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ABSTRACT Predicting 3D human motion is a complex task, owing to the unpredictable nature of human
movements. The influx of deep learning innovations and the availability of extensive datasets have intensified
research interest in this field. This survey provides an exhaustive review of human motion prediction
algorithms and categorizes them according to their core architectures, including Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), Graph Convolutional Networks (GCNs), Generative
Adversarial Networks (GANs), Variational Autoencoders (VAEs), Transformers, and Equivariant Neural
Networks (ENNs). Our key contribution is a systematic presentation of the latest prediction methodologies,
classified into direct and geometry-aware modeling. We begin with the problem formulation of human
motion prediction, explore assorted techniques, and discuss data representation, accompanied by a list of
accessible datasets. We also identify and analyze the ongoing challenges and limitations of the current

algorithms, offering insights into potential future developments in this domain.

INDEX TERMS Human motion prediction, deep learning, neural network, equivariant models.

I. INTRODUCTION

In computer vision, human motion prediction is characterized
as the anticipation of future human poses based on the
observation of historical frames [7]. Understanding and
predicting human motion is vital for improving safety and
optimizing performance across diverse sectors. For example,
in autonomous driving, precise prediction of pedestrians’ and
vehicles’ future movements can mitigate collision risks and
enhance safety [8]. Furthermore, in industrial settings where
collaborative robots operate alongside humans, forecasting
human motion and intentions is essential to detect safety
hazards and avert accidents in facilities such as factories,
power plants, and construction sites [4]. Additionally, in Vir-
tual Reality (VR) and Augmented Reality (AR) environments
where users interact with digital elements, predicting user
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movements and intentions is essential to provide a seamless,
immersive, and safe virtual experience [9], [10].

The interest of the research community in human motion
prediction has grown due to advancements in deep learning
algorithms, enhanced computational resources, and the avail-
ability of extensive motion-capture datasets [11], [12], [13],
[14]. Predicting 3D human motion is a complex task due to
the stochastic nature of human movements, the large number
of degrees of freedom in the human body, and the challenge
of modeling temporal dependencies in human motion [7],
[15]. The challenge is further compounded by the non-linear
dynamics and interactions among multiple joints and muscles
in 3D space, which are difficult to model accurately. Addi-
tionally, human motion can be influenced by various factors
such as fatigue, emotion, and the external environment,
making accurate prediction complex [16], [17]. These factors
contribute to the inherent uncertainty and variability in human
motion, thus making predicting future human motion a highly
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FIGURE 1. Related applications and research problems of human motion prediction task, in the field of healthcare [1], autonomous
vehicle [2], human-robot interaction [3], industrial applications [4], and robot vision [5], [6].

challenging task and impeding the accuracy and reliability of
3D human motion prediction models.

Many diverse and interesting approaches have been pro-
posed by the research community to address such challenges,
including recurrent models [18], [19], [20], convolutional
networks [21], [22], [23], [24], [25], [26], generative
models [27], [28], [29], [30], [31], transformers [32], [33],
[34]. However, additional refinements are needed to enhance
the motion modeling strategy. Due to the stochastic nature
of human motion, learning unnatural human behavior is
always a challenging task. In this survey paper, we attempt to
summarize the current challenges in motion prediction tasks,
available proposed approaches to solve these challenges, and
promising research directions for predicting plausible and
semantically meaningful future motions.

In literature, anticipating the trajectories of road partic-
ipants is closely linked with the task of predicting human
motion. Despite both pursuits sharing a common objective,
their ultimate outcomes diverge. In the task of trajectory
prediction, our goal is to forecast the overall movement of the
entire body, without considering individual body joint details.
In contrast, within the domain of human motion prediction,
our focus shifts toward estimating specific joint information
for future frames. The scope of this survey is restricted to
the exploration of human motion prediction methodologies
exclusively.

While in-depth surveys such as those found in [2] focus
on trajectory prediction methods, and overviews of human
motion prediction are presented in [7] and [15], this survey
paper contributes further by offering a systematic catego-
rization of prediction algorithms. It specifically differentiates
between direct and geometry-aware methodologies, thereby
providing additional clarity and insight into the landscape of
human motion prediction strategies not thoroughly explored
in previous reviews. Finally, we also incorporate recently
developed algorithms, reflecting current trends and future
directions in this rapidly evolving field. The recent strides
in equivariant group deep learning particularly highlight
exciting possibilities for future research [35].

The remaining paper is organized as follows. Section II
introduces the motion prediction problem formulation, our
classification rules, and the human motion data representation
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FIGURE 2. Published papers per year with respect to architecture utilized.

techniques utilized in the literature. In Section III, available
methods are introduced and categorized into relevant groups
according to our classification rules. Section IV introduces
the available datasets. Evaluation metrics and results are
reported in Section V. Lastly, the limitations of current
methods and possible future directions are discussed in
Section VI, with the concluding remarks in Section VII.

Il. OVERVIEW

In this survey paper, our goal is to provide a comprehensive
and in-depth overview of contemporary motion prediction
algorithms. First, we explore the evolution of human motion
prediction techniques over time. Next, we describe the formu-
lation of the motion prediction problem. Lastly, we outline the
criteria used for categorizing the methodologies within this
field.

Anticipating future human motion has been the subject
of extensive research, involving various methodologies from
the research community. Despite significant advancements
in prediction algorithms and learning techniques, achiev-
ing accurate long-term predictions remains a formidable
challenge. While there have been notable improvements in
predictive accuracy, existing approaches primarily excel in
short-term predictions by effectively capturing immediate
movements and reactions [19], [36]. For long-term predic-
tions, current methods perform better with repetitive actions,
such as walking, but struggle with unpredictable actions such
as posing for a picture due to error accumulation in later
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stages [23], [37], [38]. Maintaining accuracy over extended
periods is still problematic due to the inherent complexity
of human motion. To address these challenges, it is crucial
to incorporate spatio-temporal correlations and human body
movement constraints, ensuring the capture of essential
features necessary for reliable long-term predictions.

Initially, the task of predicting human motion was
approached using Recurrent Neural Networks (RNNs) due to
their ability to model time-series data [18], [36]. These initial
methods laid the groundwork for further refinements in the
precision of 3D pose predictions. Later studies integrated the
structural details of the human body to impose movement
constraints, resulting in the hierarchical-RNN techniques
that hierarchically interpret the local joint connections [20],
[39]. Later research utilized the capabilities of Graph
Convolutional Networks (GCNs) [40] to extract features from
graph data, leading to significant advancements in learning
human motion dynamics [24], [37], [41]. Some researchers
have suggested that stochastic models tend to generalize to
a mean pose for every motion, and have proposed the use of
generative models with an adversarial training loss to learn a
diverse distribution of motion [27], [42], [43], [44].

The implementation of Transformer networks [45] has
leveraged their attention mechanisms and prowess in captur-
ing long-range data dependencies. In [33], a full transformer
network was employed for the task of predicting human
motion, while Aksan et al. [32] utilized only the encoder
layer to encode spatio-temporal features. The latter approach
leverages the attention mechanism of transformer networks
while constraining the complexity of the network. Further-
more, the MLP-Mixer architecture [46] has been explored
for human motion prediction in studies like those by [47]
and [48].

In addition, recent research on Equivariant Neural Net-
works (ENNs) [49] aims to leverage the group symmetry to
enhance performance in motion prediction [35], [50], [51].
These diverse approaches highlight the ongoing evolution
and innovation in methodologies addressing the challenges
in human motion prediction.

A. PROBLEM FORMULATION

The task of predicting human motion revolves around
anticipating future movements by analyzing past human
motion data. Mathematically speaking, this can be visualized
as a function that takes a series of historical human motion
data points and then produces a prediction for the next data
point or even an entire sequence of future data points. This
prediction algorithm processes multiple human pose data
from each historical frame, with its primary goal being to
generate human pose predictions for a number of future
frames.

