
Received 27 June 2024, accepted 23 July 2024, date of publication 29 July 2024, date of current version 7 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3434701

Inverse Optimality of Regulation Design for
Korteweg-De Vries-Burgers Equation
XIUSHAN CAI 1,2, (Member, IEEE), AND CONG LIN2
1School of Data and Computer Science, Xiamen Institute of Technology, Xiamen 361021, China
2College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China

Corresponding author: Xiushan Cai (xiushancai@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 62173131.

ABSTRACT In optimal control, it is often necessary to solve Hamilton-Jacobi-Isaacs (HJI) partial
differential equation, but it is not only difficult to solve, sometimes even impossible to solve. It is possible
to avoid solving the HJI equation by using inverse optimal methods. We investigate inverse optimality of
regulation design for Korteweg-de Vries-Burgers (KdVB) equation. Two kinds of boundary control laws are
achieved to regulate the state of closed-loop system to the set point from any initial value. In order to regulate
the convergent speed of the closed-loop system, one or two parameters are designed in the boundary control
laws. We proved that boundary control laws are optimal for two meaningful functionals, respectively. The
effectiveness of the proposed design has been shown through simulations, and the convergence speed of the
closed-loop system accelerates with increase of adjustable parameters.

INDEX TERMS Korteweg-de Vries-Burgers equation, inverse optimality, regulation design, boundary
control.

I. INTRODUCTION
From a physical point of view, Korteweg-de Vries-Burgers
(KdVB) equation represents a model for the motion of
long water waves in channels of shallow depth, in which
three different phenomena are presented, namely, nonlinear
convection, dispersion and dissipation [1], [2]. Therefore,
controlling the height of long water waves through the two
boundaries of the channel is a meaningful task. This is the
reason why regulation design of KdVB is investigated in this
paper.

In optimal control, it is often necessary to solve Hamilton-
Jacobi-Isaacs (HJI) partial differential equations (PDEs). But
a simple example is given to illustrate that the HJI equation
is not only difficult to solve, but also impossible to solve
in [3]. It is possible to avoid solving the HJI equation by
using inverse optimal methods. Inverse optimal control is
originated by Kalman and introduced into robust nonlinear
control via Freeman [4] based on robust control Lyapunov
functions [5]. It has been proven that for a class of input
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unmodeled dynamics, the inverse optimal controller has a
margin of stability in [3].
For linear systems with time-varying input delay and

additive disturbances, inverse optimal control are presented
in [6] and [7]. Inverse optimal control for strict-feedforward
nonlinear systems with input delays can be found in [8]. For
a class of nonlinear systems with dynamic uncertainties, the
problem of inverse optimal adaptive control is solved and
the proposed methods are successfully applied to industrial
robots in [9]. An observer-based fuzzy adaptive inverse
optimal output feedback control is developed for a class
of nonlinear systems in strict-feedback form with unknown
dynamics by using the inverse optimal principle and adaptive
backstepping design theory in [10]. Global stabilization of
Burgers’ equation is established, most of important, inverse
optimal control of Burgers’ equation is presented in [11].
How to extend the inverse optimal control method in [11] to
KdVB equation will be an interesting work.

In recent decades, many significant achievements have
been made in the stability analysis and control synthesis
for KdVB equation. A boundary feedback for the KdVB is
achieved and global boundary stabilization of the closed-loop
system is established in [12]. In [13], a strength boundary
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control of KdVB equation is presented, further results on
stabilization for KdVB equation and well-posedness of
the closed-loop system are drawn. Composite disturbance
rejection control for KdVB equation under event-triggering
mechanism is found in [14]. Robust stabilization [15],
finite-time boundary control [16], passivity-based boundary
stabilization [17] are also appeared. For a generalized
KdVB equation with variable dissipation parameter, stability
analysis is achieved in [18]. Observer-based dissipative
saturation control is presented for KdVB equation with
stochastic noise and incomplete measurable information
in [19]. Well-posedness and stability analysis are established
for the KdVB equation with infinite memory in [20], with
timely delay in [21]. Optimal control for KdVB equation are
given in [22] and [23]. However, to the author’s knowledge,
inverse optimal regulation design of KdVB has never been
published.

