated
with mixed integer nonlinear programming and dynamic
environment conditions in ultra-dense and heterogeneous
networks still need further investigation. It highlights the
significance of MLmethods for resource allocation problems
in D2D communication. Furthermore, selecting an optimal
ML technique for joint resource allocation, power control,
and computation complexity in dynamic heterogeneous net-
works is also challenging [16], [17], [18]. Hence, researchers
employed model-free reinforcement learning to overcome
this challenge [19].
Reinforcement learning (RL) empowers autonomous

agents to make sequential decisions by interacting with the
environment through trial and error. This iterative process
involves optimizing past actions, initiating new ones, and
learning from the outcomes dynamically. However, RL suf-
fers from inadequate scalability and high computational
complexity to handle large-scale dynamic networks. Deep
reinforcement learning (DRL) is used to surmount these
constraints by combining the RL strategy with deep neural
networks (DNNs). It employs the trained model to calcu-
late the optimal decision while reducing the computational
complexity. Hence, DRL is an outstanding tool for address-
ing NP-hard optimization problems in wireless networks. Its
ability to make decisions based on optimal policy to explore
feasible solutions with dynamic change renders it a highly
adept candidate for addressing resource management prob-
lems in 6G wireless networks [20].
Federated learning (FL) enables multiple nodes to

contribute towards a single global model training [21].
FL ensures the privacy of local agents through restricted
sharing of their data with external entities [22]. Further-
more, federated reinforcement learning allows individual
users to explore the environment independently while simul-
taneously training a global model to leverage the experiences
of others. Compared with DRL, F-DRL focuses more on
solving collaborative decision-making problems involving
multiple agents through distributed machine learning. As a
decentralized learning paradigm, it ensures users’ data pri-
vacy through cooperative learning in which various nodes
contribute towards a single global model training. Hence,
the devices are trained on local datasets before offload-
ing their models for global aggregation. F-DRL offers a
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scalable and adaptive framework to address users’ privacy
and resource allocation challenges in D2D networks by
leveraging local decision-making and collaborative learning
among distributed agents. However, implementing F-DRL for
joint optimization of resource allocation and power control
for energy efficiency maximization in multi-cell D2D het-
erogeneous networks still needs further investigation. Hence,
this work proposes an F-DRL approach to improve energy
efficiency for a D2D heterogeneous network.We investigate a
decentralized DDQN-based method for joint optimization of
power control and channel assignment under QoS constraints
for cellular and D2D users.

II. RELATED WORK AND CONTRIBUTION
A. RELATED WORK
Recently, DRL has been used extensively for resource
management in D2D-enabled wireless communication. This
section presents recent works on DRL-based methods for
resource allocation to improve system performance, consid-
ering energy efficiency, sum rate, spectrum efficiency, and
users’ privacy. For example, authors in [23] presented deep
deterministic policy gradient (DDPG) to improve the sum
rate and fairness in D2D-assisted NOMA networks. In [24],
a resource-matching framework for D2D-enabled uplink cel-
lular networks is proposed. The authors used a DDQN for
transmit power management while considering the sum rate
of D2D users. In [25], an intelligent resource allocation
method using DQN is presented. It maximizes the overall
throughput in D2D-assisted underlay cellular networks under
minimum SINR threshold requirements for CUEs and DDPs.
In [26], the authors considered DQN for power allocation to
improve the weighted sum rate. In [27], a distributed resource
allocation approach using the Stackelberg game is discussed.
It guides the learning agents by the Stackelberg Q-value to
obtain an optimal policy through the Stackelberg equilibrium.
Further, it maximizes the data rate of all CUEs and improves
spectrum efficiency by sharing uplink channels with DDPs.

In [28], a priority sampling-enabled dueling-DDQN
(PS-D3QN) is presented for co-channel interference man-
agement in D2D communications. In this approach, each
DDP acts as an agent to share the resources for throughput
enhancement. In another work [29], a multi-agent actor-critic
(MAAC) approach is proposed for spectrum allocation in a
D2D underlay network. In [30], [31], [32], the DDQN is used
for resource allocation in D2D communication. The double
estimator method in DDQN prevents the overestimation of
action values, which results in a fairer value to improve
network throughput and spectrum efficiency in these works.
In [33], a multi-agent resource allocation problem is investi-
gated using advantage actor-critic (A2C). It ensures the QoS
requirements of CUEs and DDPs are satisfied while maxi-
mizing the throughput of D2D links. In [34], a framework to
improve the throughput in NOMA-enabled D2D networks is
investigated. A multi-agent DDPG is proposed for channel
assignment to improve the network sum rate considering the
SINR constraints of CUEs and DDPs.

Recent studies have employed DRL to maximize energy
efficiency in D2D-assisted cellular communications. For
instance, in [35], a deep Q-network is presented for
system energy efficiency maximization under throughput
constraints. It exploits two parallel DQNs for transmit
power optimization in a D2D communication environment.
In another work [36], the EE optimization for SWIPT-enabled
D2D communication is presented by leveraging a multi-agent
deep Q-learning model. In [37], subchannel assignment and
power splitting are discussed for IoT-assisted energy harvest-
ing (EH) D2D communication. It aims to maximize energy
efficiency, subject to minimum data rate constraints. In [38],
a multi-agent DQN is presented for system energy efficiency
and throughput maximization in UAV-assisted D2D commu-
nication. This work adopted a non-linear EH approach to
achieve an optimal power-splitting ratio. In [39], the authors
investigated subcarrier allocation and power optimization in a
D2D underlay network. It exploits DDQN for DDPs transmit
power optimization while reducing co-channel interference.
However, these works [35], [36], [37], [38], [39] do not
consider enhancing energy efficiency under the multi-cell
heterogeneous network environment.

Energy efficiency optimization is a critical component
of wireless resource management, which can address the
trade-off between achievable energy harvesting and network
sum rate. For instance, in [40], energy efficiency and fair
scheduling optimization are considered. A DRL model is
trained to optimize the harvested energy and proportionate
fairness among DDPs. In [41], a D2D-assisted cluster asso-
ciation and power optimization for NOMA-based HetNet are
discussed. It aims to maximize energy efficiency by exploit-
ing a twin delayed-DDPG (TD3) method. In [42], a power
allocation scheme using a decentralized DDPG algorithm is
presented. It aims to reduce the energy consumption in a
D2D-NOMA-enabled vehicular network. These works [40],
[41], [42] provide adept proposals for energy efficiency
optimization in D2D heterogeneous networks. However, the
proposed models do not consider the co-channel and cross-
channel interference, which may affect the overall system
performance. In [43], the authors proposed DDPG to max-
imize the average EE of the D2D links in underlay cellular
communication. However, user privacy is not taken into con-
sideration. Furthermore, the issue of non-stationarity can be
addressed by considering the essential information exchange
among UEs, which is achieved through federated edge learn-
ing [44], [45], [46], [47]. Federated learning is cooperative
learning, which reduces the communication overhead at the
server and preserves users’ privacy compared to centralized
data aggregation and training [47].