To put it mathematically, let us denote a sequence of
historical human poses as Xi.7 = xi,x2,...,xr. Here,
Xt = j1,j2,-..,jn symbolizes a single pose information at
time ¢, comprising N distinct joints. Each of these joints is
illustrated in a desired K dimensional pose representation
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format. For instance, when K = 3, it signifies joint
position representation. Alternatively, K = 9 could refer
to a 3 x 3 rotation matrix representation. These motion
data representation techniques are defined later. The main
objective here is to predict the poses for the upcoming L time
steps, which translates to forecasting the sequence of future
human poses Xr1.741 after having observed the historical
frames.

For motion prediction, two dominant strategies have
gained traction: 1) sequence-to-sequence (seq2seq), and
2) auto-regressive. The seq2seq approach, pioneered by
Sutskever et al. [52], allows models to produce an entire
future sequence in one step. In contrast, auto-regressive
models predict future frames sequentially, as described
by Boxetal. [53]. The latter uses the output from the
previous prediction as input for the next, providing the model
with a mechanism to adjust and refine future predictions.
A recognized limitation of the seq2seq approach in various
applications is its potential to generate static or repeated
patterns, especially when forecasting beyond its typical
training scope [52].

B. CATEGORIZATION CRITERIA

We categorize deep learning-based human motion prediction
algorithms according to their prediction strategies. Over time,
researchers have sought to understand the dynamics of human
motion to anticipate near-future movements. The research
community has proposed a plethora of prediction algorithms,
with many designed to incorporate the structural constraints
and movement limitations of the human body. For a coherent
analysis, we divide these methods based on their prediction
approach. Some techniques integrate the structure of the
human body into their predictions, while others employ a
feed-forward strategy without considering these structural
constraints. In our examination of these prediction methods,
we group the strategies into two primary categories: direct
modeling and geometry-aware modeling.

1) DIRECT-MODELING

Given the complex and dynamic nature of human activities,
decoding and forecasting human motion has always been
a challenging task. One prevailing strategy in this domain
is direct modeling. Such an approach primarily utilizes
methods that predict motion without prior knowledge of the
human physique. Instead, they primarily rely on deep learning
paradigms to intuitively understand the physical layout and
joint dynamics of the body directly from the input dataset,
as highlighted by Martinez et al. [54]. This methodology
effectively infers the connective and skeletal attributes
of the body, eliminating the need for explicit structural
human body information. Due to the simplified approach
of modeling human motion without anatomical body priors,
several challenges arise. These include the difficulty of
accurately learning complex motion patterns from limited
data, the challenge of generalizing across different types of
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FIGURE 3. Example of collecting motion capture dataset. Multiple motion
cameras are placed to capture human motions generated by an actor with
tracking markers.

movements and scenarios, and the tendency to collapse into
zero-velocity motion for extended horizon predictions. The
research community has attempted to address these issues
by incorporating spatio-temporal decoupled architectures
to capture complex motion dynamics [32], [55], [56],
by proposing efficient sampling strategies to build more
generalized models [57], [58], and refining predicted motion
to reduce errors in long-term forecasts [44], [59].

2) GEOMETRY-AWARE MODELING

Human body joints can be envisioned as nodes in a graph,
interconnected by directed or undirected links representing
the skeletal structure, as elaborated by Yan et al. [60]. Includ-
ing prior knowledge about human anatomy and its joints is
crucial in learning human motion representation. Although
human activities inherently possess a degree of variability,
understanding the fundamental anatomical constructs can
greatly enhance the precision of motion prediction. By incor-
porating these anatomical details, prediction models can
more precisely depict the complexities of human movement.
However, increasing the number of joints in the model raises
both its complexity and computational demands. Moreover,
most models are trained with a fixed number of joints,
limiting their predictive capability. Altering the number of
joints can destabilize the model due to its reliance on
the specific joint connections learned during training. Due
to the tree-structured like body-joints representation, the
GCN-based methods have the greater potential to decipher
the motion dynamics, as further explained in Section III-B.

C. MOTION DATA REPRESENTATION

Motion capture (MoCap) technology is essential for record-
ing the movement dynamics of individuals within a three-
dimensional space. A widely employed method for acquiring
such data is through marker-based motion capture systems.
In this approach, markers are strategically placed on key
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points of the human body, and their movements are tracked
using specialized cameras to capture their trajectories pre-
cisely (see Fig. 3).

The data thus obtained can be interpreted using various
representation techniques. The selection of a suitable data
representation is crucial for enabling the prediction model
to more effectively grasp and interpret motion dynamics.
Human motion data is typically rendered using four primary

representation types:
1) Joint positions in the Cartesian plane

2) Axis-angle
3) Joint Rotation Matrix
4) Quaternion

1) JOINT POSITIONAL POSITIONS

In motion reconstruction and prediction, the Cartesian
coordinate system is a favored method for representing
human body joints in three dimensions. Mathematically,
it can be expressed as P = (x,y,z), where x, y, and z
denote the position of joints in the 3D Cartesian plane.
This representation is straightforward and provides a direct
view of joint positions, facilitating easy visualization and
qualitative analysis of the proposed method. However,
it does not encapsulate the intricacies of joint orientation,
which can be critical for certain applications. Additionally,
this representation is prone to positional noise, leading to
disruptions in the natural constraints of human body structure
and movement. Even minor deviations in joint positions can
accumulate over consecutive frames, resulting in significant
errors in the overall body posture. Nevertheless, due to
its simplicity and directness, the Cartesian representation
remains a popular choice in various methodologies.

2) AXIS-ANGLE REPRESENTATION

The axis-angle representation characterizes the orientation
of a 3D object using a unit vector for the rotation axis and
an angle for the rotation magnitude, represented as ¥ =
0 - i, where 6 is the rotation angle and & is the rotation
axis unit vector. This representation offers an advantage by
avoiding the gimbal lock problem, a challenge inherent in
techniques such as Euler angles or quaternions. Despite its
strengths, it faces a limitation in that multiple axis-angle
pairs can denote the same orientation, leading to potential
inconsistencies in rotation representation. Resolving these
ambiguities and determining the accurate orientation could
introduce additional computational overhead. The axis-angle
representation is highly utilized in 3D modeling and anima-
tion due to its ability to circumvent gimbal lock issues, such
as [61] and [62].

3) JOINT ROTATION MATRIX

This method uses a rotation matrix to represent motion data
for each joint, capturing the movement with rotation values
within a 3 x 3 matrix. This matrix encapsulates nine rotation
values for each joint, offering a comprehensive dataset. The
detailed nature of this representation provides prediction
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algorithms with abundant information, fostering improved
accuracy and enhanced generalization. As indicated by
researchers in [32], the rotation matrix approach often
exhibits superior performance, especially when contrasted
with methods like the axis-angle representation. However, the
complex nature of this matrix might escalate computational
demands, especially when simultaneously handling an array
of joints.

4) QUATERNION

The quaternion representation offers a concise and effective
means to depict rotations in 3D space. Mathematically,
a quaternion, g, is given by

q=a+bi+cj+ dk, (1)

where the components corresponding to bi+cj+dk define the
imaginary parts, while the coefficient a is the real component.
In computer graphics and robotics, quaternions are frequently
favored over Euler angles and rotation matrices due to
their robustness and efficiency in portraying 3D rotations.
Specifically, they sidestep issues such as gimbal lock which
can pose challenges in those fields. Pavllo et al. [19] advocate
for the quaternion approach in learning human dynamics.
This methodology proves especially valuable in arenas like
virtual reality, gaming, and biomechanical simulations where
precise human movement forecast is crucial [63].

lll. METHOD CHARACTERIZATION

In this section, we organize previous motion prediction
methods according to the criteria outlined in Section II.
These methods are first grouped by their modeling strategy
and then further categorized by the primary architecture
employed in the prediction framework. Notably, some
architectures blend multiple approaches. For example, they
might combine sequential neural networks with generative
models to leverage the unique advantages of each. In these
cases, we classify the methods based on their distinctive
architectural combination. It is crucial to understand these
classifications as they offer insights into the evolution and
diversity of motion prediction techniques.