In this paper, we consider inverse optimality of regulation
design for KdVB equation, the main contributions are as
follows:

(1) For a given set point, two kinds of boundary control
laws are established to regulate the state of closed-loop
system to the set point from any initial value. In order to
regulate the convergent speed of the closed-loop system, one
or two parameters are designed in the boundary control laws.

(2) It is proved that boundary control laws are optimal for
two meaningful functionals, respectively.

(3) The effectiveness of the proposed design has been
shown through simulations, and the convergence speed of the
closed-loop system accelerates with increase of adjustable
parameters.

This paper is organized as follows: system description and
problem statement are in Section II. Regulation design is
in III. Inverse optimality of regulation design is in IV, and
simulation results are shown in V. Concluding remarks are
in VI.
Notation. For a scalar function u(x, t) ∈ C3([0, 1] ×

[0, ∞),R), denote with ut (x, t) =
∂u(x,t)

∂t , ux(x, t) =
∂u(x,t)

∂x ,

uxx(x, t) =
∂2u(x,t)

∂x2
, uxxx(x, t) =

∂3u(x,t)
∂x3

.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT
Consider KdVB equation given by

wt (x, t) = εwxx(x, t) − δwxxx(x, t) − wx(x, t)w(x, t), (1)

w(x, 0) = w0(x), (2)

where t ≥ 0, 0 ≤ x ≤ 1 and w(x, t) is the system state, and
ε > 0, δ > 0 denote dissipation and dispersion coefficients,
respectively. Our objective is to achieve set regulation:

lim
t→∞

w(x, t) = H , (3)

in L2[0, 1], where H is a constant by boundary controls.
Without loss the generality, we assume H ≥ 0. Denote the
error as

u(x, t) = w(x, t) − H , (4)

then (1)–(2) can be rewritten as

ut (x, t) = εuxx(x, t) − δuxxx(x, t) − ux(x, t)(u(x, t) + H ),

(5)

u(x, 0) = w0(x) − H , (6)

In order to get (3), the problem is transferred to guarantee that
u(x, t) is convergent to zero in L2[0, 1] by boundary controls.

The following Lemma from [11] is needed in this paper.
Lemma 1 (Poincare’s Inequality): For any u ∈ C1[0, 1],

the following inequalities hold∫ 1

0
u(x)2dx ≤ 2u(0)2 + 4

∫ 1

0
ux(x)2 dx, (7)∫ 1

0
u(x)2dx ≤ 2u(1)2 + 4

∫ 1

0
ux(x)2 dx. (8)

III. REGULATION DESIGN
In this section, boundary controls are designed to globally
exponentially stabilize system (5)–(6) in L2[0, 1]. Further,
globally exponentially regulate design to system (1)–(2) is
achieved.
Theorem 1: Boundary controls

u(0, t) = 0, (9)

ux(1, t) = −
ε

2δ
u(1, t), (10)

uxx(1, t) =
a1
2δ
u(1, t) +

1
18a1δ

u(1, t)3, (11)

with a1 > 0, globally exponentially stabilize system (5)–(6)
in L2[0, 1].
Proof. Let

V (t) =
1
2

∫ 1

0
u(x, t)2 dx, (12)

and compute its time derivative along trajectory of (5)–(6),
it holds

V̇ (t) = εu(1, t)ux(1, t) − εu(0, t)ux(0, t)

− ε

∫ 1

0
ux(x, t)2dx − δu(1, t)uxx(1, t)

+ δu(0, t)uxx(0, t) + δ

∫ 1

0
ux(x, t)uxx(x, t)dx

−
1
3
u(1, t)3 +

1
3
u(0, t)3 −

H
2
u(1, t)2 +

H
2
u(0, t)2

=
δ

2
ux(1, t)2 + u(1, t)(εux(1, t) − δuxx(1, t)

+
a1
2
u(1, t) +

1
18a1

u(1, t)3)

− u(0, t) (εux(0, t) − δuxx(0, t)

