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ABSTRACT Amodel predictive control-based heuristic dynamic programming (HDP-MPC) online strategy
is proposed in this paper, to further improve the fuel economy for the series hybrid loaders. The back
propagation neural network (BPNN) is utilized to establish the dynamics model for series hybrid loader,
to effectively characterize its real working process. Next, a HDP-MPC approximate optimal algorithm
is proposed. And its convergence and the controlled system stability are separately proved. Besides,
an online energymanagement strategy based onHDP-MPC is designed to implement the energymanagement
controller. Finally, the BPNN dynamics model and online HDP-MPC strategy are simulated and validated.
Through the experimental results analysis, contrasted with the analytic model, the established dynamics
model can more effectively reflect the actual motion process of the series hybrid loader with higher accuracy.
Moreover, compared with the fuzzy rule-based and adaptive equivalent consumption minimization strategy
strategies, the designed HDP-MPC strategy can respectively achieve fuel-savings of 28.65% and 10.38%,
supplying a new idea for online energy management of the series hybrid loaders.

INDEX TERMS Energy management, fuel optimal control, neural networks, predictive control.

I. INTRODUCTION
Currently, driven by the national dual carbon policy of
China [1], [2], series hybrid loaders (SHLs) have already
become one of the significant approaches to achieve green
sustainable development for loaders [3], [4], [5]. For fully
exploiting the potential of energy saving and emission reduc-
tion [2], [6] of SHLs, it is extremely necessary to choose a
reasonable energymanagement strategy (EMS) to achieve the
power optimization distribution of multiple energy sources
for SHLs [7].
For new energy vehicles, many scholars have proposed

energy optimizationmethods represented by rule-based (RB),
offline global optimization control, and instantaneous energy
consumption control strategies [8], [9]. Among them, the
RB strategies [10] are simple and easy to implement, but
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they excessively depend on expert experience, limiting their
fuel-saving robustness. Although the offline global optimiza-
tion strategies can utilize the prior knowledge to achieve a
global optimal solution for fuel consumption, they are usu-
ally used as a benchmark for evaluating other strategies due
to the heavy computational burden and the whole driving
condition requirements [11]. Thus, for realizing the real-time
optimization of energy consumption, the instantaneous opti-
mization strategies represented by equivalent consumption
minimization strategy (ECMS) [12] were gradually proposed.
However, different from on-road vehicles, SHLs always work
in low speed and high torque conditions, whose working con-
ditions and environment are complex and changeable, putting
forward higher requirements on the robustness of optimiza-
tion methods. This makes the existing energy consumption
methods difficult to directly apply to SHLs.

In recent years, many researchers have presented model
predictive control (MPC) and intelligent control [13],

107872

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-5036-8642
https://orcid.org/0000-0002-7121-2057
https://orcid.org/0000-0002-3382-8213


J. Liu et al.: HDP Online EMS for Series Hybrid Loaders in a Model Predictive Control Framework

[14], [15], [16] optimization methods, providing a new
research idea for the highly nonlinear energy consumption
optimization problem of the SHLs.Wherein, the optimization
goal of the MPC strategies is to achieve the local optimal
control by minimizing the local energy consumption of the
prediction horizon [17]. In this process, firstly, the driving
condition information of the prediction horizon needs to be
predicted for MPC EMSs. Secondly, on the basis of the
predicted information, a rational optimization algorithm [18]
is selected to solve the optimal control sequence in the
prediction time domain. In [19], a MPC EMS based on
Markov speed prediction model was developed, which uti-
lized dynamic programming (DP) algorithm to calculate the
optimal power allocation in the prediction time domain,
achieving the fuel-savings of 29.7% compared to the RB
strategy. Xie et al. [20] designed a stochasticMPCEMSbased
on the Pontryagin minimum principle (PMP), also using
Markov chains to achieve online prediction of vehicle speed.
Meanwhile, the energy optimization effects of the vehicle in
different prediction domains were compared and analyzed.
Aiming at the fuel economy problem of hybrid crawler bull-
dozer, Wang et al. [21] presented a super capacitor energy
state tracking MPC EMS based on Markov prediction. Its
fuel economy under typical working conditions was nearly
6 % higher than that of the RB strategy. In [22], a MPC EMS
based on power demandMarkovmodel was given for fuel cell
hybrid loaders, verifying the effectiveness of using Markov
model to predict energy demand under comprehensive oper-
ating conditions. However, as the vehicle moves forward,
the state transition probability matrices of the Markov chain
increase rapidly, leading to a heavy calculation burden and
poor real-time performance of the strategy. For this reason,
the MPC strategies based on neutral network (NN) were
presented. Xiang et al. [23] introduced a dual-mode power
split EMS based on vehicle speed prediction and nonlinear
model predictive control, using radial basis NN to realize
dynamic prediction of vehicle speed. In [24], integrating the
Markov model and back propagation NN (BPNN), a speed
prediction method was proposed. Then, a MPC EMS was
designed, realizing a better fuel-saving effect than ECMS
under the same working conditions. In [25], a MPC adaptive
control strategy based on deep NN was developed. Although
this strategy consumed 7.79%more fuel than the DP strategy,
it saved fuel about 20% compared with the RB strategy.
However, during the actual working environment, the sudden
change of working conditions of the SHLs can affect the
model accuracy, reducing the fuel-saving effects of the MPC
strategies.

Different from MPC EMSs, the intelligent control strate-
gies are to realize energy consumption optimization control
by the idea of reinforcement learning (RL). In this process,
the optimized effect of the strategy is continuously regulated
and makes it constantly approach the optimal solution of fuel
consumption problem. Yang et al. [26] proposed a real-time
intelligent EMS based on RL and MPC. Compared with

Q-learning and traditional MPC, it significantly strengthened
the real-time performance of the strategy and decreased the
fuel consumption. Considering the global optimization of
battery SoC and operating mode in a fixed path, Wang et al.
[27] designed the adaptive optimal intelligent control and
deep Q-learning intelligent control strategies, respectively.
Finally, the fuel economy and real-time performance of them
were verified and analyzed comparatively through hardware
in loop (HIL) experiment. Integrating engine start-stop and
shifting control, Tang et al. [28] applied a double deep RL
algorithm to develop a novel EMS. In this process, for real-
izing the collaborative learning of power allocation and shift
strategies, a deep Q-network and a deep deterministic policy
gradient were used to control the gear-shifting and the engine
throttle opening, respectively. In [29], a deep RL-basedmulti-
objective control strategy was presented, achieving the fine
adjustment of motor speed, engine power control, and trans-
mission ratio control.