In recent works, F-DRL has been implemented for resource
allocation and power optimization in D2D-enabled cellular
networks [6], [48], [49]. F-DRL enhances convergence per-
formance by enabling UEs to exchange their experiences.
In [48], the authors developed a D2D-aided digital twin
architecture for industrial IoT edge networks. It utilizes the
Federated-DQN (F-DQN) to maximize the sum throughput
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TABLE 1. Comparison of related work with the proposed approach.

of DDPs. In [49], F-DQN is presented for network through-
put improvement in D2D-enabled HetNet. Nevertheless, the
overestimation of action values in DQN and joint optimiza-
tion of power control and resource allocation to improve
energy efficiency in a multi-cell D2D heterogeneous scenario
are not considered.

The aforementioned studies consider resource allocation
and optimization of energy efficiency in D2D-assisted net-
works. However, there are still some challenges. Firstly, joint
optimization problems of resource allocation, energy, and
computation efficiency are NP-hard due to non-convexity.
Hence, traditional optimization techniques, such as linear
programming, branch-and-bound algorithms, heuristic algo-
rithms, etc., are not scalable to address these problems
due to their exponential complexity. On the other hand,
ML techniques are a promising tool for addressing the
trade-off between computational complexity and optimal
performance [11]. However, the requirement of extensive

training data in supervised learning (SL) and unsupervised
learning (uSL) may limit their applicability to resource man-
agement problems in D2D-assisted communication.

In contrast to SL and uSL, DRL eliminates the need for
extensive pre-collected training data, making it suitable for
dynamic network environments. Despite the advantages of
DRL, the existing works [24], [25], [26], [30], [31], [32],
[35], [37], [38], [39], [40], [42] exploit centralized DRL
schemes, relying on a single global model, which may not
adequately capture the inherent local variations and specific
conditions experienced by individual users within a hetero-
geneous network environment. These centralized DRL-based
methods have not considered collaborative learning, which
could significantly impact system-level performance. For
instance, deploying large-scale D2D networks exacerbates
centralized DRL approaches’ scalability for network resource
management, communication overhead, and potentially com-
promising data privacy [49]. To address these limitations,
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FIGURE 1. Network architecture for F-DRL-empowered D2D-assisted heterogeneous environment.

a decentralized resource allocation framework using F-DRL
is a promising solution for a D2D-assisted heterogeneous
network.

In F-DRL, UEs explore the environment individually and
share their experiences by training a global model. Compared
with multi-agent reinforcement learning methods [27], [29],
[33], [34], [36], the F-DRL approach allows the UEs for
collaborative learning, thus improving the convergence per-
formance [48]. Finally, designing an energy-efficient decen-
tralized framework that jointly optimizes channel allocation
and power control to train a global model considering users’
privacy is still an open issue. This motivates us to leverage
the F-DRL potential for resource allocation and power opti-
mization in a multi-cell D2D-assisted HetNet environment.
Table 1 provides a summary of the comparison of the pro-
posed approach with recent works on DRL-enabled resource
management in D2D-assisted heterogeneous networks. These
related works in Table 1 address the DRL-assisted resource
management and user transmit power control to enhance the
energy efficiency, spectrum efficiency, and network sum rate.

However, the users’ privacy-aware energy-efficient resource
allocation and power control under stringent QoS require-
ments in multi-cell underlay D2D heterogeneous networks
still need further investigation.

B. CONTRIBUTION AND PAPER ORGANIZATION
To address the challenges mentioned above, we investigate
F-DRL for energy efficiency maximization in a device-to-
device heterogeneous network. We propose a decentralized
DDQN-based method to jointly optimize the power con-
trol and channel allocation to ensure users’ privacy under
QoS constraints. To the best of our knowledge, the pro-
posed method is the first endeavor to exploit the F-DRL
as a decentralized learning paradigm for energy efficiency
maximization through power control and channel alloca-
tion in a multi-cell D2D underlay HetNet environment. This
work considers multiple DDPs reusing the same channels
with CUEs to maximize energy efficiency under the QoS
constraints. We evaluate the uplink transmission of the under-
lying D2D system because uplink resources are generally
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not fully utilized compared to downlink resources in cellular
communications. The significant contributions of the paper
are given:

• A framework for joint optimization of power control
and channel allocation in a D2D-assisted HetNet is
proposed. The formulated problem maximizes energy
efficiency while considering the users’ privacy and QoS
requirements for CUEs and DDPs.

• The energy efficiencymaximization problem ismodeled
as reinforcement learning using the Markov decision
process (MDP). Specifically, we delineate the state,
action, and reward for a D2D-assisted HetNet environ-
ment where each UE performs as an agent. It lever-
ages DRL to select the appropriate action to achieve
a predefined objective through interaction with the
environment.

• A federated deep reinforcement learning-based method
is investigated to address users’ privacy and joint opti-
mization of transmit power and channel assignment. The
proposed method employs FL for decentralized training
to ensure user privacy and a double-deep Q-network is
used for intelligent resource allocation. This prevents
overestimation of the target output by separating the
action selection and target output estimation.

• The proposed framework is evaluated in terms of system
energy efficiency and network sum rate, considering
users’ privacy and QoS constraints. The simulation
results depict that the proposed F-DDQN frame-
work performs better than the existing DRL schemes,
highlighting the proposed solution’s scalability and
robustness.

The rest of the article is outlined as follows: Section III
proposes the system model comprising the network, com-
munication, and energy efficiency model. In Section IV, the
EE optimization problem transformed as MDP is discussed.
The Federated-DRL-based resource allocation framework is
given in Section V. Section VI presents simulation conditions
and performance analysis of the proposed approach. Finally,
the conclusion is given in Section VII.

III. SYSTEM MODEL
We consider a D2D-enabled heterogeneous network compris-
ing a macro-cell base station (MBS) and small base stations
(SBSs) with C cellular user equipment (CUEs) and D D2D
pairs (DDPs). Fig. 1 illustrates the network architecture in
which each DDP contains a single transmitter and receiver.
The sets of CUEs, DDP transmitters, and DDP receivers
are given as M = {1, 2, . . . ,m}, N = {1, 2, . . . , n}, N ′ =
{1, 2, . . . , n′} respectively. The list of mathematical notations
is given in Table 2.
In the proposed model, UEs can communicate in cellular

or D2D mode. In cellular mode, UE establishes commu-
nication with the associated base station. Meanwhile, UEs
that can set up a D2D link within a specific distance range
r are called DDPs. The proposed system model leverages

TABLE 2. List of mathematical notations.