−
H
2
u(0, t) −

a0
2
u(0, t) −

1
18a0

u(0, t)3
)

−
a0
2
(u(0, t) −

1
3a0

u(0, t)2)2

−
a1
2
(u(1, t) −

1
3a1

u(1, t)2)2
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− ε

∫ 1

0
ux(x, t)2dx −

H
2
u(1, t)2 −

δ

2
ux(0, t)2. (13)

Using boundary controls (9)–(11), we have

V̇ (t) = −
3ε2

8δ
u(1, t)2 −

a1
2
(u(1, t) −

1
3a1

u(1, t)2)2

− ε

∫ 1

0
ux(x, t)2dx −

H
2
u(1, t)2 −

δ

2
ux(0, t)2

≤ −ε

∫ 1

0
ux(x, t)2dx −

H
2
u(1, t)2 −

δ

2
ux(0, t)2, (14)

thus

V̇ (t) ≤ −ε

∫ 1

0
ux(x, t)2 dx. (15)

By Lemma 1, we get

V̇ (t) ≤ −
ε

2
V . (16)

Thus the closed-loop system is globally exponential stable in
L2[0, 1]. □
Remark 1: In view of (u(1, t) −

1
3a1

u(1, t)2)2 ≥ 0, and
a1 > 0, from (14), it can be deduced that the convergent
speed of the closed-loop system to the equilibrium point
accelerates as a1 increases.

From Theorem 1, we are easy to deduce the Corollary 1.
Corollary 1: Consider system (1)–(2), boundary controls

w(0, t) = H , (17)

wx(1, t) = −
ε

2δ
(w(1, t) − H ), (18)

wxx(1, t) =
a1
2δ

(w(1, t) − H ) +
1

18a1δ
(w(1, t) − H )3, (19)

with a1 > 0, globally exponentially regulate state of
system (1)–(2) to H in L2[0, 1].

Proof. It can be deduced from Theorem 1.
In what follows, another boundary controls are presented

to globally exponentially stabilize system (5)–(6) in L2[0, 1].
Theorem 2: Boundary controls

uxx(0, t) =
ε

δ
ux(0, t) −

H + a0
2δ

u(0, t)

−
1

18a0δ
u(0, t)3, (20)

ux(1, t) = 0, (21)

uxx(1, t) =
a1
2δ
u(1, t) +

1
18a1δ

u(1, t)3, (22)

with a0 > 0, a1 > 0, globally exponentially stabilize
system (5)–(6) in L2[0, 1].
Proof. Let V (t) be given by (12), and compute its time

derivative along trajectory of (5)–(6), it holds (13). With the
help of (20)–(22), from (13), we get

V̇ (t) = −
a0
2
(u(0, t) −

1
3a0

u(0, t)2)2

−
a1
2
(u(1, t) −

1
3a1

u(1, t)2)2

− ε

∫ 1

0
ux(x, t)2dx −

H
2
u(1, t)2 −

δ

2
ux(0, t)2,

(23)

thus

V̇ (t) ≤ −min
(

ε

4
,
H
4

)(
4
∫ 1

0
ux(x, t)2dx + 2u(1, t)2

)
.

(24)

By Lemma 1, we get

V̇ (t) ≤ −min
(

ε

2
,
H
2

)
V . (25)

Thus the closed-loop system is globally exponential stable in
L2[0, 1]. □
Remark 2: In view of (u(i, t) −

1
3a1

u(i, t)2)2 ≥ 0, and
ai > 0, i = 0, 1, from (23), it can be deduced that the
convergent speed of the closed-loop system to the equilibrium
point accelerates as a0 or a1 increases.
Corollary 2: Consider system (1)–(2), boundary controls

wxx(0, t) =
ε

δ
wx(0, t) −

H + a0
2δ

(w(0, t) − H )

−
1

18a0δ
(w(0, t) − H )3, (26)

wx(1, t) = 0, (27)

wxx(1, t) =
a1
2δ

(w(1, t) − H ) +
1

18a1δ
(w(1, t) − H )3, (28)

with a0 > 0, a1 > 0, globally exponentially regulate state of
system (1)–(2) to H in L2[0, 1].