In addition, as a typical representative of intelligent con-
trol strategies, the heuristic DP (HDP) combines the ideas
of RL and DP, which can realize the approximate optimal
control of the controlled object by the mechanism-less model.
Li and Görges [30], [31] presented a self-adaptive loop con-
trol algorithm based on execution dependent HDP. Moreover,
a self-adaptive EMS was designed, achieving energy opti-
mization effects that are very close to DP strategy while
ensuring comfort. In [32], for improving the driving comfort
and energy economy of the vehicle, a double-layer EMS
based on adaptive DP was presented in car-following sce-
narios, including the speed prediction layer based on HDP
and the energy management control layer based on dual
heuristic dynamic programming (DHP). To minimize the
equivalent fuel consumption further, Wang and Jiao [33]
adopted the DHP algorithm to design an online EMS,
improving the fuel economy and the adaptability to differ-
ent driving cycles. Compared with double deep Q-network
and HDP EMSs, the DHP strategy can save fuel by 9.58%
and 6.06% under the actual driving cycle, respectively.
Nevertheless, the optimization effect of intelligent control
strategies excessively relies on the integrality of sample
data and the learning approaches of parameters, confin-
ing their real-time application. Besides, the series hybrid
loaders belong to the electromechanical-hydraulic strong
coupling system, whose complex and changeable working
conditions can easily lead to mismatched fitting data in
intelligent control strategy, reducing the applicability of this
method.

In summary, the existing optimization methods do not
solve the system model mismatch and state instability caused
by the time-varying internal parameters of the compli-
cated working conditions of the SHLs. Therefore, taking a
SHL as research object, this paper designs a novel online
EMS by combining the advantages of the approximate
optimal control of HDP and the rolling optimization of
MPC.

VOLUME 12, 2024 107873



J. Liu et al.: HDP Online EMS for Series Hybrid Loaders in a Model Predictive Control Framework

To realize the above goals, the main contributions of this
paper are as follows:

1) Using BPNN to build the dynamics model of SHL and
establishing its fuel optimization problem;

2) Designing the HDP algorithm based onmodel predictive
control, proving its convergence and the controlled system
stability, and proposing a MPC-based HDP (HDP-MPC)
EMS for SHLs;

3) Executing the simulation comparison analysis for the
presented HDP-MPC strategy based on an actual working
condition.

The rest of the paper is arranged as follows. The dynam-
ics model of SHL and the fuel consumption problem of
rolling optimization are introduced in Section II. Section III
designs the HDP-MPC algorithm and proves its convergence
and the system stability. Then, the MPC-based HDP online
EMS is proposed to implement the energy management
controller. The comparative analysis of the designed strat-
egy is described in Section IV. Finally, the conclusions and
prospects are shown in Section V.

II. DYNAMICS MODEL AND FUEL OPTIMIZATION
PROBLEM
In this section, the powertrain structure of the SHL is
described in Fig. 1, and the features maps of the engine and
motor are displayed in Fig. 2. Besides, the dynamics model
and the fuel optimization problem of the SHL are introduced,
respectively.

FIGURE 1. The powertrain topology of the SHL.

FIGURE 2. The mapping features. (a) The engine map. (b) The motor map.

A. DYNAMICS MODEL OF SHL
Under not considering the impact of complex and variable
environments on its motion state, the dynamics model of SHL

in the discrete domain is usually represented as

x(k + 1)

= f (x(k), u(k), k), k ∈ [k0, kf]

⇒



v(k + 1) = v(k) +
Pwh(k) · 1000
v(k) · mV

−
1

2 · mV
· Ca · ρa · A · v(k)2

−g · (ρr · cos θ (k) + sin θ (k))

nm(k + 1) = nm(k) +
30 · (v(k + 1) − v(k)) · if

π · rwh

SoC(k + 1) = SoC(k) −

Vb −

√
V 2
b − 4 · Pb(k) · Rb

2 · Rb · CAh
(1)

where the step of discrete time k is assumed to be 1(s), k0 and
kf are the start and end moments of the working conditions,
respectively. x and u respectively denote the vectors of the
state and control. mv, g, θ, ρr,CD,A, ρa, Pwh,and v express
the vehicle mass, gravity acceleration, ramp angle, coefficient
of rolling resistance, coefficient of air resistance, frontal area,
air density, wheel power, and vehicle velocity, respectively.
nm, if, and rwh illustrate the motor speed, total gear ratio of
assembly, and wheel radius, respectively. Vb,Rb, and CAh
represent the terminal voltage, inherent resistance, and capac-
ity of the battery pack, respectively.

The total demand power Pd is derived from Pwh, which
is offered by the engine power Pe and battery power Pb
according to the below expression:

Pd(k) = Pwh(k)/(ηm · ηt) = Pb(k) + Pe(k) · ηg (2)

where ηg, ηm,and ηt are the generator efficiency, motor effi-
ciency, and the transmission efficiency, respectively. Because
nm can be calculated by v, the state and control vectors can
be represented by x = [v,SoC]T and u = [Pe,Pb]T.

FIGURE 3. The working scenario.

For SHL under the complex and actual working conditions,
its dynamic process has obvious uncertainty. Therefore, it is
very difficult for the analytical model (1) to effectively char-
acterize its actual motion process. Here, the digging stones
working condition of a SHL is selected as an example to
describe this situation, and the working scenario is shown in
Fig. 3. Accordingly, the detailed dynamic data information of
70 cycles is described in Fig. 4, including the vehicle speed,
the engine power, the battery power, and SoC. It can be clearly
seen that the change process of vehicle parameters is highly
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FIGURE 4. The collected information of the working data for SHL. (a) v .
(b) Pe. (c) Pb. (d) SoC.

FIGURE 5. The BPNN framework of the vehicle dynamics model.

nonlinear in the same working cycle. In addition, in different
working cycles, the change process of the same parameter
is diverse. In other words, the dynamic process of the SHL
is a highly nonlinear system with strong uncertainty. BPNN
has strong fitting ability for the input-output relationships
of nonlinear systems with high uncertainty [34]. Therefore,
the dynamics model of the SHL is established by using the
BPNN. Based on the (3) in [35], x = [v,SoC]T,and u =

[Pe,Pb]T, the BPNN structure is selected as 4-5-2, as shown
in Fig. 5. Here,Wm1 andWm2 represent the weight matrixes
of the input-to-hidden layer and the hidden-to-output layer,
respectively. Namely,

Wm1 =

Wm1_11 . . . Wm1_14
...

. . .
...

Wm1_51 . . . Wm1_54

 ,

Wm2 =

[
Wm2_11 · · ·Wm2_15
Wm2_21 · · ·Wm2_25

]
. (3)

Moreover, the activation functions of the hidden-layer and
the output-layer are selected as tansig and purelin functions,
respectively. Then, the BPNN-based dynamics model of SHL
can be expressed as

x(k + 1) = f (x(k),u(k),k),k ∈ [k0, kf]

⇒


mh1(k) = Wm1(k) × [u(k)T, x(k)T]T

mh2(k) =
1 − e−mh1(k)

1 + e−mh1(k)

x(k + 1) = Wm2(k) ×mh2(k)

(4)

After determining the structure and activation functions
of the BPNN model, the collected data can be used to train
Wm1 andWm2 until the model error Em meets the following
requirements.

Em =
1
2
{
[
ṽ(k) − v(k)

]2
+

[
SõC(k) − SoC(k)

]2
} ≤ εm (5)

where [ṽ,SõC]T denotes the actual state value, and εm
expresses the set target error. The detailed training process
refers to our previous work [35], which is not repeated here.
To determine the finalWm1 andWm2, the data in Fig. 4 and
the (7) in [35] are utilized to train (4). After finishing the
training process, the dynamics model of the SHL is obtained.