A. DIRECT MODELING

1) RNN-BASED METHODS

RNNs have demonstrated remarkable effectiveness with
time-series data, leading to their widespread use in human
motion prediction. The unique architecture of RNNs allows
them to maintain an updated hidden state at each time
step, enabling them to remember previous inputs, handle
sequences of varying lengths, and identify temporal rela-
tionships. Early work involving RNNs primarily adopted the
direct modeling strategy.

The research by Fragkiadaki et al. [36] is a foundational
contribution to human motion prediction. They leveraged
the strengths of RNNs to capture the repetitive nature
inherent in human movements. Their approach utilized the
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encoder-decoder network to intricately understand human
motion patterns. Given the integration of Long Short-Term
Memory (LSTM) layers between the feedforward encoder
and decoder sections, this framework received the fitting
name of Encoder Recurrent Decoder (ERD). In the training
phase, they minimize the Gaussian Mixture Model (GMM)
negative log-likelihood, which is defined as:

T
Lx) = = > log Pr(x,411y1), )

t=1

where x; is the input sequence and y; is a decoder’s output,
at time step . However, a recurring challenge with these
methodologies is their inclination to stray when predicting
over extended periods. This arises from their strategy of
refining motion representation by focusing on short-term
prediction errors. As a result, anomalies like the ‘sliding-
foot” phenomenon and instances of zero-velocity collapses
are often observed in long-term predictions, highlight-
ing the need for more comprehensive solutions in such
contexts.

Martinez et al. [ 18] observed that a constant pose predictor
outperformed existing methods. They approached the task
by focusing on learning velocities rather than joint angles.
To accommodate random noise, they used the predicted
pose of the network as input for the next predictions.
Along with proposing the RNN-based architecture, they
introduced a simple zero-velocity baseline to qualita-
tively assess subsequent research in the same predictive
domain.

A notable challenge with RNN-based approaches is their
tendency to generate motion sequences that appear less
natural and are prone to artifact predictions. In response,
Gui et al. [64] designed an encoder-decoder predictor
enhanced with fidelity and continuity discriminators,
ensuring smoother and more coherent motion predictions.
They argued that relying solely on Euclidean loss does not
effectively capture the subtle details of human anatomy,
which can result in convergence to a generic pose. To remedy
this, they integrated a geodesic loss, aiming to bridge the gap
between predicted and true motions. This strategy was further
reinforced by two adversarial losses from discriminators,
leading to more realistic and diverse human motion
forecasts.

In a related observation, Tang et al. [61] pointed out that
predicting motion for every joint might be redundant.
As an illustration, during a ‘phoning’ gesture, certain back
joints remain unchanged. To address this inefficiency, they
implemented a Modified Highway Unit (MHU) to filter
out static joints. Moreover, they argued that past research
methodologies frequently utilized mean-squared error on
joint values, which inadvertently pushed models toward a
generalized pose. Therefore, contrary to previous studies, the
authors train the network with the gram matrix instead of
individual joint values. Given a history sequence {x,/ }IT//:1 and
the ground truth sequence {x; }thl , the model aimed to predict

104647



IEEE Access

S. Idrees et al.: Human Motion Prediction: Assessing Direct and Geometry-Aware Approaches

Penalty

; ! .

PN [ . Quaternion |
\ + GRU » GRU ~ Linear *Multiplicaﬁon-’ Normalize >

10 A0

- |

i
I
i
'
' Norm
I
I
I
'
'

(@)

AU0D) [X]
npRy Ayedry

AU0D) [X]
npRY Ayedy

PR PR w59 PR PR
B8 X Hos 3 -1 Bos 3 B oS 3
SO Gl w x5e w xe w xS e C]
—>n 22 o022 a <z a < o< ">
S ® s g 7 e ] S ® s g 7B s
= 2 5 = 2 £ = 2 = = 2= = 2 £ ’
£ [ g = £ s 7 ’
/
pELEES
| '
= = = - BH = g
-] =~ = = = = Q2 =
K2 @ @ = zE =z =
Q%—»g&—»g&—»g%{—»ga—bgw—»g
sz &g %3 1Eg =3 S Z? S
zZ 2 = = v E ] 2 & =
= - < 1 H - =
'
'
o A

FIGURE 4. (a): The outline of the short-term generation model by Pavllo et al. [19]. The rotations of the current joints and the previous states are
computed by Gated Recurrent Units (GRUs) to predict the future pose in an autoregressive way. (b): The architecture of TracjectoryCNN explained by
Liu et al. [21]. The human body is transformed into trajectory space using a convolution layer. Then the data are fed to the encoder and decoder

composed of convolution, relu, and dropout layers.

future poses {fCt},Tzl- The loss function and a gram matrix G
are defined as:

T-1
1 .
= = 2 1GG &) = Gl x-nll3, ()

=1
G(xr, xi—1) = [ x’ }[xt xi—1].

Xr—1

In previous studies, motion data was often represented
using the Euler angle or exponential map. Such representa-
tions can infer the issues of non-uniqueness, discontinuity,
and singularities within the representation space [65].
Hence, Pavllo et al. [19] introduce the QuaterNet to utilize
quaternion for rotation parameterization in a two-layer Gated
Recurrent Unit (GRU) networks [66]. Due to the stability of
quaternion parameterization, it improves the results for short-
term prediction (see Fig. 4 (a)).

In [62], the authors innovatively incorporate motion
derivative information combined with joint-angle history.
They emphasize the significance of motion derivatives to
capture near-past motion details. These derivatives from the
input x are efficiently computed using a finite backward
difference approximation, given by:

L gram

“

n
Vi1 = D (=1 (’:)f(x — ih), 5)
i=0
where i through n denotes the indices corresponding to the
order of derivatives, and £ is a non-zero spacing constant.
Furthermore, with growing interest in the attention mech-
anism, Sang et al. [67] attempt to incorporate an attention
mechanism into the decoder. The attention mechanism
calculates weights using the features of both the encoder
and decoder. These weights are then employed to aggregate
the encoder’s features, which are then used as input for the
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decoder. The attention mechanism is further discussed in the
studies by [68] and [69].

In conclusion, early works utilizing RNN-based methods
have established a solid foundation for future motion predic-
tion techniques [70], [71], [72], [73]. The early preference
for RNNs in research was due to their natural fit for
direct modeling that did not incorporate the structural tree
of the human body. However, recent advancements have
shown accuracy improvements when inducing anatomical
connection information with RNNs, as further elaborated in
Section I1I-B.

2) CNN-BASED METHODS

A defining feature of Convolutional Neural Networks
(CNNs) is their exploitation of convolutional layers to
extract spatial information from the input. This capability has
paved the way for exploring its efficacy in human motion
analysis. Li et al. [74] built upon earlier research in motion
studies and proposed an encoder-decoder model immersed
in a convolutional architecture. This model integrates both
short-term and long-term encoders to comprehend immediate
and distant temporal movements, respectively. The spatial
decoder, denoted by i, and parameterized by wy, predicts the
next pose using a combination of long-term and short-term
hidden states, z, and z,,, respectively. The recursive training
process updates the predicted pose X;4, using the formula:

(6)

The hierarchical structure of convolutional layers facili-
tates the capture of spatial-temporal relationships, offering
advantages over the preceding RNN-based models. Fol-
lowing this, another method emerged that focuses on a
hierarchical asymmetric structure using Velocity-Cascade
Multiplicative Units (v-CMUs) [75]. This method gives

Sk = ha ([ze)s 2e, ()] | wa) + R,
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priority to recent frames, offering a refined approach to
human motion prediction by understanding both static and
dynamic elements.