Proof. It can be deduced from Theorem 2.

IV. INVERSE OPTIMALITY OF REGULATION DESIGN
Follow the boundary control design in Theorem 1, an inverse
optimal design is achieved in Theorem 3.
Theorem 3: Under boundary condition

u(0, t) = 0, (29)

boundary controls

ux(1, t) = −
ε

δ
u(1, t), (30)

uxx(1, t) =
a1
δ
u(1, t) +

1
9a1δ

u(1, t)3, (31)

with a1 > 0, minimize the cost functional

J1 =

∫
∞

0

(
L(t) +

ε2u(1, t)2

δ

+
δ2uxx(1, t)2

a1 +
1
9a1

u(1, t)2

)
dt, (32)

where L(t) is given as

L(t) = ε

∫ 1

0
ux(x, t)2dx +

H
2
u(1, t)2 +

δ

2
ux(0, t)2

+
a1
2

(
u(1, t) −

1
3a1

u(1, t)2
)2

. (33)
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Proof. Under boundary condition (29), and boundary
controls (30)–(31), from (13), we know

V̇ (t)

= −
ε2

2δ
u(1, t)2 + u(1, t)

(
−
a1
2
u(1, t) −

1
18a1

u(1, t)3
)

−
a1
2

(
u(1, t) −

1
3a1

u(1, t)2
)2

− ε

∫ 1

0
ux(x, t)2dx −

H
2
u(1, t)2 −

δ

2
ux(0, t)2

≤ −min
(

ε

2
,
H
2

)
V . (34)

Thus system (5)–(6) is globally exponentially stable in
L2[0, 1] under (29) and boundary controls (30)–(31). Next,
with the help of (29), we have

L(t) = 2ε
∫ 1

0
ux(x, t)2dx + Hu(1, t)2 + δux(0, t)2

+ a1

(
u(1, t) −

1
3a1

u(1, t)2
)2

+ a0

(
u(0, t) −

1
3a0

u(0, t)2
)2

− δux(1, t)2 − 2u(1, t)(εux(1, t) − δuxx(1, t)

+
a1
2
u(1, t) +

1
18a1

u(1, t)3)

+ 2u(0, t) (εux(0, t) − δuxx(0, t)

−
H
2
u(0, t) −

a0
2
u(0, t) −

1
18a0

u(0, t)3
)

− a0

(
u(0, t) −

1
3a0

u(0, t)2
)2

+ δux(1, t)2 + 2u(1, t)(εux(1, t) − δuxx(1, t)

+
a1
2
u(1, t) +

1
18a1

u(1, t)3)

− 2u(0, t) (εux(0, t) − δuxx(0, t)

−
H
2
u(0, t) −

a0
2
u(0, t) −

1
18a0

u(0, t)3
)

= −2V̇ (t) + δux(1, t)2

+ 2εu(1, t)ux(1, t) − 2δu(1, t)uxx(1, t)

+ a1u(1, t)2 +
1
9a1

u(1, t)4. (35)

Substitute L(t) to J1 in (32), and with the help of (35),
we obtain

J1 = 2V (0) − 2V (∞)

+

∫
∞

0
δ
(
ux(1, t) +

ε

δ
u(1, t)

)2
dt

+

∫
∞

0

(
δuxx(1, t) − u(1, t)

(
a1 +

u(1,t)2
9a1

))2
a1 +

u(1,t)2
9a1

dt. (36)

Since system (5)–(6) is globally exponentially stable in
L2[0, 1] under (29) and boundary controls (30)–(31),
so V (∞) = 0. From (36), we know that boundary
controls (30)–(31) minimize the cost functional (32), and the
minimum value is 2V (0).□
Remark 3: Inverse optimal control means that the bound-

ary control is such that the closed-loop system is asymptoti-
cally stable, and minimizes a meaningful functional.
Remark 4: The criterion for a meaningful function in

inverse optimal control is that each term is non negative and
can penalize the control law.