B. FUEL OPTIMIZATION PROBLEM OF SHL
According to the built dynamics model of the SHL, its fuel
optimization problem is depicted in this subsection.

Firstly, in fact, although the condition information of the
SHL is hardly to be accurately obtained in advance during
each working cycle, its working route is stationary. Namely,
the fuel optimization problem of the SHL is practically a
finite-time optimization problem. Hence, in the discrete-time
domain, its fuel optimization problem can be written as:

J (x(k)) =

kf∑
j=k

γ j−kQf(x(j), u(j), j), k ∈ [k0, kf − 1]

s.t.x(k + 1) = f (x(k), u(k), k)
v(k) ∈ [vmin, vmax]
nm(k) ∈ [nmin, nmax]
SoC(k) ∈ [SoCmin,SoCmax]
Pe(k) ∈

[
Pe_min,Pe_max

]
Pb(k) ∈

[
Pb_min,Pb_max

]
(6)

where γ ∈ (0, 1] is a discount factor. The subscripts represent
the maximum and minimum values of each variable. The
transient fuel consumption Qf can be solved by the following
formula:

Qf(x(k), u(k), k) = Pe(k) · ṁe(Te, ne) · 1t/(3600 · ρf) (7)

herein, ṁe indicates the fuel consumption rate of the engine,
and its map is characterized by Fig. 2(a). ρf is the fuel density.
Here, for simplifying the expression, Qf(j) is used to replace
Qf(x(j), u(j), j).

In terms of the power-coupling hybrid system, the speed
and torque of engine can be changeable under the same Pe.
While determining Pd for the SHL, it can be allocated to
Pe and Pb under the constraint of (2) by different power
distribution methods. Diverse combinations of Pe and Pb can
generate different fuel consumption for the same v. Therefore,
the optimal distribution solutions of Pe and Pb need to be
determined, to realize the min(J ) in (6).
However, for SHLwith complex and variable working con-

ditions, its future working information is hard to be accurately
acquired beforehand. Hence, the MPC method is adopted
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to solve the fuel optimization problem for SHL. Its crucial
idea is that transforms the global optimization into local
optimization problems to solve in every prediction window,
as described in Fig. 2 in [36]. Accordingly, based on (6), the
rolling optimization problem of the fuel consumption can be
expressed as:

J (x(τ )) =

k+N−1∑
j=τ

γ j−τQf(j) + γ k+N−τ
· F(x(k + N )),

τ ∈ [k, k + N − 1]

= Qf(τ ) + γ · J (x(τ + 1)) (8)

where N is the prediction window size. F(x(k + N )) ≥ 0 is
the terminal cost from k + N to ∞.
Correspondingly, the optimal value function J∗(x(τ )) sat-

isfies the following expression:

J∗(x(τ )) = min
u(x(τ ))

{
Qf(τ ) + γ · J∗(x(τ + 1))

}
,

τ ∈ [k, k + N − 1] (9)

The optimal control action meets:

u∗(x(τ )) = argmin
u(x(τ ))

{
Qf(τ ) + γ · J∗(x(τ + 1))

}
,

τ ∈ [k, k + N − 1] (10)

In this case, the solution process of (9) in every prediction
window is synchronized with (10). This process can be real-
ized by HDP algorithm. For this reason, this paper proposes a
MPC-based HDP approximate optimal algorithm to solve (9),
whose details are described in the next section.

III. ONLINE ENERGY MANAGEMENT STRATEGY BASED
ON HDP-MPC
In this section, a novel HDP-MPC algorithm is presented,
as shown in Fig. 6. Next, its convergence and the control sys-
tem stability are proved, respectively. Furthermore, an online
EMS based on HDP-MPC is proposed to implement the
energy management controller.

A. THE FRAMEWORK OF HDP-MPC ALGORITHM
As shown in Fig. 6, firstly, the rolling prediction idea of
MPC is used to predict the corresponding unknown state set
X ={x(k), x̂(k + 1),. . . , x̂(k + N − 1)} of the system current
state x(k) in the prediction horizon [k, k + N − 1]. Here, x̂ is
the predicted state, and x(τ ) belongs to any quantity in set X .
Secondly, the HDP algorithm is used to solve (9) in the cur-
rent prediction window, which includes two critic networks
(CNs), one actor network (AN), and a model network (MN).
Wherein, based on the predictive state x(τ ), the AN and CN
are utilized to evaluate the approximate value û(x(τ )) and Ĵ ,
respectively. It is worth noting that the parameters of CN1
and CN2 with the same structure are synchronously updated.
The MN is used to describe the dynamic process of the
controlled subject. Specifically, the MN is the BPNN-based
dynamics model established in Section II. Correspondingly,

the optimization principle of the HDP-MPC algorithm is as
follows (supposing the current moment is kth(s)).

FIGURE 6. The architecture of HDP-MPC algorithm.

Firstly, in [k, k + N − 1], according to (9) and (10), u can
be seen as the function of x, implying that û(x(τ )) can be
estimated by the AN based on x(τ ). Then, the dynamics
model of the SHL is used to generate the next moment state
x̂(τ +1) based on x(τ ) and û(x(τ )). Next, Ĵ (x(τ )) and Ĵ (x(τ +

1)) can be estimated by CN1 and CN2 through x(τ ) and
x̂(τ + 1), respectively. Meanwhile, Qf(τ ) can be calculated
by (7).Lastly, for obtaining J∗(x(τ )), based on time-step τ ,
the internal network parameters of AN and CN are continu-
ously adjusted by utilizing Qf(τ )+ γ · Ĵ (x(τ + 1)) and ec(τ )
until they satisfy the set conditions. Namely, in this process,
the approximate optimal solution and parameter adjustment

of each state in state set are executed until
k+N−1∑
j=k

γ j−kQf(j)+

γ k+N−τ
· F(x(k + N )) of this prediction horizon reaches

a minimum value. Specifically, to obtain u∗(x(k)), a value
function J i is defined and it assumes J0(x(τ )) = 0. According
to the value iteration idea, for i = 0, 1, · · ·, the control
action can be iteratively updated by the below expression in
τ ∈ [k, k + N − 1]

ui(x(τ )) = argmin
u(x(τ ))

{
Qf(x(τ ), ui(x(τ ))) + γ · J i(x(τ + 1))

}
,

τ ∈ [k, k + N − 1] (11)

Accordingly, the value function is iteratively updated by:

J i+1(x(τ )) = Qf(x(τ ), ui(x(τ ))) + γ · J i(x(τ + 1)),

τ ∈ [k, k + N − 1] (12)

Based on the above analysis, J∗(x(τ )) and u∗(x(τ )) can be
approximated by updating (11) and (12). Meanwhile, û(x(k))
is regarded as the optimal value u∗(x(k)) at k moment. After
the system executes u∗(x(k)), a new state x(k + 1) generates,
and then the above optimization process is repeated until the
system stops running.