FL for the decentralized learning of multiple agents. It dis-
tributes the local MLmodel to shift the computational load to
local UEs, reducing the transmission overhead. Furthermore,
it enables UEs to act as agents, exploring the environment
independently while training a global model through model
aggregation to protect users’ privacy. After the global model
aggregation, the UEs use this trained model for resource
allocation.

We propose a multi-cell communication model with uplink
transmission for the underlay D2D communication, reusing
the same channels with CUE and the base station. The acces-
sible spectrum is partitioned into K channels with bandwidth
denoted as β. Each channel can only be assigned to a maxi-
mumof oneCUE to prevent co-channel interference. Suppose
φmk (t) represents the channel association for the mth CUE on
the kth channel, where φmk (t) ϵ {0, 1}. If φmk (t) = 1, it depicts
that the kth channel is allotted to the mth CUE. On the other
hand, DDPs can transmit using either reuse or cellular mode,
leveraging different channels for each transmission mode.
Consequently, a DDP autonomously and randomly selects
a channel with equal probability from all the accessible
channels in the reuse mode. Nevertheless, when each DDP
operates in cellular mode, it is restricted to select channels
not associated with CUEs. Let φnk (t) represents the channel
assignment indicator for DDPs. If φnk (t) = 1, it shows that
the kth channel is allocated to the nth DDP. In this work, the
flat-fading channel is used, and the noise power is regarded
as a constant at the receiver.

Based on Shannon’s theory, the UEs’ achievable trans-
mission capacity is affected by the channel capacity and
signal-to-interference plus noise ratio (SINR) [50]. Hence,
the SINR is influenced by both the signal power and inter-
ference. In addition, mutual interference between DDPs and
CUEs cannot be avoided due to channel reuse. Consequently,
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the proposed model utilizes the maximal SINR. Let µmb (t)
denote the association relationships of CUEs if the mth user
associates with bth BS at time t, µmb (t) = 1. Similarly,
µnn′ (t) denotes the association relationship between DDPs.
When the nth DDP transmitter connects with the n′th DDP
receiver to form a DDP link at time t, µnn′ (t) = 1.

With the above communication model, the received SINR
at time t from the transmitter of the mth CUE to the bth base
station for the kth channel is represented as:

γ cmbk (t) =
µmb (t)Pcmk (t)Gcmbk (t)∑

u∈M |{m}
(
µub (t)Pcuk (t)Gcubk (t)

)
+ σ c

(1)

where Pcmk (t) and Pcuk (t) denote the mth and uth CUE
transmit power for the kth channel, respectively. Gcmbk (t)
and Gcubk (t) depict the channel gain between the mth CUE
transmitter and the uth CUE receiver of the bth base station
for the kth channel respectively and σ c represents the noise
of the receiver for the cellular link.

Alternatively, the SINR between the nth DDP transmitter to
n′th DDP receiver in the assigned DDP channel is expressed
as:

γ dnn′ (t) =
µnn′ (t)Pdn (t)Gdnn′ (t)∑

u∈N |{n}
(
µun′ (t)Pdu (t)Gdun′ (t)

)
+ σ d

(2)

where Pdn (t) and Pdu (t) are the nth DDP transmitter power
and the uth DDP transmitter power at time t , respectively.
Gdnn′ (t) and G

d
un′ (t) depict the channel gains between the nth

DDP transmitter and the uth DDP transmitter to the n′th DDP
receiver at time t respectively. σ d represents the noise of the
receiver for the DDP link. The transmission rate of the mth
CUE, as determined by Shannon’s theorem, can be defined
using (1) as follows:

Rcmbk (t) =
β

K
log2

(
1+ γ cmbk (t)

)
(3)

Similarly, the data rate of the D2D link with the nth DDP
transmitter and the n′th DDP receiver is defined as:

Rdnn′ (t) = β log2
(
1+ γ dnn′ (t)

)
(4)

Each DDP reuses the aggregate bandwidth assigned to the
multiple CUEs; subsequently, the bandwidth for each DDP
is given by β. Further, the achievable total sum rate obtained
from the sum throughput of both CUE and DDP links can be
written as:

Rsum (t) =
∑

m∈M

∑
b∈B

∑K

k=1
Rcmbk (t)

+

∑
n∈N

∑
n′∈N ′

Rdnn′ (t) (5)

The energy efficiency of the proposed framework can be
modeled as the ratio of the achievable average sum rate and
total power consumption, given by [43]:

EE (t)

=
Rsum (t)∑

m∈M
∑K

k=1 P
c
mk (t)µmb (t)+

∑
n∈N P

d
n (t) µnn′ (t)+Pk

(6)

where Pk denotes the circuit power required for baseline
operations, i.e., power dissipation by the base station.

Cellular outage probability is a performance indicator
that determines the impact of spectrum reuse by D2D
communications on cellular users. This indicator measures
the likelihood that the cellular users’ SINR is less than a
threshold value representing the minimum level of service
required [33]. The outage probability Pr of the mth cellular
user to the bth base station for the kth channel based on (1)
can be expressed as:

Pmbkr = Pr
[
γ cmbk ≤ γth

]
(7)

where γth denotes the minimum threshold value of SINR
received by CUEs.

IV. PROBLEM FORMULATION
We aim to find an optimal solution for joint optimization
of channel allocation and power control to maximize energy
efficiency, considering the QoS constraints for CUEs and
DDPs. This joint optimization problem is formulated as
follows:

P1 : max
γ c,γ d ,Pc,Pd

EE(t) (8)

s.t. C1 : γ
c
mbk (t) , γ dnn′ (t) > γth,∀m∈M ,∀n∈N

(8a)

C2 : 0 < Pcmk (t) ≤ Pcmax ,∀m,∀k (8b)

C3 : 0 < Pdn (t) ≤ Pdmax ,∀n (8c)

C4 : Rcm (t) ,Rdn (t) ≥ Rmin,∀m,∀n (8d)

C5 : µmb (t) , µnn′ (t) ∈ {0, 1} ,∀m ∈ M,∀n∈N

(8e)

where Pcmax and P
d
max indicate the maximum transmit power

for CUE and DDP transmitters, respectively. Moreover, γth
denotes the minimum SINR requirement, and Rmin represents
the minimum throughput requirement for CUEs and DDPs,
respectively. In problem P1, constraint C1 ensures that the
received SINR must be above the minimum received SINR
level for both CUEs and DDPs. The constraints C2 and
C3 guarantee the transmit power of all CUEs and DDPs
to be non-negative and must not be greater than the maxi-
mum transmit power Pcmax and P

d
max , respectively. Constraint

C4 restricts the minimum QoS requirements for CUEs and
DDPs, i.e., it guarantees that the achievable data rate for
the CUEs and DDPs must satisfy the minimum throughput
requirements. Constraint C5 depicts the association between
CUEs and base stations or D2D pairs.