From Theorem 3, we have the following Corollary 3.
Corollary 3: Under boundary condition

w(0, t) = H , (37)

boundary controls

wx(1, t) = −
ε

δ
(w(1, t) − H ), (38)

wxx(1, t) =
a1
δ
(w(1, t) − H ) +

1
9a1δ

(w(1, t) − H )3,

(39)

with a1 > 0, minimize the cost functional

J1 =

∫
∞

0

(
L(t) +

ε2

δ
(w(1, t) − H )2

+
δ2wxx(1, t)2

a1 +
1
9a1

(w(1, t) − H )2

)
dt, (40)

where

L(t) = ε

∫ 1

0
wx(x, t)2dx +

H
2
(w(1, t) − H )2

+
δ

2
wx(0, t)2

+
a1
2

(
w(1, t) − H −

1
3a1

(w(1, t) − H )2
)2

. (41)

Theorem 4: Under the boundary condition

ux(1, t) = 0, (42)

boundary controls

uxx(0, t) =
ε

δ
ux(0, t) −

H + a0
δ

u(0, t)

−
1

9a0δ
u(0, t)3, (43)

uxx(1, t) =
a1
δ
u(1, t) +

1
9a1δ

u(1, t)3, (44)

with a0 > 0, a1 > 0, minimize the cost functional

J2 =

∫
∞

0

(
l(t) +

δ2uxx(1, t)2

a1 +
1
9a1

u(1, t)2

+
(εux(0, t) − δuxx(0, t))2

H + a0 +
1
9a0

u(0, t)2

)
dt, (45)

104536 VOLUME 12, 2024



X. Cai, C. Lin: Inverse Optimality of Regulation Design for Korteweg-De Vries-Burgers Equation

where

l(t) = ε

∫ 1

0
ux(x, t)2dx +

H
2
u(1, t)2 +

δ

2
ux(0, t)2

+
a0
2

(
u(0, t) −

1
3a0

u(0, t)2
)2

+
a1
2

(
u(1, t) −

1
3a1

u(1, t)2
)2

. (46)

Proof. With the help of (42) and boundary controls (26)–
(28), from (13), it holds

V̇ (t) = −u(1, t)
(
a1
2
u(1, t) +

1
18a1

u(1, t)3
)

− u(0, t)
(
H
2
u(0, t) +

a0
2
u(0, t) +

1
18a0

u(0, t)3
)

−
a0
2
(u(0, t) −

1
3a0

u(0, t)2)2

−
a1
2
(u(1, t) −

1
3a1

u(1, t)2)2

− ε

∫ 1

0
ux(x, t)2dx −

H
2
u(1, t)2 −

δ

2
ux(0, t)2

≤ −min
(

ε

2
,
H
2

)
V . (47)

Thus system (5)–(6) is globally exponentially stable in
L2[0, 1] under (42) and boundary controls (26)–(28). Next,
using (42), we have

l(t) = 2ε
∫ 1

0
ux(x, t)2dx + Hu(1, t)2 + δux(0, t)2

+ a0(u(0, t) −
1
3a0

u(0, t)2)2

+ a1(u(1, t) −
1
3a1

u(1, t)2)2

− δux(1, t)2 − 2u(1, t)(εux(1, t) − δuxx(1, t)

+
a1
2
u(1, t) +

1
18a1

u(1, t)3)

+ 2u(0, t) (εux(0, t) − δuxx(0, t)

−
H
2
u(0, t) −

a0
2
u(0, t) −

1
18a0

u(0, t)3
)

+ δux(1, t)2 + 2u(1, t)(εux(1, t) − δuxx(1, t)

+
a1
2
u(1, t) +

1
18a1

u(1, t)3)

− 2u(0, t) (εux(0, t) − δuxx(0, t)

−
H
2
u(0, t) −

a0
2
u(0, t) −

1
18a0

u(0, t)3
)

= −2V̇ (t) − 2u(1, t)(δuxx(1, t)

−
a1
2
u(1, t) −

1
18a1

u(1, t)3)

− 2u(0, t) (εux(0, t) − δuxx(0, t)

−
H
2
u(0, t) −

a0
2
u(0, t) −

1
18a0

u(0, t)3
)

. (48)