B. THE CONVERGENCE AND CONTROLLED SYSTEM
STABILITY PROOF OF HDP-MPC ALGORITHM
1) THE CONVERGENCE PROOF OF HDP-MPC ALGORITHM
In this subsection, we prove that the proposed HDP-MPC
algorithm can converge to the optimal solution in each pre-
diction time domain. Therein, ui and J i are defined by (11)
and (12), respectively.
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Lemma 1: Let νi is an arbitrary admissible control
sequence, corresponding value function 3i+1 is iterated by:

3i+1(x(τ )) = Qf(x(τ ), νi(x(τ ))) + γ · 3i(x(τ + 1)),

τ ∈ [k, k + N − 1] (13)

If J0(x(τ )) = 30(x(τ )) = 0, then the following inequality
holds.

J i(x(τ )) ≤ 3i(x(τ )), ∀i ≥ 0 (14)

Proof: First of all, as known from (11), ui(x(τ )) is got
by minimizing

{
Qf(τ ) + γ · J i(x(τ + 1))

}
. Then, based on

J0(x(τ )) = 30(x(τ )) = 0, the proof is completed by means
of mathematical induction.
Lemma 2: Defining the value function J i as (12), there

exists an upper bound Z̄ (x(τ )) satisfying:

∀i : 0 ≤ J i(x(τ )) ≤ J∗(x(τ )) ≤ Z̄ (x(τ )) (15)

Proof: Assuming J0(x(τ )) = Z0(x(τ )) = 0, a new
iterative function Z i is defined by:

Z i+1(x(τ )) = Qf(x(τ ), µ(x(τ ))) + γ · Z i(x(τ + 1)),

τ ∈ [k, k + N − 1] (16)

where Z i(x(k + N )) = F(x(k + N )), i ≥ 1, µ is an arbitrary
control strategy that makes the state satisfies the constraints
∥x(τ )∥ < ∞(∀τ = k, k + 1, · · ·, k + N ).

For i ≤ k + N − 1 − τ , it can be had

Z i+1(x(τ ))

= Qf(x(τ ), µ(x(τ ))) + γ · Z i(x(τ + 1))

=

n=1∑
n=0

γ nQf(x(τ + n), µ(x(τ + n))) + γ 2Z i−1(x(τ + 2))

· ··

=

n=i∑
n=0

γ nQf(x(τ + n), µ(x(τ + n))) + γ i+1Z0(x(τ + i+ 1))

(17)

And because Z0(x(τ )) = 0, (17) can be further expressed as:

Z i+1(x(τ )) =

n=i∑
n=0

γ nQf(x(τ + n), µ(x(τ + n))) (18)

Moreover, for i > k +N − 1− τ , the following equation can
be obtained:

Z i+1(x(τ )) =

n=k+N−1−τ∑
n=0

γ nQf(x(τ + n), µ(x(τ + n)))

+ γ k+N−τF(x(k + N ))

= Z̄ (x(τ )) (19)

According to (18) and (19), the below formula holds.

∀i : Z i+1(x(τ )) ≤ Z̄ (x(τ )), (20)

Let νi = µ, from Lemma 1, it can be acquired:

J i(x(τ )) ≤ Z i(x(τ )) (21)

Here, let µ = u∗, it can be obtained based on (21):

J i(x(τ )) ≤ J∗(x(τ )) (22)

Besides, considering u∗ is the optimal control action, it can
be got based on (20):

J∗(x(τ )) ≤ Z̄ (x(τ )) (23)

Therefore, combining (22) and (23), a conclusion can be
drawn that (15) holds for ∀i.
Lemma 3: If J0(x(τ )) = 0, then the below inequality holds

∀i : J i+1(x(τ )) ≥ J i(x(τ )) (24)

Proof: Let νi = ui+1, according to Lemma 1, it can be
known that

3i+1(x(τ )) = Qf(x(τ ), ui+1(x(τ )))

+ γ · 3i(x(τ + 1)), τ ∈ [k, k + N − 1]
(25)

Next, the following formula will be proved by mathematical
induction.

3i(x(τ )) ≤ J i+1(x(τ )) (26)

When i = 0,, it can be had

J1(x(τ )) − 30(x(τ )) = Qf(x(τ ), u0(x(τ ))) ≥ 0, (27)

Suppose 3i−1(x(τ )) ≤ J i(x(τ )) holds, from (12) and (25),
it can be got:

3i(x(τ )) − J i+1(x(τ ))

= γ ·

(
3i−1(x(τ + 1)) − J i(x(τ + 1))

)
≤ 0 (28)

Thus, the proof of (26) is completed. Combining (14) from
Lemma 1 and (26), this conclusion of Lemma 3 can be
obtained.
Lemma 4: In [k, k + N − 1], if J0(x(τ )) = 0, then the

below inequality holds

∀i ≥ N : J i+1(x(τ )) = J i(x(τ )) (29)

Proof: For i ≥ 1, let νi = ui−1, it can be acquired based
on Lemma 1:

3i+1(x(τ ))

=

{
Qf(x(τ ), ν0(x(τ ))) + γ · 30(x(τ + 1)), i = 0
Qf(x(τ ), ui−1(x(τ ))) + γ · 3i(x(τ + 1)), i ≥ 1

(30)

According to (12) and (30), for i ≥ N , it can be shown:

3i+1(x(τ )) − J i(x(τ ))

= γ ·

[
3i(x(τ + 1)) − J i−1(x(τ + 1))

]
= γ 2

·

[
3i−1(x(τ + 2)) − J i−2(x(τ + 2))

]
· ··

= γ k+N−1−τ
·

[
3i−N+τ−k+2(x(k + N − 1))

−J i−N+τ−k+1(x(k + N − 1))
]

(31)
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Considering that when i ≥ N , it can be obtained

3i−N+τ−k+2(x(k + N − 1))

= Qf(x(k + N − 1), ui−N+τ−k (x(k + N − 1))) + γ

· F(x(k + N ))

= J i−N+τ−k+1(x(k + N − 1)) (32)

Combining (31) and (32), the below equation can be obtained

3i+1(x(τ )) = J i(x(τ )), i ≥ N (33)

Meanwhile, according to (14) from Lemma 1, which is given
by

J i+1(x(τ )) ≤ J i(x(τ )), i ≥ N (34)

Therefore, combining (34) and Lemma 3, the proof of
Lemma 4 is finished.
Theorem 1: If J0(x(τ )) = 0, then J i = J∗andui = u∗

when i ≥ N .
Proof:From Lemma 2 and Lemma 3, it can be seen that

the limit of J i exists, that is, when i → ∞, J i → J∞. Based
on (12), it can be known

J∞(x(τ )) =

k+N−1∑
j=τ

γ j−τQf(x(j), u∞(x(j)))

+ γ k+N−τ
· F(x(k + N )), τ ∈ [k, k + N − 1]

(35)

It can be seen from Lemma 2 that J i(x(τ )) is bounded. Thus,
J∞(x(τ )) is also bounded. This means ∥x(j)∥ < ∞, j ∈

[τ, k + N ] in the constrains of u∞. Let µ = u∞, it can be
got from Lemma 2:

J∗(x(τ )) ≤ J∞(x(τ )) (36)

Meanwhile, according to Lemma 2, it can be obtained by

J∞(x(τ )) ≤ J∗(x(τ )) (37)

Hence, based on (36) and (37), it can be obtained that
J∞(x(τ )) = J∗(x(τ )). Then, combining Lemma 4, the fol-
lowing equality holds.