In another study [76], a novel method was introduced to
transform body joint coordinates into an image sequence,
placing similar joints in proximity to explore local correla-
tions among them. Moreover, Liu et al. [21] formulated the
TrajectoryCNN, a model developed to understand motion
dynamics in trajectory space by leveraging intertwined
spatial-temporal data, global temporal relationships, and
correlations of neighboring joints (see Fig. 4 (b)). The 3D
data of the j-th joint, represented as (x;, yj, z;), is encoded
into a latent space denoted by 7'. This encoded representation
is then used in the decoding phase to estimate the future
positions of particular joints.

T =¢(.y.%), j=12.....N; 7
pi=yv(T), i=12,...,N (8)

Following the innovative approaches of previous studies,
another significant contribution comes from the High-
Resolution Spatio-Temporal Attention Network (HR-STAN)
architecture [55]. This method uniquely separates convo-
lutions into spatial and temporal segments, enhancing the
modeling of human motion. Unlike traditional techniques,
HR-STAN uses dilated convolutions to capture extensive
motion patterns without feature compression. Furthermore,
it incorporates specialized spatial and temporal attention
mechanisms, refining its prediction accuracy by focusing
on distinct spatio-temporal relationships. Similarly, to attain
attention to dynamic information, Tang et al. [59] presents a
Temporal Fusion (TF) module that fuses information from
two streams by utilizing a reinforcement Trajectory Spatial-
Temporal (TST) block. This approach differentiates between
immediate and extended motion predictions, ensuring conti-
nuity between predicted and provided poses.

CNNs remain relatively underexplored in human motion
prediction research. While they inherently excel at extracting
spatial features, they often fall short in capturing the temporal
dependencies of future motion timestamps. As discussed
later, although some methods have delved into geometry-
aware modeling, the volume of published research on CNNs
is still modest compared to other networks, such as GCNs.

3) GENERATIVE MODELS
The challenge of deciphering motion dynamics has been
extensively explored using generative models like Generative
Adversarial Networks (GANSs) and Variational Autoencoders
(VAEs). These models excel at approximating data distribu-
tions and generating high-quality synthetic data that closely
resembles real data. While many generative models focus on
direct modeling and often overlook the prior information of
human motion joints, few exceptions are noted in the work
of [30], [31], and [77].

Starting with, Barsoum et al. [27] put forth the Human
Prediction GAN (HP-GAN), a specialized approach for
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probabilistic human motion prediction. This HP-GAN model
undergoes training that incorporates both a critic via the
Wasserstein GAN (WGAN-GP) loss [42] and a discriminator
using the GAN loss. The critic loss is instrumental in optimiz-
ing both the critic and generator networks. In contrast, the
discriminator loss is reserved for training the discriminator
network and serves as a yardstick to gauge the authenticity
of the generated human poses. Inspired by the studies
of [42] and [78], Chopin et al. [79] present a similar approach
employing WGAN for the task of motion prediction.

Kundu et al. enhanced probabilistic human motion models
by proposing the Bidirectional Human Motion Prediction
GAN (BiHMP-GAN) [43], which includes a content loss
for better motion sequence prediction. In this approach,
the discriminator not only differentiates real from predicted
poses but also guides future pose generation. Building
on this, Hernandez et al. [56] applied the GAN framework
to spatio-temporal inpainting, employing a variety of loss
functions to more accurately capture the complexities of
human movement.

Achieving realistic poses through adversarial training,
where the generator and discriminator compete, is challeng-
ing. To address this, Chao et al. [44] introduced a refinement
module to learn motion dynamics (see Fig. 5(a)). On the
other hand, Lyu et al. [28] contended that while GCN-based
methods are finely tuned for the skeletal kinematic chain,
they have innovatively incorporated human biases into their
model. They modeled each joint motion using a stochastic
differential equation and employed GANs to simulate path
integrals for forecasting near-future motion trajectories. This
methodology represents a novel approach to motion predic-
tion, yet it is categorized under direct modeling approaches
for its partial incorporation of structural constraints within the
predictive model.

In the domain of generative models, VAEs have also
been thoroughly investigated for learning latent variables
from human motion datasets. Noteworthy early work by
Yan et al. [57] demonstrated the use of sampling to generate
multimodal plausible outputs by concatenating a part of
the original hidden state with the random vector. However,
Aliakbarian et al. [29] observed that due to this sampling
approach, the model tends to neglect randomness and
relies instead on deterministic conditioning information
for motion generation. To counteract this, they suggest
inheriting stochasticity by combining two vectors, i.e., hidden
state h; and random vector z. The indices of the hidden
state are randomly sampled 7 < {l,...,L} and the
complementary indices set Z is assigned to the random vector
(see Fig. 5 (b)).

Whereas, Yuan and Kitani [80] argue that random sampling
based on data likelihood can lead to low sample efficiency.
As an alternative to random sampling, the authors proposed to
generate a diverse set of samples from a pretrained generative
model. This approach towards sampling is further refined
by explicitly condition-dependent sampling in the work
of [58].
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FIGURE 5. (a): The architecture of the Adversarial Refinement Network (ARNet) implemented by Chao et al. [44]. The architecture is configured with a
Coarse-to-fine module and an adversarial error augmentation module that are both used to optimize the network. (b): The Mix-and-Match perturbation
method and the perturbation by concatenation described by Aliakbarian et al. [29]. For Mix-and-Match perturbation, indices are sampled stochastically
for each mini-batch. Contrastingly, the concatenation methods are sampled deterministically, with the size of halves of the original vectors.

In the context of human motion prediction, generative
models have exhibited a commendable performance in
generating a variety of multimodal human motions. However,
there exists an opportunity to further alleviate the impact of
mode collapse to better generalize human motion dynamics.

4) TRANSFORMERS

In 2017, the transformer network was introduced using
self-attention for sequence-to-sequence tasks like machine
translation [45]. This self-attention mechanism enables the
network to concentrate on pertinent sections of the input
while filtering out irrelevant details. Given, a set of query Q,
key K, and value V representations, the scaled-dot product
attention and a Multi-Head Attention (MHU) mechanisms are

defined as:
Attn(Q, K, V) ft (QKT) \% 9
n(Q, K, V) = softmax ,
A dk

MHU(Q, K, V) = Concat(head,, . .

., head)W©?,  (10)

where head; = Attn(QWiQ, K WiK , VWiV), and the respective
parameter matrices are defined as Wl.Q € RYmodet Xk WiK €
Rémodet Xdk apnd Wiv € R%mode1xdy

Taking that into account, the Pose Transformer (POTR) [33]
architecture is introduced to showcase the capabilities of
the transformer network for motion prediction tasks. They
approach the prediction problem as a multi-task learning
challenge, wherein the network is tasked with predicting both
activity labels and future motion concurrently (see Fig. 6 (a)).
The non-autoregressive nature of this model can lead to errors
in long-term predictions since they rely on just one input
pose. The final multi-task loss function for POTR training
is defined as:

LPOTR = Lmotion + )\Lactivityv (1 1)

Conversely, Aksan et al. [32] employ decoupled temporal
and spatial attention blocks to extract both local and
global joint dependencies in human motion. Their strategic
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deployment of attention mechanisms assists in modeling
human motion across extended time frames effectively.
Despite using a decoupled transformer to extract inter and
intra-joint connections, we categorized this method under
direct modeling since the input information lacks specific
joint details. Extending this approach, further studies also
consider decoupled spatial and temporal modeling [82], [83].

Despite several advancements, the prediction of future
motion over extended periods remains a challenging task.
To tackle this, Idreesetal. [§1] propose an innovative
approach, blending an adversarial training mechanism with
a transformer encoder network. Additionally, they employ a
temporal consistency loss to compel the model to learn human
body movement constraints (see Fig. 6 (b)). This significantly
enhances the ability of the model to mimic natural human
motion for long-term predictions.