Substitute l(t) to J2 in (45), and by (48), it holds

J2 = 2V (0) − 2V (∞)

+

∫
∞

0

(
δuxx(1, t) − a1u(1, t) −

u(1,t)2
9a1

)2
a1 +

u(1,t)2
9a1

dt

+

∫
∞

0

1

H + a0 +
1
9a0

u(0, t)2

×

(
u(0, t)

(
H + a0 +

1
9a0

u(0, t)2
)

− εux(0, t) + δuxx(0, t))2 dt. (49)

Since system (5)–(6) is globally exponentially stable in
L2[0, 1] under (42) and boundary controls (26)–(28), it yields
V (∞) = 0. From (49), it can be seen that boundary
controls (26)–(28) minimize the cost functional (45), and the
minimum value is 2V (0). □

From Theorem 4, we get the following result.
Corollary 4: Under the boundary condition

wx(1, t) = 0, (50)

boundary controls

wxx(0, t) =
ε

δ
wx(0, t) −

H + a0
δ

(w(0, t) − H )

−
1

9a0δ
(w(0, t) − H )3, (51)

wxx(1, t) =
a1
δ
(w(1, t) − H ) +

1
9a1δ

(w(1, t) − H )3, (52)

with a0 > 0, a1 > 0, minimize the cost functional

J2 =

∫
∞

0

(
l(t) +

δ2wxx(1, t)2

a1 +
1
9a1

(w(1, t) − H )2

+
(εwx(0, t) − δwxx(0, t))2

H + a0 +
1
9a0

(w(0, t) − H )2

)
dt, (53)

where

l(t) = ε

∫ 1

0
wx(x, t)2dx +

H
2
(w(1, t) − H )2

+
δ

2
wx(0, t)2dx +

a0
2
(w(0, t) − H

−
1
3a0

(w(0, t) − H )2)2

+
a1
2
(w(1, t) − H −

1
3a1

(w(1, t) − H )2)2. (54)

V. SIMULATION RESULTS
Example 1. Consider the KdVB equation in [16] given by

wt (x, t) = 0.5 wxx(x, t) − 1.2wxxx(x, t) − wx(x, t)w(x, t),

(55)

w(x, 0) = 0.03sin(1.49πx) − 0.5cos(1.51πx). (56)
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FIGURE 1. Responses of state norm ∥w(·, t)∥ under boundary
condition (57), boundary controls (58)–(59) and boundary
controls (58)–(59) with H = 0, a1 = 6, a1 = 8, a1 = 12, respectively.

Using Corollary 3, for a given set point H , under boundary
condition

w(0, t) = H , (57)

boundary controls

wx(1, t) = −
5
12

(w(1, t) − H ), (58)

wxx(1, t) =
a1
1.2

(w(1, t) − H ) +
1

10.8a1
(w(1, t) − H )3,

(59)

FIGURE 2. Response of state w(x, t) and its norm ∥w(·, t)∥ under
boundary condition (57), boundary controls (58)–(59).

with a1 > 0, regulate the state of closed-loop system (55)–
(56) and (57), (58)–(59) to the set point H and minimize the
cost functional (40).
In boundary control (59), a1 > 0 is an adjustable

parameter, responses of state norm ∥w(·, t)∥ under boundary
condition (57), boundary controls (58)–(59) and boundary
controls (58)–(59) with H = 0, a1 = 6, a1 = 8, a1 = 12,
respectively, are shown in Fig.1.

We can see that as a1 increases, the convergence speed of
the state norm ∥w(·, t)∥ of the closed-loop system towards
zero becomes faster, and the boundary controls (58)–(59) also
changes similarly. The simulation result is consistent with
remark 1.
To compare the results with those of [16], we display

responses of the PDE state w(x, t) and its norm ∥w(·, t)∥
under boundary condition (57), boundary controls (58)–(59)
where H = 0, a1 = 8 in Fig. 2.
In [16], for system (55)– (56), boundary controls are

designed as

w(0, t) = 0, (60)

wx(1, t) = 0, (61)

wxx(1, t) = u(t), (62)
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FIGURE 3. Response of state w(x, t) and its norm ∥w(·, t)∥ under
boundary controls (60)–(62) in [16].

where

u(t) = −4w(1, t)2 +
0.05
w(1, t)

(∫ 1

0
w(x, t)2dx

)2

, (63)

if w(1, t) ̸= 0, and

u(t) = 0, (64)

if w(1, t) = 0. Responses of the PDE state w(x, t) and
its norm ∥w(·, t)∥ under boundary controls (60)–(62) are in
Fig.3.