We formulate the optimization problem P1 as a dynamic
channel assignment and power control problem to maximize
energy efficiency subject to QoS constraints for CUEs and
DDPs. The objective of problem P1 is to maximize energy
efficiency, while the constraints on minimum SINR and min-
imum data rate requirements ensure that spectral efficiency is
maintained. These constraints ensure the efficient use of spec-
tral resources bymeeting SINR and throughput requirements.
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Moreover, optimal channel allocation and transmission power
control mitigate interference, thereby enhancing the overall
network capacity.

The optimization problem P1 is characterized as
non-convex and belongs to mixed-integer non-linear pro-
gramming. Hence, using conventional optimization methods
to address this NP-hard problem with inequality constraints
is challenging. Furthermore, conventional optimization tech-
niques are not suitable to handle dynamic resource constraints
or non-linear objective functions, hindering their effective-
ness in this energy-efficient resource management for the
D2D HetNet context. In contrast, reinforcement learning
exploits its dynamic programming ability to learn and adapt to
dynamic conditions, potentially leading to better performance
than the traditional optimization techniques. Consequently,
we formulate problem P1 through the MDP, and DRL is
employed to address this problem.

V. FEDERATED-DRL-BASED RESOURCE ALLOCATION
In this work, Federated-DRL is employed for decentralized
resource allocation. Specifically, the Federated-Double Deep
Q Network (F-DDQN) is used for channel assignment and
power allocation. In the subsequent subsections, we briefly
discuss an overview of RL, DQN, and DDQN. Further,
a detailed description of the proposed framework is provided,
including the DDQN algorithm and FL-basedmodel aggrega-
tion, to achieve privacy-aware and energy-efficient resource
allocation for a D2D-assisted HetNet environment.

A. OVERVIEW OF RL, Q-LEARNING, AND DQN
The reinforcement learning paradigm involves discrete time
agent-environment interactions and an MDP is used to model
these interactions. The MDP basic components include (S,
A, P, π , R), where S depicts the state space and refers to
the agent’s observations of the environment. It comprises all
the possible finite states. A depicts the action space, which
includes all the potential decisions. Each decision in the
action space is called an action for the agent. P denotes
the probability of transition between states, which describes
changes in the environment during agent interactions. If an
agent observes a state st and takes a decision at for a time
instance t , the transition probability Pa(st , st+1) is the like-
lihood that the state becomes st+1 for the subsequent step.
π denotes the agent’s decision rule. The likelihood for taking
action at on the state st by an agent is given asπ (st , at ), where
at ∈ A, st ∈ S, and

∑
at∈A π (st , at) = 1,∀st ∈ S. Moreover,

R represents rewards depending on the current state and
action. When an action is performed, a reward is returned by
the environment, which determines the agent’s performance
in achieving the optimization target. Let the agent perform an
action at at state st ; the reward obtained can be expressed as
rt+1.
Consider an agent executes an action at with the state st

following a policy π at time t. Then, the environment will
determine the agent performance and return a reward rt+1
before proceeding to the next state st+1. Through repeated

iterations, the agent receives a sequence of rewards that are
utilized to determine the total discounted reward, as given by:

Rt =
∑T−1

i=0
λirt+i+1 (9)

where Rt denotes the cumulative discounted reward, and λ

∈ [0, 1) represents the discount factor to quantify an agent’s
weight on future rewards compared to the immediate ones.
RL aims at finding an optimal policy depicted by π∗ for
maximizing the cumulative reward based on the objective
function [51]. Hence, RL is an adaptable approach to address
optimal control problems, making it particularly suitable for
complex environments. Moreover, if state transition probabil-
ities in an MDP are known, dynamic programming (DP) can
be employed to analyze the MDP [52]. Nevertheless, tran-
sition probability acquisition is challenging under dynamic
network conditions, such as heterogeneous D2D communica-
tion. Consequently, model-free RL techniques are exploited
in such scenarios, and Q-learning is widely adopted among
these techniques.

The objective function of Q-learning is represented by a
Q-function comprising the action-state value function. It sig-
nifies the agent’s long-term value after executing actions for
the current state. The expression for theQ-functionwith state-
action pair (st , at ) under a given policy π can be represented
as [28]:

Qπ (st , at) = E[Rt |st = s, at = a] (10)

where Qπ (st , at) represents the long-term mathematical
expected returns obtained through MDP. Further, using the
return function in (9), the Q-function is split into two parts:
the first is the immediate reward, and the second part includes
the discounted Q-function of the next state. Thus, (10) can be
re-written as:

Qπ (st , at) = E[rt+1 + λQπ (St+1, at+1)|st = s, at = a]

(11)

The Q-values are kept in a Q-table in individual state-
action pair format, which is used to learn an optimal policy
π∗ based on the optimal action-value function, denoted by
Q∗ (st , at). The optimal action-value function is expressed
as [30]:

Q∗ (st , at) = max
π

Qπ (st , at) (12)

Equation (12) can be further elaborated using the Bellman
optimality equation as follows [30] and [35]:

Q∗ (st , at)

= E
[
rt+1 + λmax

at+1
Q∗(St+1, at+1)|st = s, at = a

]
(13)

Due to the nonlinear optimality, there is no closed-form
solution to the Bellman equation in (13). Therefore, in
Q-learning, Q∗ (st , at) is iteratively updated using the
sequence of experience samples through agent-environment
interaction. The agent gets experience data in discrete time
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FIGURE 2. The DDQN architecture for resource allocation in D2D HetNet environment.

steps as (st , at , rt , st+1) and updates its learned Q-function
recursively as follows [35]:

Q (st , at)

← Q∗ (st , at)+α

[
rt+1+λmax

at+1
Q(st+1, at+1)− Q (st , at)

]
(14)

where α ∈ [0, 1) represents the learning rate. The agent uses
the ξ -greedy algorithm for balancing the exploitation and
exploration process. In particular, the agent randomly opts
for an action with a probability ξ , or it takes an action to
maximize the action value by a probability of 1 − ξ . This
approach has the advantage of directly approximating the
optimal action-value function,Q∗ (st , at) through the learned
Q-function obtained from (14), regardless of the agents’
policy [53].