After the exceptional performance of the transformer
network in language models, it has also shown promising
outcomes in human motion prediction. While a basic encoder
network offers commendable motion prediction, it has the
potential for a deeper understanding of human motion
dynamics. This could be realized by merging the transformer
network with other proven techniques.

B. GEOMETRY-AWARE MODELING
1) RNN-BASED METHODS
Understanding human motion dynamics crucially depends on
both local and global joint information. Therefore, studies are
performed focusing on modeling this prediction problem by
incorporating anatomical structural information with RNNs.
The research by Guo and Choi [39] serves as a cor-
nerstone in this area, highlighting the importance of local
dependencies. They achieved this by segmenting the input
into five distinct non-overlapping sections: the left arm, right
arm, left leg, right leg, and torso. Each segment is treated
autonomously, and processed through specific pathways to
draw out local attributes. These extracted local features are
then integrated to form a comprehensive pose representation
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FIGURE 6. (a): The non-auto-regressive prediction model Pose Transformer (POTR) proposed by Martinez-Gonzalez et al. [33]. The human poses are
embedded and then processed through the encoder and decoder. The outputs of the decoder are combined with specialized class tokens to embed
them as activity representations. (b): the Adversarial Motion Transformer (AdvMT) introduced by Idrees et al. [81]. Future motion is predicted using an
auto-regressive approach that incorporates adversarial training techniques. The results are further enhanced through a consistency loss to restrict the

model to predict more consistent and realistic motion.
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FIGURE 7. (a): The outline of SkelNet proposed by Gou and Choi [39]. The current pose is divided into five components. These non-overlapping
components are fed to each branch of component-specific layers, which is a combination of linear layers, LReLUs, and dropouts. (b): The Quadruple
Diffusion Convolutional Recurrent Network (Q-DCRN) mentioned by Men et al. [84]. The skeletal representations are fed to the forward and backward in
chronological directions that include GRU with diffusion graphs. Then both predictions are fed to the discriminator.

(see Fig. 7 (a)). Similar to the work by [39], Aksan et al. [20]
suggested a structured decomposition of the human kinematic
chain into information for separate joints, such as:

xt(lhand):l ’ (12)

As observed, RNNs integrating human body structure
information to learn motion dynamics have been relatively
unexplored. However, combining RNNs with architectures
like GCNs has gained some attention recently, as seen in the
works of [17] and [85].

I:xt(hip), xt(spine), o xt(lwrist)

X; =

b

2) CNN-BASED METHODS
CNNs inherently excel in extracting spatial features from
input data, and when applied to pose prediction, the
integration of structural information enables the creation of
more plausible future human movements. In [22], the authors
unveiled a hierarchical encoding technique, visualizing the
human body in a tree-structured manner. This representation
commences with individual body parts at the base layer and
ascends to the entire body representation at the top layer.
Despite their advantages, hierarchical methods are compu-
tationally intensive. Addressing this, Li et al. [86] unveiled
a streamlined framework featuring a Convolutional Hier-
archical Module (CHM) which employs 1D convolutional
layers to simultaneously infer temporal dynamics and
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spatial constraints from the data. Another contribution is
from Men et al. [84], introducing the Quadruple Diffusion
Convolutional Recurrent Network (Q-DCRN), a mechanism
that transforms spatial structures into graphs and enables
adaptive information diffusion through bi-directional random
walks. This network, paired with a seq2seq and graph
convolution, interprets temporal dependencies in the data and
optimizes both retrospective and prospective human move-
ments through the integration of a bi-directional temporal
predictor and a bi-discriminator (See Fig. 7 (b)).

While CNNs excel in vision-centric research, their appli-
cation to the MoCap dataset for motion prediction has been
challenging. Despite efforts to incorporate tree-structured
human body data through hierarchical methods, the results
have not been consistently compelling.

3) GCN-BASED METHODS

Past approaches have shown that structuring joint information
in a tree-like manner improves the proficiency of pose pre-
diction models in interpreting human movement dynamics.
Given that GCNs excel at extracting key features from graph-
structured data, including inter-node connections and the
significance of specific nodes and edges. Given A as the
adjacency matrix with added self-connections and D as its
diagonal node degree matrix, the GCN layer propagates node
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FIGURE 8. (a): The short-term graph network Quaternet by Mao et al. [37]. The temporal pose information is fed to the DCT for enhanced 3D coordinate
representations. Then they are inputted into 12 residual blocks containing 2 graph convolutional layers for encoding and decoding data. (b): The
Dynamic Multiscale Graph Neural Networks proposed by Li et al. [24]. The semantics of human poses are input into the encoder containing Multiscale
Graph Computational Units (MGCU). Then they are passed through the decoder formed with graph-based GRU (G-GRU) to update hidden states.

features H( 1) at layer [ + 1 using the following equation:
HD = 5 (D—%AD—%H“)W“)) , (13)

GCNs are optimally designed to capture the anatomical
kinematic tree relationships. The fusion of GCNs with the
tree-structured joint information led to breakthroughs in
motion prediction accuracy. Therefore, GCN-based motion
prediction methods are exclusively categorized under the
geometry-aware methods, emphasizing their unique capabil-
ity to process and understand geometric structures.

While earlier hierarchical human motion predictors
grouped similar or neighboring joints to comprehend body
movement, coordinating motions across distinct body parts
is often neglected. Inspired by [87], Mao et al. [37] developed
a GCN tailored to adaptively learn crucial joint connections
without relying on joint-tree data. They argue that the joint
angles or 3D joint coordinate representations employed in
previous studies remain static in nature. Thus, they utilize
the Discrete Cosine Transform (DCT) to capture the temporal
dynamics of human motion, functioning within the trajectory
space. The DCT offers a compact yet potent representation of
temporal variations in human joint movement. This method
is further refined by incorporating an attention layer or
adopting a distinct motion generation technique, as outlined
in [23], [88], and [89]. Mao et al. use specific equations
to derive the DCT coefficients {Ck,l}le1 from trajectories
{xk,l}lel- Afterward, the Inverse-DCT (IDCT) applied within
the learned feature space yields the future pose [23], [37],
[88], [89].

L
2 1
ck,z=‘/zzlxk,n g cosBun. (14)

n=

L
2 1
Xk = chk,z,/mcos(ﬂn,z), (15)

1 ifi=j
0 ifi#£j

In [37], a joint connection matrix is learned without
constraints (see Fig. 8 (a)). In contrast, Cuietal. [41]
advocate for learning a parameterized representation of

where B, = % and 8 =
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human body structure through a learnable adjacency matrix.
In this approach, only the connection weights between body
parts are refined during the optimization process.

Lebailly et al. [90] introduced the Temporal Inception
Module (TIM) to encode human motion across multi-
ple temporal scales, enabling the model to inspect input
pose sequences through varying receptive fields. Whereas,
to leverage both local and global joint connections, the
Dynamic Multiscale Graph Neural Networks (DMGNN)
framework [24] was crafted to leverage the structural
connections of the human body across multiscale graphs.
This multiscale approach effectively captures relationships
among nodes. By providing insights at diverse scales, the
model detects complex patterns and dependencies that might
be missed by single-scale models (see Fig. 8 (b)). In general
terms, Eq. (13) can be modified to generate the multi-scale
GCN as follows:

1

~—Ll. 1
H_511+1) =0 (DS,' ZAS,'DSI' ZH(I)WS(II)) ’ (16)

where Wy(l.l) is the weight matrix at layer / for scale s;, and
As,- and DS,. are the adjacency and degree matrices for scale
si, respectively. Furthermore, the aggregated output features
for multiple scales with A as a regularization factor can be
summed as:

S
H = Hy, + X\ Hy, (17)
i=2

Building on the approach of [24], the researchers have
embraced the use of multiscale graphs for human motion
learning by employing a variety of diverse methods [91], [92],
[93], [94], [95], [96], [97], [98].