From Fig. 2, one can see that the state w(x, t) and its norm
∥w(·, t)∥ of system (55)–(56) tend to zero at t = 0.15 under
the proposed boundary condition (57), boundary controls (58)
and (59), while in Fig. 3, the state w(x, t) and its norm
∥w(·, t)∥ of the same system go to zero at t = 0.3 under
boundary controls (60)–(62) in [16]. Obviously, under the
proposed boundary condition and boundary controls, the
convergence speed of the closed-loop system is faster than
that of [16].
Example 2. Consider the KdVB equation

wt (x, t) = 1.2 wxx(x, t) − 0.5wxxx(x, t) − wx(x, t)w(x, t),
(65)

w(x, 0) = sin(1.5πx). (66)

FIGURE 4. Response of state w(x, t) and its norm ∥w(·, t)∥ under
boundary condition (67), and boundary controls (68), (69) with a0 = 0.5,
a1 = 0.7.

For a given set point H , using Corollary 4, boundary
condition

wx(1, t) = 0, (67)

and boundary controls

wxx(0, t) =
12
5
wx(0, t) −

H + a0
0.5

(w(0, t) − H )

−
1

4.5a0
(w(0, t) − H )3, (68)

wxx(1, t) =
a1
0.5

(w(1, t) − H ) +
1

4.5a1
(w(1, t) − H )3,

(69)

with a0 > 0, a1 > 0, can regulate the state of system (65)–
(66) to the set point H and minimize the cost functional (53).

Let H = 0.5, in order to observe how parameters a0 and
a1 impact on the convergent speed of the closed-loop system,
we first set a0 = 0.5, a1 = 0.7. Responses of the PDE state
w(x, t) and its norm ∥w(·, t)∥ under boundary condition (67),
and boundary controls (68)–(69) are in Fig.4. Boundary
controls (68), (69) are in Fig.5. The state of closed-loop
system tends towards the set point H = 0.5 when almost
t = 1, and boundary controls (68), (69) also tends to zero
when t = 1.
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FIGURE 5. Boundary controls (68), (69) with a0 = 0.5, a1 = 0.7.

FIGURE 6. Response of state w(x, t) and its norm ∥w(·, t)∥ under
boundary condition (67), and boundary controls (68), (69) with a0 = 5,
a1 = 7.

Next, letH = 0.5 again, we set a0 = 5, a1 = 7.Responses
of the PDE statew(x, t) and its norm ∥w(·, t)∥ under boundary

FIGURE 7. Boundary controls (68), (69) with a0 = 5, a1 = 7.

condition (67), and boundary controls (68)–(69) are in Fig.6.
Boundary controls (68), (69) are in Fig.7. The state of
closed-loop system tends towards the set pointH = 0.5 when
almost t = 0.2, and boundary controls (68), (69) also tends
to zero when t = 0.2.
It is obvious that the convergence speed of the closed-loop

system accelerates as the parameters a0 and a1 increase,
When a0 = 0.5, a1 = 0.7 to a0 = 5, a1 = 7, the convergence
speed is almost five times faster than before. The result is
consistent with remark 2.

VI. CONCLUSION
We investigate inverse optimality of regulation design for
KdVB equation. We design two kinds of boundary control
laws to regulate the state of closed-loop system to the
set point from any initial value. In order to regulate the
convergent speed of the closed-loop system, one or two
parameters are designed in the boundary control laws. It is
shown that boundary control laws are optimal for two
meaningful functionals, respectively. The effectiveness of the
proposed design has been shown through simulations, and the
convergence speed of the closed-loop system accelerates with
increase of parameters.
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