Q-learning generally shows significant performance with a
small state and action space. Nevertheless, with a large state
and action space, the size of the Q-value table is increased.
It leads to the curse of dimensionality, wherein algorithm

convergence becomes more challenging. The DRL approach
improves the estimation efficiency of Q-values by using
DNNs [36]. The deep Q-network is a DRL technique that
uses DNNs rather than Q-tables to determine the optimal
policies [54]. The environment state st is input to DNN to
generate the predicted Q-values in the form of Q(st , at ;ω),
at ∈ A where ω indicates the weights of the DNN. Fur-
thermore, the agents learn the optimal policy for Q-function
optimization, which involves the loss function minimization,
given as follows [36]:

L (ω) = E
[
(yt − Q (st , at ;ω))2

]
(15)

whereas yt denotes the target Q-value represented as:

yt = rt+1 + λmax
at+1

Q(st+1, at+1, ω) (16)

In the training phase, the DNN parameters are iteratively
updated for Q-function optimization. This iterative update
process of DNN parameters ω is expressed as [36]:

ω = ω + αE
[
(yt − Q (st , at ;ω))∇Q (st , at ;ω)

]
(17)
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The agent stores experience data in an experience replay
pool as a tuple (st , at , rt+1, st+1) rather than employing a
single experience data for training at each iteration. Hence,
the DNN training involves the selection of a mini-batch of
samples randomly from the experience replay memory [32].
The DQN algorithm employs two Q networks: online and
target networks. Both online and target networks possess
similar architecture but have different weights. The online
network’s weights are represented as ωm, while the target
network’s weights are defined as ωr. Each T training step
replicates online network parameters in the target network.
This iterative update process improves convergence. The tar-
get Q-value given in (16) is reformulated as follows:

yt = rt+1 + λmax
at+1

Q(st+1, at+1, ωr) (18)

Despite its advantages over Q-learning in terms of con-
vergence, DQN still faces some limitations, including over-
estimation. In DQN, a single max mathematical estimator
is employed for action selection and evaluation, resulting
in a larger Q-value estimation than the actual value. When
updating the Q-value function, this positive bias results in an
overestimation. Nevertheless, a DDQN algorithm addresses
this overestimation challenge [55]. The DDQN algorithm
separates the process of selecting an action and evaluating
its value by employing two distinct max function estimators.
The double estimator technique prevents the overestimation
of action values, which results in a fairer value. The target
Q-value given in (18) can be reformulated for DDQN as
follows [32]:

yt = rt+1 + λQ
(
st+1, argmax

at+1
Q(st+1, at+1;ωm);ωr

)
(19)

From equation (19), it can be seen that the estimation
weights ωm are still used to define the best action (argmax)
in this operation. Accordingly, the greedy strategy value is
estimated by the current value given by ωm while the second
set of weights ωr calculates the fairer value of the policy.
In this work, the DDQN algorithm is used to decou-

ple action selection from value estimation. This decoupling
reduces the overestimation bias and enhances the learn-
ing stability in DDQN. Moreover, employing an experience
replay with DDQN improves its learning efficiency [55].
We propose a federated DDQN (F-DDQN) method to jointly
optimize energy efficiency and resource allocation while pre-
serving the user’s privacy in the D2D HetNet environment.
The next section presents the proposed framework.

B. PROPOSED ALGORITHM
This section describes the proposed framework using a
Federated-Double Deep Q-Network algorithm. The pro-
posed scheme leverages the F-DDQN framework to ensure
users’ privacy and prevent overestimating the target output
by separating action selection and target output estimation.
To implement the F-DDQN approach for maximizing the

system energy efficiency formulated as P1, each user equip-
ment acts as an agent to monitor the network state st and
take appropriate action at . Further, a reward is generated for
every time slot, and the executed action is evaluated. In the
proposed framework, the agent, the network state space, the
action space, and the reward function as MDP elements are
given as:
• Agents: Each UE, i.e., D2D and cellular users, is mod-
eled as an agent.

• State Space:The agents examine the state to characterize
the environment, which comprises the SINR information
at BS and D2D receivers and the QoS satisfaction degree
for both CUEs and DDPs. The user’s QoS degree of
satisfaction is denoted by δi (t) , which is defined as:

δi (t) =

 1, Ri (t) ≥ Rmin
Ri (t)
Rmin

, Ri (t) < Rmin
(20)

where Ri(t) denotes the data rate of the ith user equip-
ment, and each user equipment is characterized by a
minimum rate requirement, indicated by Rmin. The QoS
degree of satisfaction for the ith user, represented as
Ri(t)/Rmin, lies within the range [0, 1), where a value
of 1.0 indicates the basic level of QoS satisfaction. For-
mally, the state space S concerning the environmental
parameters is expressed as:

S (t) =

{
γ c1 (t) , . . . , γ cm (t) ; γ d1 (t) , . . . , γ

d
n (t) ;

δc1 (t) , . . . , δcm (t) ; δd1 (t) , . . . , δdn (t)

}
;

∀m ∈ M ,∀n ∈ N (21)

where γ cm (t) and γ dn (t) represent the SINR for the mth
cellular user and nth D2D user at time t, respectively.
Similarly, δcm and δdn (t) represent the QoS satisfaction
degree for themth cellular user and nth D2D user at time
t, respectively.

• Action Space: The agent selects an action at considering
the current state and decision policy for every iteration.
This action is selected from the agent’s action space A,
which comprises the following permissible actions:

A (t) =
{

φc1 (t) , . . . , φck (t) ;φd1 (t) , . . . , φdk (t) ;
Pc1 (t) , . . . ,Pcm (t) ;Pd1 (t) , . . . ,Pdn (t)

}
;

∀k ∈ K ,m ∈ M ,∀n ∈ N (22)

where φck and φdk (t) represent the kth channel assign-
ment for the cellular user and D2D user at time t,
respectively. Similarly, Pcm and Pdn (t) represent the
transmit power for the mth cellular user and nth D2D
user at time t, respectively.

• Reward Function: The proposed scheme utilizes the
energy efficiency metric defined in (6) as the reward
function. This reward function incorporates all con-
straints associated with power allocation and channel
assignment within its formulation. During training, each
agent utilizes feedback from the environment to learn the
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policies that maximize this reward while satisfying the
given constraints. The reward function is expressed as:

r (t) =

{
EE t (s, a) , if constraints are satisfied
0, otherwise

(23)

where EEt represents the energy efficiency utility,
defined in (6).