Improving over previous methods, Cui and Sun [38]
addressed two primary challenges of error accumulation in
predicted poses and handling of incomplete input sequences.
Their solution, the Multi-Task Graph Convolutional Net-
work (MT-GCN), confronts both issues by simultaneously
correcting incomplete sequences and predicting human
actions. Their framework architecture comprises three main
components: a Shared Context Encoder (SCE) for context
extraction from observed sequences, a Sequence Repairing
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Module (SRM) that uses a temporal self-attention mechanism
for gap-filling, and a Human Action Predictor (HAP). This
structure facilitates more precise predictions, especially when
fed with incomplete sequence data. In another research,
Cui et al. [99] developed a distinctive method that merges the
efficiency of GCNs in processing body-joint information with
adversarial training to capture more realistic human motion.
The proposed approach proposes the fidelity discriminator
and the consistency discriminator. The former differentiates
predictions from the ground truth, while the latter ensures
motion consistency for long-term predictions. The model
outperforms traditional recurrent models, enabling real-time
applications with improved accuracy and visualization for
long-term predictions.

In the work of [25], the authors tackle the over-smoothness
issue observed in extended horizon predictions which often
reflects unrealistic human motion. Addressing this, they
present a novel approach called Skeleton Graph Scattering
Network (SGCN). The key idea is to extract crucial motion
information across various graph spectrum bands using graph
scattering techniques. The model combines graph scatter-
ing decomposition and graph spectrum attention to learn
joint-spectral representation and reflect their importance
through attention scores. Further expanding on this concept,
Li et al. [100] introduced Multi-Part Graph Scattering Blocks
(MPGSBs) in a subsequent study, aimed at enhancing
motion representation through adaptive graph scattering
methods. Furthermore, Ma et al. [101] introduce a stage-wise
prediction mechanism that iteratively uses the forecasted
future pose as an initial input for the next stage. Each of these
stages integrates both spatial and temporal GCN networks,
effectively capturing the inherent spatial intricacies within a
pose and the temporal dynamics across motion trajectories.
Similar to this, Zhong et al. [26] employs spatio-temporal
modeling to discern intra-joint connections and temporal
dynamics over sequences. They further innovate by fusing
spatial and temporal adjacency matrices with learnable
blending coefficients to produce an adaptive adjacency
matrix.

In conclusion, GCNs have emerged as a pivotal tool in
human motion prediction due to their geometry-aware mod-
eling. Due to effectively processing graph-structured data,
even conventional feedforward GCNs surpass the previous
RNN-based methods. The strategic combination of GCNs
with advanced techniques like multiscale, spatio-temporal
modeling, and adaptive adjacency matrices, promises a new
frontier in achieving unparalleled motion prediction accuracy.

4) GENERATIVE MODELS

A well-known challenge with GANs pertains to mode
collapsing and the issue of predicting freezing future motion.
One approach to mitigate these issues involves integrating
hierarchical methods that account for the local dependencies
among human joints. Hence, Liuetal. [30] presented a
unique strategy for blending joint geometry information into
amulti-GAN model. They employed sub-GANS to learn local
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joint connections, and later they unified the outputs from
these local GANSs using a global GAN. This synergy between
local and global perspectives aids in generating diverse and
robust future motion predictions (see Fig. 9 (a)).

Furthermore, inspired by [16] and [102], Zhao et al. [77]
introduced a Bidirectional Transformer-based Generative
Adversarial Network (BiTGAN) aimed at tackling the
freezing future motion dilemma. To accommodate the spatial
relationships among joints, they employed a GCN predictor
with a learnable adjacency matrix. In a related vein, the work
of [31] advocates for the learning of disentangled human body
joints information. Conditional-VAE (CVAE) is employed to
concurrently learn full-body human motion and partial-body
motion.

Like RNNs and CNNs, generative models have received
less attention in tackling motion prediction task. The complex
and variable nature of human behavior contributes to this,
as it complicates the task of creating models that generalize
human dynamics well. Future research that includes a blend
of various architectures combined with geometry-aware
modeling may enhance our grasp of human motion dynamics.

5) TRANSFORMERS

In pursuit of optimal joint representation, the transformer net-
work has been modified with a progressive-decoding [102]
and a multi-scale [34] approach. Where, Cai et al. [102]
adopted a progressive-decoding technique to tap into the
innate structural links among joints. Their approach initiates
by predicting future motion for central joints within the
kinematic chain. Subsequently, this prediction is propagated
sequentially to the peripheral joints. Such a structured
approach capitalizes on information about joint linkages to
enhance human motion prediction accuracy (see Fig. 9 (b)).

On the other hand, Chen et al. [34] advocate for the use
of the established multi-scale technique to distill hierarchical
structural details of the human body. They introduced a
spatio-temporal transformer network composed of distinct
multi-scale modules. This design first employs a GCN to
understand the spatial relationships between joint connec-
tions in multiple scales. Following this, the transformer
network processes the correlations between the extracted
features.

At the end, there remains ample scope to investigate more
into geometry-aware motion prediction techniques with the
transformer network. The critical role of structural con-
straints in decoding motion dynamics cannot be overstated.
As demonstrated by [34], the synergy between GCNs and
transformer networks offers a promising direction for future
research.

6) EQUIVARIANT NEURAL NETWORKS

The ENNs represent a category of deep learning models
developed to utilize symmetries within the provided data.
Given a group G and two homogeneous spaces X; and
X5 that have corresponding G-actions, a G-ENN is a linear
or nonlinear map ¥ : f(X;) — f/(X») that satisfies the
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different sub-GANs, and their outputs are combined and fed to a global critic. (b): The progressive-decoding method was implemented by

Cai et al. [102]. The human poses are encoded by the Discrete Cosine Transform (DCT) and passed to the transformer-based architecture. After they are
fed to the inverse DCT (IDCT) to convert the coefficients back to human poses.
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under transformations. These extracted features and graphs are then iteratively fed to the equivariant geometric feature learning layers and invariant
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following:

YITef (O] = Ty [f (], (13)

where T, and Té denote the G-function transformations
on the respective spaces. These networks excel at learning
and analyzing structured data such as images [103], 3D
structures [104], and point clouds [105], particularly those
with inherent symmetries. The term ‘symmetry’ denotes the
invariance of a system under specific group transformations.
In the case of image analysis, typical symmetries include
scaling, translation, rotation, and reflection. Conventional
neural networks lack an explicit design to account for these
symmetries, leading them to overlook inherent symmetrical
structures. In contrast, ENNs are architecturally devised to
respect and acknowledge the symmetries evident within the
data.

ENNs have exhibited promising results in diverse fields
of study. For example, in computer vision [103], equiv-
ariant networks effectively handle rotation and translation
symmetries in images. In molecular chemistry [106], equiv-
ariant networks capture the rotational and translational
symmetries of molecules, enabling more accurate predic-
tions of molecular properties. In robotics, [107], [108],
[109] demonstrated remarkable data efficiency in visual
manipulation, while [110] highlighted better stability in
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manipulation control. Equivariance has also been employed
in various fields such as 3D object segmentation [111], [112],
shape reconstruction [113], and reinforcement learning [114],
[115].

Several studies have integrated equivariance in the domain
of human pose prediction. For instance, Yeh et al. [50]
proposed the Chirality Nets. Their model utilizes chirality
equivariance for pose regression tasks through odd and
even symmetric parameter sharing. Due to their parameter
sharing, the model demonstrates enhanced data efficiency
and computational reduction. Similarly, Xu et al. [51] present
equivariance in the teacher-student learning framework.
In their approach, the teacher network is 3D rotation invariant,
while the student network is 3D rotation equivariant. The
equivariant student network utilizes a graph convolution layer
with a cycle-consistent loss for 3D rotations, adding flexi-
bility and eventually boosting the prediction accuracy. The
rotation equivariant loss is defined utilizing the knowledge
distillation loss, which is as follows:

1 R R
Lrec = ﬁllfs(P(RYs)) —RYS)II,%, (19)

where R € SO(3) represents a randorAn rotation matrix,
F, denotes the student network, and Y* is the 3D pose
estimated by the student network. The P(-) projects the 3D
rotation to generate a new 2D pose. As a result, the student
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TABLE 1. MAE evaluation results for different methods on the H36M dataset [116]. The best results are not highlighted as the number of joints used for

evaluation differs among the methods.