J i(x(τ )) = J∞(x(τ )) = J∗(x(τ )), i ≥ N (38)

Considering (11) and the definition of u∗ in (10), it can be
easily got that ui = u∗ when i ≥ N . So far, the Theorem 1 is
proved.

2) STABILITY PROOF OF THE CONTROL SYSTEM BASED ON
HDP-MPC
The optimal value function of (9) can be rewritten on the basis
of (8):

J∗(x(τ )) =

k+N−1∑
j=τ

γ j−τQf(x(j), u∗(x(j)))

+ γ k+N−τ
· F(x(k + N )), τ ∈ [k, k + N − 1]

(39)

It can be inferred from Lemma 2 that J∗(x(τ )) is bounded.
And then, we make the following assumption.
Assumption 1: There exists a first-order continuous deriv-

able function F(·), for ∀τ ∈ [(n − 1)N , nN − 1] and n =

1, 2, 3 · ··, satisfying

J∗(x(τ )) ≤ F(x(τ )) (40)

Theorem 2: If Assumption 1 holds, then the controlled
system (1) based on the HDP-MPC method is asymptotically
stable in the mean sense.

Proof: In the nth prediction time domain [(n − 1)N ,

nN − 1], defining the Lyapunov function:

J (τ ) = J∗(x(τ )) (41)

where τ ∈ [(n− 1)N , nN − 1], here, for simplification, γ is
set to 1. Based on (39), it can be had

J (τ ) = Qf(x(τ ), u∗(x(τ ))) + J (τ + 1) (42)

According to the definition of the optimal value function
J∗(x(τ )), it can be concluded that J (τ ) ≥ 0.Then, 1J (τ ) =

J (τ + 1) − J (τ ) < 0 will be proved when Qf(x(τ ),
u∗(x(τ ))) ̸= 0.
1) Case 1: For (n− 1)N ≤ τ < τ + 1 ≤ nN − 1, it can be

obtained based on (42)

1J (τ ) = J (τ + 1) − J (τ ) = −Qf(x(τ ), u∗(x(τ ))) (43)

2) Case 2: For τ = nN − 1, according to Assumption 1
and (41), the below inequality satisfies.

J (τ + 1) = J∗(x(τ + 1))

≤ F(x(τ + 1))

= J (τ ) − Qf(x(τ ), u∗(x(τ ))) (44)

Therefore, it can be concluded that

1J (τ ) = J (τ + 1) − J (τ ) = −Qf(x(τ ), u∗(x(τ ))) (45)

Based on (43) and (45), 1J (τ ) < 0, ∀τ = 0, 1, 2, · · ·, ∞

always holds when Qf(x(τ ), u∗(x(τ ))) ̸= 0. According to
the Lyapunov stability theorem, J (τ ) is a Lyapunov function,
so Theorem 2 is proved.

C. DESIGN OF THE CONTROLLER
In order to obtain u∗ each time for energy management
controller, the network parameters of AN and CN need to be
continuously adjusted. In addition, for realizing this process,
the specific structures of the AN and CN need to be known
in advance. In this paper, BPNN with strong nonlinear fitting
and self-learning abilities is adopted to establish the CN and
AN in predictive horizon [k, k + N − 1]. Here, to simplify
expression, J (τ ) and u(τ ) are used to replace J (x(τ )) and
u(x(τ )), respectively.
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1) DESIGN OF CRITIC NETWORK
Firstly, based on the input-output relationship of the critic
network in Fig.6, a BPNN with 2-5-1 structure is selected
to describe the internal structure of the CN, shown in Fig.7
(a). Considering the nonlinearity of information processing
for CN, tansig and purelin functions are chosen as the transfer
functions for the hidden-layer and output-layer, respectively.
Meanwhile, the thresholds for two layers are set to 0. Accord-
ingly, in τ ∈ [k, k + N − 1], the transfer relationship of the
CN can be represented as

ch1(τ ) = W i
c1(τ ) × x(τ )

ch2(τ ) = (1 − e−ch1(τ ))
/
(1 + e−ch1(τ ))

Ĵ i(τ ) = W i
c2(τ ) × ch2(τ )

(46)

FIGURE 7. BPNN structures for the control network. (a) CN. (b) AN.

where W c1 and W c2 are the weight matrixes of the input-to
hidden and the hidden-to-output layers, respectively. i is the
iterations. Since the CN learning target is tominimize ec(τ ) =

Ĵ i(τ ) − Qf(τ ) − γ Ĵ i(τ + 1), that is

Ec(τ ) =
1
2
e2c(τ ) ≤ εc (47)

Herein, εc is a set error, and Ec can be utilized to updateW c1
and W c2. Considering the real-time training and computa-
tional complexity, the gradient descent method is selected to
train W c1 and W c2. The specific updating processes are as
follows:

1W i
c1(τ ) = lc(τ )[ −

∂Ec(τ )

∂W i
c1

]=lc(τ )

[−
∂Ec(τ )

∂ Ĵ i(τ )

∂ Ĵ i(τ )
∂ch2(τ )

∂ch2(τ )
∂ch1(τ )

∂ch1(τ )

∂W i
c1(τ )

]

= −
1
2
lc(τ ) · ec(τ ) ·

{
WTi

c2(τ ) ⊗ [1 − ch2(τ ) ⊗ ch2(τ )]
}

×xT(τ )
W i+1

c1 (τ ) = W i
c1(τ ) + 1W i

c1(τ )
(48)

1W i
c2(τ ) = lc(τ )[ −

∂Ec(τ )

∂W i
c2(τ )

]

= lc(τ )[ −
∂Ec(τ )
∂ec(τ )

∂ec(τ )

∂ Ĵ i(τ )

∂ Ĵ i(τ )

∂W i
c2(τ )

]

= −lc(τ ) · ec(τ ) · cTh2(τ )
W i+1

c2 (τ ) = W i
c2(τ ) + 1W i

c2(τ )

(49)

where, lc ∈ (0, 1] denotes the learning factor. × and ⊗

respectively represent the product and Kronecker product of
the matrices.