The DDQN architecture for resource allocation framework
in the D2D-assisted HetNet environment is given in Fig. 2.
The proposed DDQN framework comprises two neural net-
works: a main (online) network, parameterized by ωm for
estimating the Q-value defined by Q(s, a; ωm) and a tar-
get network with parameters ωr which generates the target
Q-value as follows:

yt = rt+1 + λQ(st+1, argmax
a
Q(st+1, at+1;ωm), ωr) (24)

The variables st+1 and at+1 represent the state and action
of the subsequent step, respectively. During training, the main
neural networks’ weights are iteratively updated through
back-propagation. The process of ωm iteration is expressed
as:

ωm
t+1 = ωm

t + αE
[
(yt − Q

(
st , at ;ωm

t
)
)∇Q

(
st , at ;ωm

t
)]
(25)

The loss function is defined as:

L
(
ωm)
= E

[(
yt − Q

(
st , at ;ωm))2] (26)

In the proposed scheme, each base station is equipped
with a local server. Further, an experience replay buffer D
is used, which stores the state experience (sit , a

i
t , r

i
t , s

i
t+1)

to train the ith agent where i = 1: N . The state space S =
{γ cm, γ dn , δcm, δdn } represents the SINR and QoS satisfaction
degree status of the CUEs and DDPs in the current envi-
ronment. The action space A = {φck , φ

d
k ,Pcm,Pdn} comprises

the channel assignment and power allocation decision for
CUEs and DDPs depending on the environment’s current
state. Further, a reward r it is obtained after the execution
of an action ait in the state sit as per (23). Moreover, the
resultant tuple (sit , a

i
t , r

i
t , s

i
t+1) is then stored within D from

which the ith agent employs a random selection process to
choose mini-batch samples for training the DNN parameters
in the subsequent training phase where sit+1 represents the
environment state for the following iteration. The proposed
DDQN algorithm employs a rectified linear unit (ReLU) as
an activation function between layers. The non-linear nature
of ReLU leads to better exploration of the environment.
Furthermore, the ξ -greedy policy is adopted to prevent the
local optima while addressing the trade-off of exploration
and exploitation. The resource allocation process pseudocode
using the DDQN scheme with energy efficiency maximiza-
tion objective is given in Algorithm 1.
The first step of Algorithm 1 entails initializing the main

and target network parameters, with other parameters includ-
ing the number of maximum episodes, training steps, and

Algorithm 1 Resource Allocation Algorithm for
D2D-HetNet using DDQN
Initialize:

1: Initialize the main DQN parameters ωm

2: Initialize the target DQN parameters ωr

3: Initialize training episodes, training steps, and
replay buffer size as Emax, Tmax, and Nc,
respectively.

4: while training episode = 1: Emax do
5: Update the network environment parameters

{si1} i
N
1

6: for t = 1 : Tmax do
7: for i = 1 : N do
8: Observe the state sit
9: Select an action ait using ξ -greedy

policy
10: end for
11: Obtain immediate reward r it i = 1: N

and the subsequent state sit+1 observation
12: Store state experience {sit , a

i
t , r

i
t , s

i
t+1}

into experience replay memory
13: Randomly sample some mini-batches

from the experience replay buffer
14: for each sample, e = {sit , a

i
t , r

i
t , s

i
t+1} do

15: Calculate the target Q-value using
(24) in target network

16: Update ωm using the semi-gradient
of Q-learning using (25)

17: end for
18: Train ωm to minimize the loss function

using (26)
19: Update ωr using soft updates
20: end for
21: end while

Algorithm 2 FL-Enabled Distributed Training

1: Initialize the maximum FL iterations to K.
2: for each model aggregation round, k = 1: K do
3: Initialize the global model parameters ωg

4: Distribute initial parameters to all agents
5: Each agent performs Algorithm 1 using DDQN
6: Each agent uploads local model parameters for

weighted aggregation
7: Global model parameters update through

aggregation server using (27)
8: Distribute updated parameters to all agents

through the aggregation server
9: end for

replay buffer size. In the next step, the DDQNmodel receives
the system’s initial state by observing the network envi-
ronment. The ith agent observes a state sit at a time t and
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executes an action ait , resulting in a change in environment
to obtain a reward r it by (23), then the subsequent state sit+1
is observed by the ith agent. Moreover, the agent executes an
action using the ξ -greedy policy. It selects a random action
for exploration by a probability ξ , or the action with the
largest Q-value is opted by a probability 1-ξ , estimated by the
main network. Next, the target network generates the target
Q-value using (24), i.e., the target network values the selected
action.

Furthermore, the obtained state experience {sit , a
i
t , r

i
t , s

i
t+1}

is copied within the experience replay buffer. After obtaining
the immediate reward, the agent observes the next stage.
For each time till Emax training episodes, some randomly
selected mini-batch samples are extracted from the replay
memory for the subsequent training. A semi-gradient descent
method is adopted for updating the main network param-
eters ωm by (25). Further, the square error function given
in (26) reduces the loss between the main and the target
network.

The primary network parameters are updated in each iter-
ation, whereas the target network parameters are updated
iteratively using soft updates, i.e., by setting ωr

= ωm.
Furthermore, during this training phase, the UEs do not
update the global model online because it uses the data
from the previous environment. Consequently, this training
procedure is termed offline DRL training. Further, the cen-
tral server sends the resource allocation decision to the UE.
Then, the UE can perform the power allocation and chan-
nel assignment according to the corresponding transmission
mode.

After local model training on UEs, algorithm 2 exe-
cutes FL-enabled global model aggregation in the subsequent
phase. We use federated learning to average local models and
update the global model. The aggregation server is located
at MBS and acts as a centralized server. It iteratively updates
the global model parametersωg using local model parameters
obtained from UEs. This model aggregation process can be
defined as [48]:

ωg(t) =

∑K
i=1 iωηmi (t)∑K

i=1 ηi
(27)

where η denotes the size of the training batch of each
agent, ωm and ωg represent the neural network weights
of the local and global model, respectively. As the neu-
ral network weights are directly related to the experience
and memory of each UE, this aggregation process allows
each UE to share experience and memory with other UEs.
Moreover, following the completion of the global model
aggregation, the UEs train the local model by download-
ing the updated global model parameters from the server.
These steps are iterated till convergence is achieved. Further,
on completion of the training, UEs use the trained model to
allocate resources for corresponding communication modes

based on the network states. This process is given in
Algorithm 2.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity for DRL-based methods com-
prises the model training phase and the model inference
phase [23]. In algorithm 1, the training complexity refers to
the DDQN training phase, while the inference complexity
arises when the trained DDQN is used to make decisions
directly at runtime. After completing model training, infer-
ences for optimal network configuration can be made within
milliseconds [43]. The time computational complexity of the
proposed DDQN-based scheme in algorithm 1 can be directly
calculated by the neural network structure [39]. The proposed
DDQN has three fully connected layers: the input, hidden,
and output layers. Let ni be the number of neurons in the
input layer, and nh and no represent the number of neurons
in the hidden layer and output layer, respectively. The com-
putational complexity of each layer is determined through
matrix operation and activation function calculation [36].
The time complexity for computing the input layer to the
hidden layer can be expressed as O (ninh) , and the amount
of calculation from the hidden layer to the output layer can
be described as O (nhno). Therefore, the time complexity
for the forward propagation is calculated as O(nh (ni + no)).
Moreover, the time complexity of the backward pass (back-
propagation and weight update) is similar to the forward
propagation [28]. Since each iteration involves a forward and
a backward pass and let the proposed algorithm converges
after E episodes with I iterations per episode. Hence, the
overall time complexity of algorithm 1 can be represented
as O(EInh (ni + no)). Similarly, based on the neural net-
work weights and biases, the total space complexity can be
described as O(nh (ni + no)).
In the proposed approach, each agent trains a local model,

and these local models are then aggregated into a global
model using federated learning. Since all agents are computed
in parallel, the time computational complexity of a single
agent is the same for all agents [49]. In algorithm 2, the
model aggregation step comprises averaging the parameters
(sum of weights and biases) of all agents. Hence, the time
complexity for model aggregation for K agents is expressed
as O(Knh (ni + no)). Furthermore, the space complexity for
storing the global model is equivalent to storing the parame-
ters of a single model, denoted as O(nh (ni + no)).

VI. PERFORMANCE EVALUATION
In this section, we discuss simulation results to evalu-
ate the performance of the proposed method. It comprises
simulation parameters, a performance comparison of the pro-
posed scheme with existing DRL approaches, and system
performance analysis for different performance indicators,
including network sum rate, energy efficiency, QoS satisfac-
tion degree, and cellular outage probability.
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TABLE 3. List of simulation parameters.

A. SIMULATION SETUP
The proposed network model comprises one MBS, three
SBSs, ten CUEs, and twenty-five D2D pairs. TheMBS radius
is 500m, and the SBS radius is given as 250m. UEs in the sim-
ulation are randomly located, and they can establish cellular
links to communicate with MBS and SBS through cellular
mode or communicate with other UEs through D2D mode.
The maximum transmission distance between the DDP trans-
mitter and receiver is 20m. The value of path loss is specified
as 128.1+ 37.6 log10 d for the MBS link,140.7+36.7 log10
d for the SBS link, and 148+40 log10 d for the D2D link
(where d in km) [4]. The CUE maximum transmit power
is given as 20 dBm; in the case of DDPs, it is specified as
25 dBm. The shadow fading is given by an 8 dB lognormal
distribution [12], [13]. The value of thermal noise power is
specified as−174 dBm. The minimum SINR requirement for
each UE is 3 dBm.

Furthermore, a DDQN is constructed with three fully con-
nected layers: the input, hidden, and output layers. Each
layer has 150, 250, and 200 neurons, respectively. The acti-
vation function is used as ReLU, and Adam is utilized as
an optimizer in the proposed architecture. The proposed
mechanism is evaluated using MATLAB 2023a, installed
in a PC with Intel Core™ i5-11400F CPU, 16 GB random
access memory, and a GPU specified as NVIDIA GeForce
RTX 3060. The simulation time of the proposed approach
is 0.021265 s with 6.1251010 number of operations corre-
sponding to the given time complexity analysis. The discount
factor value is 0.99, while the experience buffer size is 1000.
The epoch’s no. of steps is 20, and the learning rate is
0.01. The initial value of the exploration ξ–greedy policy
algorithm is 1, which gradually drops to 0.005 with a decay
rate of 0.9. Table 3 summarizes the parameters used in the
simulations.

B. SIMULATION RESULTS AND DISCUSSION
In this subsection, we discuss the performance analysis of
the proposed F-DDQN scheme and compare it with other
existing DRL methods, including MAAC [29], Distributed
DDPG (D3PG) [42], and DQN scheduling [35] in terms of
network sum rate, energy efficiency, QoS satisfaction degree,
and outage probability of cellular users. The MAAC-based
approach [29] considers a distributed multi-agent framework
using an actor-critic algorithm. It utilizes the global historical
states, actions, policies, and user cooperation to improve the
system sum rate. In the D3PG-based approach [42], a power
allocation scheme using a decentralized DDPG algorithm is
considered. The DDPG technique integrates the deterministic
policy gradient with the actor-critic method. By employ-
ing decentralized learning, it observes the environment to
determine the actions. Thus, an optimal policy is obtained
to reduce the overall power consumption. In DQN schedul-
ing [35], two parallel DQNs are proposed for transmit power
optimization with dynamic rewards. It considers system
energy efficiency maximization under throughput constraints
and QoS requirements for CUEs and DDPs.

In the first step, we evaluate the network performance by
analyzing the system sum rate of the proposed method and
comparing it with other DRL approaches based on a different
number of users. Fig. 3 shows the network sum rate for vari-
ous numbers of DDPs. The figure illustrates that the network
sum rate increases as the DDPs increase. This is because
more DDPs would be able to explore the channel conditions
to reuse the available channels and consequently achieve
better performance. However, when the number of DDPs
reaches 20, there is no significant increase in the network
sum rate. This occurs because the co-channel interference
significantly increases by increasing the number of DDPs.
Furthermore, the proposed approach gives 15.83%, 27.24%,
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FIGURE 3. Sum rate achieved with different number of DDPs.

FIGURE 4. Sum rate achieved with different number of CUEs.

and 60.21% higher average sum rates than theMAAC,D3PG,
and DQN scheduling, respectively, due to the involvement of
a double Q-learning technique, which exploits two separate
Q-networks for action selection and target estimation. The
proposed approach rationalizes the dynamic channel selec-
tion in which DDPs as agents could reuse the uplink channels
of CUEs to mitigate the interference between UEs.

Fig. 4 shows the system sum rate according to different
numbers of CUEs. It indicates that the network sum rate
increases by increasing the number of CUEs. This is because
DDPs can reuse channels with higher channel gains to sat-
isfy their QoS requirements with less mutual interference by
increasing CUEs in a cell. Moreover, the prioritized expe-
rience replay memory allows each UE to learn its samples
faster. As shown in Fig. 4, the proposed scheme significantly
performs better than the existing methods with respect to
network sum rate and achieves 11.65%, 24.78%, and 47.29%
higher average sum rate than the MAAC, D3PG, and DQN
scheduling, respectively. Fig. 5 presents the network sum rate
under the distinct transmit power of DDPs. Fig. 5 shows
that the network sum rate gradually increases by increas-
ing the transmit power of DDPs. Moreover, the proposed

FIGURE 5. Sum rate versus different transmit power of DDPs.