Walking Eating Smoking Discussion Directions Sitting Down Average
Time (milliseconds) 160 400 1000 | 160 400 1000| 160 400 1000| 160 400 1000| 160 400 1000 | 160 400 1000| 160 400 1000
ERD [36] 1.18 1.78 - [145 1.80 - |[1.95 242 - [247 276 - - - - - - - - - -
LSTM-3LR [36] 1.00 147 - |1.09 146 - |1.65 216 - |2.12 223 - - - - - - - - - -
Res. Sup. [18] 049 0.81 - (039 076 - |061 1.15 - |0.68 1.09 - [047 0.84 - |0.81 1.62 - [0.67 1.15 -
Z AGED [64] 0.36 0.67 091 |0.28 0.64 0.93 043 0.84 1.21 |0.56 0.83 1.30({039 069 - |0.62 1.10 - [054 097 -
& MHU [61] 0.53 0.77 1.06 | - - - - - - |0.66 1.00 1.88 | - - - - - - 10.68 1.13 1.80
QuaterNet [19] 034 062 - |035 070 - (047 090 - |0.60 093 - - - - - - - - - -
SkelNet [39] - - - 1039 071 - ]047 089 - |0.62 1.00 - - - - - - - - - -
H-TE" [22] 018 - 031|020 - 037(026 - 041|017 - 024/| - - - - - - - - -
Z CEM [74] 0.54 0.73 092 |0.36 0.71 124 ({049 092 1.62|0.67 1.01 1.86|0.60 091 1.45|0.78 1.31 2.06 |0.68 1.13 1.77
%CHA [86] 045 0.74 092 |0.34 0.66 1.21 [0.48 0.93 1.66 |0.62 091 1.72|0.62 0.88 1.40|0.79 1.30 2.05|0.66 1.11 1.74
Q-DCRN [84] 0.36 0.60 0.69 |0.32 0.67 1.18 [0.43 0.84 1.58 |0.69 1.04 1.56 |0.45 0.70 1.31]0.73 1.15 1.95|0.57 1.02 1.60
LTD-10-10 [37] 0.31 0.56 0.77 |0.29 0.62 1.10 [0.41 0.80 1.58 |0.51 0.85 1.75[0.45 0.79 1.35]0.61 1.00 1.67 [0.52 0.94 1.62
HisRepeat [23] 0.30 0.51 0.64 |0.29 0.60 1.10 [0.42 0.80 1.58 |0.52 0.87 1.63 |0.43 0.69 1.27 |0.63 1.04 1.70 |0.52 0.94 1.57
6LDR [41] 0.29 0.57 0.71 |0.27 0.64 0.97 [0.38 0.82 1.08 |0.45 0.81 0.84 [0.43 0.59 0.68 |0.62 0.93 1.42|0.45 0.86 1.20
® DMGNN [24] 0.31 0.58 0.75|0.30 0.59 1.14 {039 0.77 1.52]0.65 0.99 145|044 071 - |0.65 1.05 - |0.52 095 121
TCGAN [99] 0.34 0.61 0.83 |0.27 0.59 091 [0.41 0.77 1.17|0.53 0.81 1.23 [0.36 0.67 1.39|0.57 1.06 1.82|0.51 0.89 1.45
SGCN [25] 030 053 - |027 058 - ]039 078 - |0.50 0.84 - (039 0.68 - - - - 1048 091 -
BiHMP-GAN [43] 0.52 0.67 0.85|0.33 0.70 1.20 [0.50 0.86 1.11|0.65 0.96 1.77 | - - - - - - - - -
gARNet [44] 0.31 0.55 0.69 |0.28 0.61 1.07 [0.42 0.81 1.51|0.51 0.89 1.68 043 0.75 - |0.29 097 - |033 0.67 1.24
© Mix-and-Match [29] 0.48 0.58 0.68 [0.34 0.50 0.91 |0.42 0.77 1.25|0.60 0.89 1.30| - - - - - - - - -
AM-GAN [30] 0.51 0.66 0.840.31 0.66 1.15|0.46 0.88 1.10|0.55 0.92 1.58|0.57 0.89 1.41|0.72 1.20 1.85|0.67 143 1.75
ProgDec [102] 030 055 - 029 061 - |040 078 - ]0.39 0.69 - - - - - - - 1049 094 -
£ POTR-GCN [33] 040 073 - 029 068 - 1039 0.82 - |056 096 - (045 091 - |0.63 1.12 - [056 1.01 -
£ S-Transformer [82] 0.41 0.66 - [0.32 071 - |0.46 093 - [0.64 1.08 - - - - - - - - - -
STTG-net [83] 033 057 - |030 062 - |061 1.15 - |047 078 - [043 076 - |045 094 - [050 0.89 -
MSTP-net [34] 0.43 0.54 0.68 |0.29 0.61 1.08 |0.40 0.78 1.51 |0.54 0.83 1.51 [0.42 0.69 1.17|0.62 0.96 1.60 |0.53 0.93 1.51

* Trained with single action separately.

network remains adaptive to the camera view and enhances
the training.

In addition, Xu et al. [35] introduced a novel framework
named EqMotions, which enables seq2seq motion equivari-
ance under Euclidean geometric transformation. EqMotions
extracts both equivariant geometric features and invariant
pattern features through a multi-layer approach. These
features are channeled through an equivariant output layer to
produce the final predictions. These layers exhibit equivariant
such as

GHOR+1 =T (GYR+t, {c;)), (20)
YR+t =F\), (GPR +1). @21)

where the rotation matrix is R € SO(3) and the translation
matrix is ¢+ € (R)" The geometric feature is defined as
Gt [G(IL), e G;s)] € RMXCxn where the M is the
agent in a multi-agent system, C is the geometric coordinates,
and n is the dimension. The Fg)GFL and Iﬁ‘g)OL represents
the equivariant geometric feature learning layers and the
equivariant output layer. The c;; denotes the set of all the
interaction categorical vectors (see Fig. 10).

Notably, Xu et al. [35] demonstrate the data efficiency and
generalization capability of equivariance in their model by
experimenting with various tasks, including human skeleton
motion prediction. Their model outperforms baseline models
across multiple tasks while requiring fewer data and training
parameters. This work effectively highlights the potential of
ENNSs and sets a promising direction for future research in
human motion prediction.
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IV. HUMAN MOTION DATASET

The performance of a specific deep learning approach
is intrinsically tied to the quality and volume of the
dataset utilized. Obtaining a human motion dataset is
both time-consuming and resource-intensive, as it requires
multiple individuals to record their movements repeatedly for
each action category. While it is feasible to project 3D human
motion data synthetically in a simulated environment, such
projections often fall short of mimicking realistic, dynamic
human movements. In the context of motion reconstruction,
[117] endeavored to estimate 3D motion from a singular RGB
image input. This paper also lists several motion datasets
used in studies of pose reconstruction, motion prediction, and
human behavior analysis.

A. HUMAN3.6M [116]

The Human3.6M dataset is extensively used as a benchmark
for both human motion prediction and motion reconstruction
tasks. Encompassing more than 3.6 million frames, this
motion capture data was recorded using a marker-based
system and includes natural full-body 3D human poses at
the posture level. Additionally, it provides camera images
from a static camera for the duration of each action. The
dataset features motions from 11 actors: 5 females and
6 males, with each actor performing 15 different daily actions.
These actions are categorized into upper-body movements
(e.g., greeting, posing, taking photo), moving actions (e.g.,
walking, walking dog, walking together), and stationary
actions (e.g., eating, smoking, sitting). Human motion within
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the dataset is represented using 32 body joints. The dataset
can be accessed from the official website, though a signup is
required.