2) DESIGN OF ACTOR NETWORK
Then, the AN is analyzed. Qf(τ ) + γ Ĵ i(τ + 1) reaching a
stable value is the AN learning target. It can be seen from (2),
for the require power Pd(τ ) of SHL at the τ th(s), Pb(τ ) and
Pe(τ ) are not completely independent. In other words, while
determining Pe(τ ), Pb(τ ) can be achieved via utilizing

Pb(τ ) = Pd(τ ) − Pe(τ ) · ηg (50)

Besides, Qf is only related to Te and ne from (7). There-
fore, û(τ ) can be regarded as [Pe(τ ),Pd(τ ) − Pe(τ ) ·

ηg]T.Herein, the AN is used directly to obtain Pe(τ ). Specif-
ically, a BPNN with 2-5-1 architecture is chosen to depict
the internal structure of the AN, as described in Fig.7 (b).
Similarly, the activation functions of its hidden and output
layers still choose tansig and purelin functions, respectively.
Then, in τ ∈ [k, k + N − 1], the forward calculation process
of the AN can be written as


ah1(τ ) = W i

a1(τ ) × x(τ )

ah2(τ ) = (1 − e−ah1(τ ))
/
(1 + e−ah1(τ ))

Pie(τ ) = W i
a2(τ ) × ah2(τ )

(51)

where W a1 and W a2 are the weight matrixes of the input-to
hidden layer and the hidden-to-output layer, respectively.
Herein, the gradient ascent method is used to adjust W a1
andW a2 by using Qf(τ ) + γ Ĵ i(τ + 1). The specific training
processes are as below:



1W i
a1(τ ) = la(τ ) · [

∂
[
Qf(τ ) + γ Ĵ i(τ + 1)

]
∂W i

a1(τ )
]

= la(τ ) · [
∂

[
Qf(τ ) + γ Ĵ i(τ + 1)

]
∂ui(τ )

∂ui(τ )
∂ah2(τ )

∂ah2(τ )
∂ah1(τ )

∂ah1(τ )

∂W i
a1(τ )

]

=
1
2
la(τ ) ·WTi

a2(τ ) × [
∂Qf(τ )
∂ui(τ )

+
γ

4
·Wm2(τ )

×{Wm1u(τ )

⊗[1 −mh2(τ ) ⊗mh2(τ ),1 −mh2(τ ) ⊗mh2(τ )]}

×WTi
c1(τ ) ×

{
WTi

c2(τ ) ⊗ [1 − ch2(τ + 1) ⊗ ch2(τ + 1)]
}
]

⊗[1 − ah2(τ ) ⊗ ah2(τ )] × xT(τ )

W i+1
a1 (τ ) = W i

a1(τ ) + 1W i
a1(τ )

(52)
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1W i
a2(τ ) = la(τ ) · [

∂
[
Qf(τ ) + γ Ĵ i(τ + 1)

]
∂W i

a2(τ )
]

= la(τ ) · [
∂

[
Qf(τ ) + γ Ĵ i(τ + 1)

]
∂ui(τ )

∂ui(τ )

∂W i
a2(τ )

]

= la(τ ) · (
∂Qf(τ )
∂ui(τ )

+
γ

4
·Wm2(τ ) × {Wm1u(τ )

⊗[1 −mh2(τ ) ⊗mh2(τ ),1 −mh2(τ ) ⊗mh2(τ )]}
×WTi

c1(τ )

×

{
WTi

c2(τ ) ⊗ [1 − ch2(τ + 1) ⊗ ch2(τ + 1)]
}
) × aTh2(τ )

W i+1
a2 (τ ) = W i

a2(τ ) + 1W i
a2(τ )

(53)

where, la ∈ (0, 1] denotes the learning factor. Wm1u =

Wm1(:,1:2).
After designing the structures of the CN and AN, the

energy management controller based on HDP-MPC will be
realized by designing the online EMS.

D. ONLINE EMS BASED ON HDP-MPC
As known from (1), the state information of working con-
dition includes the vehicle speed v and SoC. For solving
MPC-based HDP strategy, firstly, it is very necessary to
predict the working condition state information in prediction
horizon in advance, which will be elaborated in detail in
this subsection. For speed online prediction, a double-layers
speed prediction model based on BPNN and long short-term
memory (BPNN-LSTM) have been designed. Please refer to
our previous work [37] for specific details, which can not be
elaborated here. For SoC online prediction, considering the
powerful nonlinear fitting ability of BPNN, thus it is used to
build the SoC prediction model.

FIGURE 8. BPNN structure for SoC prediction model.

Because the relation of input and output parameters
meets (3) in [35], a BPNN with 1-5-1 structure is chosen,
as described in Fig. 8. Correspondingly, the model can be
represented as

H in = SoC(k) ×W1 + θ1

Hou = g (H in)

SôC(k + 1) = h(Hou ×W2 + θ2)

(54)

here, SoC(k) is the real value of current moment SoC, and
SôC(k + 1) denotes the predictive value of next moment.
They are regarded as the input and output variables for BPNN,

respectively. θ1 = [θ11, θ12, θ13, θ14, θ15] and θ2 = θ2
respectively denote the thresholds of the hidden and out-
put layers. W1 = [W11,W12,W13,W14,W15] and W2 =

[W21,W22,W23,W24,W25]T are the weights of input-to-
hidden and hidden-to-output layers, respectively. The tansig
and purelin functions are selected as the hidden-layer trans-
fer function g and the output-layer transfer function h,
respectively. After that, employing the collected SoC data in
Fig.4 (d) to train and update the thresholds and weights, the
predictive model of SoC can be obtained. By means of the
speed and SoC prediction models, the condition information
in the prediction window can be predicted and obtained.

Then, the HDP algorithm is used to achieve the
online rolling optimization of fuel consumption in [k, k +

N − 1], and an online EMS based on HDP-MPC is pro-
posed. In the process of designing the energy management
controller based on HDP-MPC, firstly, the MPC method
is used to predict other unknown state information within
the prediction window [k, k + N − 1] corresponding to
the current state [v(k),SoC(k)], determining the state set
{[v(k),SoC(k)], [v̂(k + 1),SôC(k + 1)], · · · , [v̂(k + N − 1),
SôC(k + N − 1)]}}.

Specifically, in terms of speed prediction online, based
on velocity speed v(k), acceleration a(k), slope angle
θ (k), and pedal degree p(k) of the current moment, the
designed BPNN-LSTM prediction model is used to pre-
dict speed sequence

{
v̂(k + 1), v̂(k + 2), · · · , v̂(k + N − 1)

}
in [k, k + N − 1]. Then, Pd(τ ) of each time step τ

can be calculated by (1) and (2), here, τ ∈ [k, k +

N − 1]. Besides, for SoC prediction, based on SoC(k)
of the current moment, the established BPNN predic-
tion model of SoC is utilized to predict SoC sequence{
SôC(k + 1),SôC(k + 2), · · · ,SôC(k + N − 1)

}
in [k, k +

N − 1]. Based on the above analysis, the architecture
for online EMS implementation of HDP-MPC controller is
displayed in Fig. 9. Correspondingly, the concrete imple-
ment process is described in Fig. 10 (supposing the present
moment is kth (s)). After executing the algorithm in Fig.10,[
P∗
e (k),P

∗

b(k)
]
is sent to the SHL, producing the new state

[v(k + 1),SoC(k + 1)] of SHL at (k + 1) th (s), and entering
the next round of MPC adjustment.

As the vehicle continues to move forward, the above
process will be executed rolling until the vehicle stops driv-
ing, and the corresponding detailed algorithm is shown in
Algorithm 1.