FIGURE 6. Convergence of proposed scheme with different transmit
power of DDPs.

algorithm enhances performance efficiency, achieving a sig-
nificant improvement in the sum rate over the existing DRL
methods.

Fig. 6 depicts the impact of different transmit power of
DDPs on the convergence of energy efficiency versus training
episodes. Results reveal that average rewards converge to a
higher value as transmit power increases. This demonstrates
that increased transmit power leads to improved system
energy efficiency. Furthermore, Fig. 6 shows that at the
beginning of the learning phase, the trend for average energy
efficiency is approximately the same under specific values
of maximum transmit power. In this case, the agents learn
from their actions and experiences (through trial and error)
in response to feedback signals from the interactive environ-
ment. Consequently, the initial episodes have less knowledge
of the environment. Nevertheless, an adequate number of
episodes allows the agents to acquire sufficient information
about the network model to reach convergence toward the
optimal value of the average energy efficiency.

In Fig. 7, the proposed system energy efficiency is com-
pared with the existing methods under the different transmit
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FIGURE 7. Energy efficiency versus maximum transmit power of DDPs.

FIGURE 8. Energy efficiency versus number of DDPs.

power of DDPs. Results depict that the energy efficiency
increases with higher maximum transmit power. This occurs
because higher transmit power increases the signal strength
between DDPs, allowing them to achieve higher SINR and
improve energy efficiency. Nevertheless, the energy effi-
ciency converges once the maximum transmit power exceeds
20 dBm. Hence, the further increase in the transmit power
(exceeding 20 dBm) causes more interference for other DDPs
or CUEs, leading to a convergence or deterioration in energy
efficiency. Furthermore, the results indicate that the proposed
method optimizes the transmit power of DDPs to reduce the
co-channel interference better than MAAC and D3PG meth-
ods because the transmit power is quantized at fixed levels in
the action space. Moreover, the proposed method decouples
the action selection from value estimation using two separate
max function estimators. This decoupling mitigates the over-
estimation of action values, which results in a fairer value
and enhances the learning stability of the proposed scheme
compared with the DQN method.

Fig. 8 presents the impact of the number of DDPs on the
system’s energy efficiency. It can be seen from Fig. 8 that
adding more DDPs leads to a decrease in energy efficiency.

FIGURE 9. QoS satisfaction degree versus number of DDPs.

FIGURE 10. CUEs outage probability comparison of proposed method
with different DRL schemes.

This happens because the increase in the number of DDPs
leads to a corresponding increase in co-channel interference,
resulting in a degradation of the system sum rate. Hence,
the energy efficiency of a system is significantly impacted
by the number of users. Due to this, when a network has a
massive number of users, network operators need to config-
ure more resources to enhance energy efficiency. Moreover,
the simulation results indicate that, compared with MAAC,
D3PG, and DQN scheduling, the average energy efficiency
of the sys- tem is improved by 16.63%, 34.39%, and 73.53%,
respectively.

Fig. 9 presents the variation in QoS satisfaction degree
with respect to the number of DDPs. The results indicate
that QoS is well-preserved with smaller DDP deployments.
However, adding more DDPs to the environment reduces the
QoS satisfaction degree. This is due to themutual interference
between the DDPs, which becomes more prevalent as the
number of DDPs rises. Thus, the network can only handle
a small number of DDPs due to its limited radio resources.
Nevertheless, the results indicate that when the number of
DDPs reaches 25, the proposed method still outperforms
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the MAAC, D3PG, and DQN scheduling by 2.89%, 7.88%,
and 18.67%, respectively. This implies that the proposed
approach maintains a good QoS satisfaction level, indicating
efficient use of spectral resources.

Fig. 10 demonstrates the comparison of the cellular outage
probability of the proposed F-DDQN method with existing
schemes for different numbers of DDPs. Cellular outage
probability determines the communication quality of CUEs
by calculating the impact of spectrum reuse by DDPs. It mea-
sures the likelihood that the received SINR by CUEs is less
than the minimum SINR required for the threshold level
of communication quality. Fig. 10 shows that the proposed
F-DDQN scheme outperforms the existing DRL schemes
with respect to cellular outage probability and provides a
better communication quality to cellular users, i.e., it min-
imizes disruptions to cellular users by avoiding excessive
interference in the presence of DDPs, which leads to efficient
spectrum sharing between cellular and D2D users. Further-
more, when the number of DDPs reaches 25, the proposed
scheme achieves a 5.88% decrease in outage probability as
compared toMAAC, and it also shows a 15.79% and 27.27%
reduction in outage probability compared to D3PG and DQN
scheduling, respectively, which highlights the scalability and
robustness of the proposed solution. This scalability and
robustness could be advantageous in scenarios where the
system needs to handle a massive number of DDPs.

VII. CONCLUSION
This paper presents a privacy-aware and energy-efficient
resource allocation scheme for D2D-assisted 6G networks.
We investigate the joint optimization of channel allocation
and power control to maximize the system’s energy effi-
ciency subject to QoS requirements for CUEs and DDPs.
The proposed framework employs federated learning-based
decentralized training with global model aggregation to
address the users’ privacy. Further, a double-deep Q-network
is used for intelligent resource allocation. The proposed
approach prevents the overestimation bias of the target
value through the decoupling of action selection and tar-
get estimation, which enhances the learning stability of
agents. Simulation results show that the average energy effi-
ciency of the system is improved by 16.63%, 34.39%, and
73.53% compared to MAAC, D3PG, and DQN schedul-
ing, respectively. Moreover, the proposed method achieves
11.65%, 24.78%, and 47.29% higher sum rates than MAAC,
D3PG, and DQN scheduling, respectively. In conclusion,
the proposed F-DDQN method maintains QoS satisfaction
requirements for cellular and D2D users and shows superior
performance compared with existing DRL schemes, which
makes it a robust and scalable solution for energy-efficient
resource allocation in D2D-assisted communication towards
self-sustainable networks. The proposed framework could
be extended to multi-objective learning for spectrum-energy-
efficient resource allocation in future studies. However, when
a massive number of agents are deployed, the complexity of
both training and aggregation can be significant which could

be an interesting investigation to achieve optimal spectrum-
energy efficiency.
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