IV. RESULTS AND DISCUSSION
In this section, the BPNN-based dynamics model of the SHL
and the designed online EMS based on HDP-MPC are exper-
imented and analyzed, respectively.

A. EXPERIMENTAL SETTINGS
1) TRAINING DATA SETTINGS
The data shown in Fig. 4 are used to train the BPNN-based
dynamics model of SHL offline in this section. Besides, the
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FIGURE 9. The online EMS implementation framework based on HDP-MPC.

training and test data account for 70% and 30%, respectively.
In order to improve the calculation precision, all the sample
data are normalized to [−1, 1] based on (25) in [36].

TABLE 1. The parameters for SHL.

2) PARAMETERS INITIALIZATION
α and η of (7) in [35], and εm for MN are set to 0.95, 0.05,
and 0.0005, respectively. γ , εc, lc, and la of Algorithm 1 are
set to 1, 0.001, 0.05 and 0.001, respectively.

3) VEHICLE SETTINGS
For fully validating the performance of the proposed online
EMS, the HIL bench is utilized to establish the vehicle sim-
ulation platform, as shown in Fig.11. The vehicle parameters
for SHL are shown in TABLE 1.

4) ERROR ESTIMATE METHODS
In this paper, the four errors, that is, absolute error
AE , average-absolute error MAE , root-average-square error
RMSE , and average-relative error MRE , are utilized to
estimate the effectiveness of the dynamics model and the
designed HDP-MPC strategy. (26) in [36] gives the elaborate
expression for four errors.

B. ANALYSIS OF BPNN DYNAMICS MODEL OF SHL
When the BPNN dynamics model of the SHL is trained and
completed,Wm1 andWm2 in (4) can be determined, as shown
in TABLE 2. For verifying the effect of the established
dynamics model for SHL, the analytical model and BPNN
model of the SHL are simulated and compared. Considering
the strong periodicity of the SHL operation, this paper takes
the working scenario of Fig. 3 as the simulation environment
and performs one cycle simulation. The change process of
actual and model states of the SHL is described in Fig. 12.
Among them, AE between the actual and model states of
the SHL is shown in Fig. 13, and the corresponding MAE ,
RMSE , and MRE are listed in TABLE 3. It can be seen from
Fig. 13 that the AE changing range of BPNNmodel is smaller
than that of analytical model. In addition, as known from
TABLE 3, the corresponding MAE , RMSE , and MRE of the
BPNN model and actual states for SHL are also less than
the analytical model, respectively. Based on the above anal-
ysis, the BPNN model can more effectively reflect the actual
motion process of the SHL with higher accuracy. Namely, the
vehicle motion process evolved by it is closer to the actual
motion process of the SHL.

TABLE 2. BPNN parameters of dynamics model for SHL.
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FIGURE 10. The flowchart of HDP-MPC EMS.

TABLE 3. Errors between model state and actual state.

C. PERFORMANCE ANALYSIS OF ONLINE EMS BASED ON
HDP-MPC
1) INITIAL VALUE DETERMINATION OF THE CONTROLLER
Before using the HDP-MPC controller to find the optimal
strategy, the initial weights of the CN and AN need to be
determined in advance. In order to make the CN and AN
converge as soon as possible online, the data in Fig. 4 are
used to train W c1,W c2,W a1, and W a2 offline. The training
process is shown in Fig. 14. It can be seen that Ec gradually
declines and stabilizes, and Qf + γ · Ĵ i gradually increases
and stabilizes as the training iterations increase, which is
consistent with the conclusion of Lemma 3 and Lemma 4 in

Algorithm 1 Online EMS Algorithm Based on HDP-MPC
// Step 1: Initializing parameters:
γ ,Wc1,Wc2, lc,Wa1,Wa2, εc, la, k and N ;
for k = k0 : 1 : kf − 1// Loop control until the vehicle stops

// Step 2: Condition information prediction:
Obtaining [v(k), a(k), θ(k), p(k),SoC(k)]; // The current moment condition
information
Using the speed prediction model:
[v(k), a(k), θ(k), p(k)] ⇒

{
v̂(k + 1), v̂(k + 2), · · · , v̂(k + N − 1)

}
;

Using the SoC prediction model:
SoC(k) ⇒

{
SôC(k + 1),SôC(k + 2), · · · ,SôC(k + N − 1)

}
Determining the state set in [k, k + N − 1]:{
[v(k),SoC(k)] ,

[
v̂(k+1),SôC(k+1)

]
, · · · ,

[
v̂(k+N−1),SôC(k+N−1)

]}
// Step 3: Calculating the demand power:
Running (1) and (2); // Getting
Pd(τ ) ∈ {Pd(k),Pd(k + 1), · · · ,Pd(k + N − 1)}
for τ = k : 1 : k + N − 1

i = 1;
// Step 4: EvaluatingĴ i(τ )andûi(τ ):
Producing (46); // Utilizing [v(τ ),SoC(τ )]Tto evaluate Ĵ i(τ )
Executing (51); // Employing [v(τ ),SoC(τ )]Tn to evaluate Pie(τ )
Executing (50); // Utilizing Pie(τ )and Pd(τ )to calculate P

i
b(τ )

ûi(τ ) =

[
Pie(τ ),P

i
b(τ )

]T
;

// Step 5: Calculating
[
v̂(τ + 1),SôCn(τ + 1)

]T andQf(τ ):
Running (4); // Obtaining

[
v̂(τ + 1),SôC(τ + 1)

]T
Running (7); // Getting Qf(τ )

// Step 6: Evaluating Ĵ i(τ + 1)n :
Producing (46); //Utilizing

[
v̂(τ + 1),SôC(τ + 1)

]T to evaluate Ĵ i(τ +1)
// Step 7: Calculating Ec(τ )andQf(τ ) + γ · Ĵ i(τ + 1))n :
Producing (47); // Calculating Ec(τ )
E ia(τ ) = Qf(τ ) + γ · Ĵ i(τ + 1)); // Calculating Qf(τ ) + γ · Ĵ i(τ + 1))
1Ea(τ ) =

∣∣∣E i+1
a (τ ) − E ia(τ )

∣∣∣ ; // 1Ea(τ ) denotes the changing rate of

E ia(τ )
// Step 8: Optimal strategy judgment:

while Ec(τ ) > εc&&1Ea(τ )! = 0&&i ≤ N
// Step 9: Updating weights of the CN and AN:
Running (48) and (49); // UpdatingWc1andWc2
Running (52) and (53); // UpdatingWa1n andWa2

//Then Executing Step 4∼ Step 7.
i = i+ 1;

end while
// Step 10: Optimal strategy outputting:

while τ > k + N − 1// Output n optimal policy in [k, k + N − 1]
Outputting{[
P∗
e (k),P

∗
b(k)

]
,
[
P∗
e (k+1),Pn∗b(k+1)

]
, · · ·,

[
P∗
e (k+N−1),P∗

b(k+N−1)
]}
;[

P∗
e (k),P

∗
b(k)

]
→ SHL // Only executing the first value

end while
end for

end for

Section III. Specifically, when the training iterations reach to
491, Ec = 0.00098 ≤ εc and Qf + γ · Ĵ i can be stabilized at
6.93395. Correspondingly, the final initial weights are shown
in TABLE 4.

2) DETERMINATION OF PREDICTION WINDOW SIZE
After the initial weights of the HDP-MPC controller are
determined, the controller can be utilized to solve the opti-
mal strategies according to Algorithm 1. However, different
prediction window size N can affect the convergence speed
of the CN and AN in the controller and fuel consump-
tion. Therefore, it is necessary to choose a reasonable N to
ensure the real-time performance and fuel economy of the
HDP-MPC strategy.
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FIGURE 11. Vehicle simulation platform.

FIGURE 12. The actual and model states of the SHL. (a) Speed. (b) SoC.

FIGURE 13. AE between the actual and model states of the SHL.
(a) Speed. (b) SoC.

As a result, for obtaining a proper N to make Ec and Qf +

γ · Ĵ i meet the constraints forAlgorithm 1, the convergences

FIGURE 14. The training process of the CN and AN. (a) Ec of the CN.
(b) Qf + γ · Ĵ i of the AN.

TABLE 4. Initial weights of the CN and AN.

of the CN and AN under N ∈ {10, 20, 50, 100} are respec-
tively analyzed, as described in Fig. 15. Compared with
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FIGURE 15. The convergence process of the CN and AN under different N . (a) Ec. (b) Qf + γ · Ĵ i .

FIGURE 16. The allocated P∗
e and P∗

b of four EMSs. (a) P∗
e . (b) P∗

b .

FIGURE 17. Vehicle speed curves of four EMSs.

N ∈ {10, 50, 100}, it is thus clear that Ec of N = 20 can
satisfy 0.00099 ≤ εc while the training iterations reach to
278. The corresponding Qf + γ · Ĵ i can stabilize at 6.85430.
Besides, it can be seen from Fig. 15(b) that the stable Qf +

γ · Ĵ i will decrease with the increasing of N , namely, the
fuel consumption will reduce as N increases. Despite all
this, to ensure the real-time performance of the controller
execution, N is set to 20 in this paper.

3) PERFORMANCE ANALYSIS OF EMS
After determining the relevant parameters of the HDP-
MPC controller, the Algorithm 1 can be utilized to achieve

real-time optimization of fuel consumption for SHL. In order
to validate the effects of designed HDP-MPC strategy,
the performances of fuzzy RB (FRB), adaptive ECMS
(AECMS), DP and HDP-MPC EMSs are compared and ana-
lyzed under the same experimental conditions. In this paper,
taking the stone operation scenario shown in Fig. 3 as the
simulation environment, the energy consumption experiment
of 70 cycles are carried out. In terms of the capacity and
characteristics of lithium iron phosphate battery used in the
studied SHL, the starting value SoCmax and termination value
SoCmin of the battery SoC are separately set to 0.8 and 0.3.
Considering too much cycles in the whole simulation, here,
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FIGURE 18. Working point distribution of the engine for four EMSs.

only the corresponding P∗
e and P∗

b curves of the four EMSs
are displayed under two cycles, as shown in Fig. 16.
First of all, while the SHL performs the allocated P∗

e
and P∗

b of the four strategies, the speed tracking effects of
two cycles are indicated in Fig. 17. It follows that the four
strategies can achieve the effective tracking of the target
speed.

And then, as known from Fig.16, because of the different
optimization methods, the four strategies make the changing
profiles of P∗

e and P∗

b different. Correspondingly, the distri-
bution of engine operation points is also different, as shown
in Fig. 18. Compared with the FRB and AECMS EMSs, the
operation points of HDP-MPC are more concentrated in the
high-efficiency region, which are very close to those of DP
strategy based on global optimization.

FIGURE 19. SoC and fuel profiles of four EMSs. (a) SoC. (b) fuel.

Accordingly, Fig.19 gives the changing curves of SoC and
fuel consumption for the four EMSs. From here we see that
although the SoC of the four EMSs can reach to the expected
0.3, their fuel optimization effects are also significantly dif-
ferent. TABLE 5 lists the fuel consumption of the four EMSs.

TABLE 5. The fuel consumption for the four EMSs.

Specifically, as known from Fig. 19, before 3254s, con-
trasted to the proposed HDP-MPC method, because the
FRB and AECMS EMSs are more tend to use electric-
ity, their fuel consumption is less than that of HDP-MPC
strategy. Nevertheless, as the vehicle continues to move
forward, the optimization effect of fuel consumption of the

HDP-MPC strategy is gradually superior to that of FRB and
AECMS EMSs because of its local optimization solution
method. Compared with FRB and AECMS, it can be seen
from TABLE 5 that the fuel consumption of the designed
HDP-MPC strategy is reduced by 28.65 % and 10.38 %,
respectively. In addition, in order to analyze the gap between
the local approximate optimization strategy and the global
optimization strategy in energy consumption optimization,
the HDP-MPC EMS is also comparatively analyzed with the
DP-based global optimization strategy. It can be clear that
from Fig. 19 and TABLE 5, on the basis of both SoC falling
to 0.3, thanks to global information, the fuel consumption of
the DP is 6.56% lower than the proposed HDP-MPC strategy.
However, its optimization time is much longer than the online
HDP-MPC strategy.

Based on the above analysis, under insuring real-time per-
formance and velocity following effect, although the online
EMS based on HDP-MPC has slightly higher fuel consump-
tion than DP strategy, it possesses excellent online adjustment
ability. Besides, compared with the FRB and AECMS EMSs,
the HDP-MPC EMS can further reduce the fuel consumption
of the vehicle, offering a novel solution method for online
energy management of SHL.

V. CONCLUSION
This paper proposed a HDP online EMS based on predictive
control to further improve the fuel economy and working
condition adaptability of the SHLs. Specifically, the main
work of this paper is as follows: (1) A MPC-based HDP
approximate optimal algorithm was proposed, and its con-
vergence and the controlled system stability were proved,
respectively. (2) The energy management controller for SHL
was designed by using the proposed algorithm. Moreover,
an online EMS based on HDP-MPCwas proposed to perform
the energy management controller. (3) The BPNN dynam-
ics model and online HDP-MPC strategy were validated
under the stone working scenario. By the experimental results
analysis, the BPNN model can more effectively reflect the
actual motion process of the SHL with higher accuracy, con-
trasted with analytic model. Although the fuel consumption
of HDP-MPC EMS is slightly 6.56% higher than DP strategy,
it can optimize the fuel consumption of the vehicle real-
time. In addition, compared with the FRB and AECMS,
the proposed HDP-MPC strategy can further reduce the fuel
consumption, offering a new idea for online energy consump-
tion optimization of SHL.
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In addition, there are some random disturbance factors
that affect the robustness of the system, such as ambient
temperature, tire pressure, and slope. In the future, fully
considering random disturbance factors, the further research
will be conducted based on the proposed system architecture
of this paper, designing a robust HDP-MPC strategy to solve
the approximate optimal control problem of the nonlinear
system with random disturbance.
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