B. 3D POSES IN THE WILD (3DPW) [118]

The 3DPW dataset is a distinctive collection of 60 video
sequences, totaling 51,000 frames or approximately
1700 seconds of video. Alongside the video data, the
dataset provides invaluable IMU data, 3D scans, and
3D models of participants wearing 18 different clothing
variations. This comprehensive set of data offers researchers
a deeper insight into human pose in relation to attire and
environment. The dataset showcases 7 actors performing a
variety of activities in challenging outdoor scenarios. Their
actions range from walking and jogging to other dynamic
movements, reflecting the complexities of real-world human
motion. Given the richness of the dataset, with its mix of
2D video sequences and corresponding 3D pose information,
3DPW dataset stands out as an exceptional resource for those
aiming to push the boundaries of human pose estimation
techniques.

C. MULTIMODAL HUMAN ACTION DATABASE

(MHAD) [119]

The MHAD provides access to mocap data in addition
to other modalities such as multi-view video, depth,
acceleration, and audio. The dataset contains motion data
for 11 actions, including jumping in place, waving hand,
clapping hands, throwing a ball, sit down, stand up, etc. This
set of activities is performed by 12 actors (including 7 male
and 5 female). Each action was performed 5 times, resulting
in approximately 660 action sequences.

D. HumankEVA [14]

The HumanEva dataset consists of synchronized video and
motion capture data for several human subjects performing a
variety of activities, such as walking, running, and jumping.
The authors released two versions of datasets, namely
HumanEva-I and HumanEva-II. HumanEva-I includes
6 actions performed by 4 subjects, whereas HumanEva-II
contains only one action from 2 actors. The dataset was
created with the intent to evaluate the performance of
various algorithms on the challenging task of 3D human
pose estimation. The dataset is available for download on its
respective website, although accessing it requires registration
and additional steps.

E. NTU RGB+D [13]

The NTU RGB+D dataset is a large-scale dataset for human
activity recognition, containing over 56,000 video clips of
human actions, captured by Kinect v2 sensors. It contains
40 daily actions (eating, reading, sitting, etc.), 9 medical
condition actions (sneezing, chest pain, falling down, etc.),
and 11 actions for two-person interaction (pushing, hugging,
shaking hands, etc.). Each action is performed twice and is
annotated with 3D skeletal data, which provides information
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about the positions and orientations of various body parts.
The pose information is provided in the configuration of
25 body joints.

F. KIT WHOLE-BODY HUMAN MOTION DATABASE [12]

The Whole-Body Human Motion Database comprises motion
annotations sourced from various markers placed on the
bodies of people and objects. For each frame, pose data is
derived from 56 markers situated on the participant’s body.
The dataset encompasses 715 motion-capture experiments,
executed by 53 distinct participants (37 male and 16 female).
It offers manipulation motions involving objects, such as
drinking, pouring, whisking, and throwing, which aid in
evaluating context-aware human motion learning techniques.

G. AMASS [11]

The Archive of Motion Capture as Surface Shapes (AMASS)
is, to date, the largest publicly available database of human
motions. A significant contribution of the AMASS dataset
is its ability to unify other public human motion datasets
into a standardized representation. They have consolidated
previously available motion capture datasets into an expan-
sive collection under a common body representation. As they
obtain new datasets, these are continually added. Currently,
there are 25 aggregated datasets in the collection. The
AMASS dataset is freely available for download after account
registration from their official repository.

V. EVALUATION

Human motion prediction is undoubtedly a challenging task
due to the complex dynamics and inherent uncertainty of
human actions. Therefore, it is crucial to select performance
metrics carefully to guarantee a fair comparison among
different proposed prediction methodologies. Primarily, the
evaluation of prediction algorithms has focused on two
metrics, Mean Angle Error (MAE) and Mean Per Joint
Position Error (MPJPE).

The MAE is predominantly used to evaluate prediction
methods that utilize angle representation to decode motion
dependencies. It calculates the mean error between the
ground truth and the predicted per-joint Euler angle. On the
other hand, MPJPE is the go-to metric for algorithms that
represent future motion prediction in terms of 3D joint
positions. As with MAE, MPJPE evaluates the error between
the ground truth and the predicted future poses on a per-joint
basis.

However, in their study, the authors of [80] pointed out
that both MAE and MPJPE might not entirely capture the
diversity of predicted motions. They advocate for metrics
like Average Displacement Error (ADE), Final Displacement
Error (FDE), and Average Pairwise Distance (APD).

1) Average Displacement Error (ADE) measures the
accuracy between the whole ground truth motion and
the closest sample by computing L? distance over it.

2) Final Displacement Error (FDE) computes the recon-
struction loss for the final future predicted pose.
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TABLE 2. MPJPE evaluation results (in millimeters) for different methods on the H36M dataset [116]. The best results are not highlighted as the number
of joints used for evaluation differs among the methods.

Walking Eating Smoking Discussion Directions Sitting Down Average
Time (milliseconds) 160 400 1000| 160 400 1000| 160 400 1000| 160 400 1000 | 160 400 1000 | 160 400 1000 | 160 400 1000
LTD [37] 157 334 513189 472 689|149 28.7 60.5[22.1 44.1 103.5(244 584 - [27.6 676 - [250 613 -
HisRepeat [23] 19.5 39.8 58.1 |14.0 36.2 75.7|14.9 36.4 69.5 (234 654 119.8|18.4 56.5 106.5|30.7 72.0 143.6|22.6 58.3 112.1
LDR [41] 149 299 458 159 41.7 53.8 [13.4 249 43.1|20.3 41.2 67.4 |23.7 509 783 |21.4 59.3 144.6|18.1 31.2 79.2
MGCN [93] 15.0 31.3 43.7 |18.4 445 68.7|129 27.0 552 | - - 7291227 60.1 - - - - 232 601 -
MSR-GCN [91] 22,6 452 63.0|17.1 404 77.1 |16.3 38.1 71.6|26.8 69.7 117.6|19.7 53.8 100.6|31.6 76.8 - |25.6 62.9 86.0
Z AM-GCN [97] - - - - - - |13.9 30.1 62.5(21.1 483 943 |16.7 43.5 97.0 |264 61.5 116.4|22.1 57.9 102.6
BMT—GCN [38] 18.8 41.7 60.4 [17.2 423 749|157 39.7 70.8 [22.7 64.6 115.7(23.2 56.7 108.5|29.6 70.8 140.2|21.3 44.2 69.0
SGSN [25] 15.0 31.5 43.6 |17.4 43.7 68.2|13.8 28.2 58.8 [19.1 40.4 96.5 [21.6 56.3 101.0|24.7 60.2 126.8|22.9 56.9 100.8
SPGSN [100] 19.4 415 53.6 149 379 734|138 34.6 68.6|23.8 67.1 - |17.1 50.3 100.5|27.7 70.7 - |22.3 58.3 109.6
STS-GCN [120] 169 329 51.8 |11.3 254 524 |11.6 25.8 50.0 [16.8 40.2 78.8 [13.5 34.7 71.0 |23.7 47.9 943 |17.1 383 75.6
GAGCN [26] 16.1 324 51.1 [11.5 252 51.4|11.8 243 48.7 [17.1 389 769 [12.8 345 69.9 |24.8 474 84.1 |169 385 729
CGHMP [98] 18.6 37.0 53.7 |14.4 36.2 72.6|14.1 34.8 68.6 24.3 68.8 120.6(17.1 50.6 100.7|28.5 73.1 - |22.8 59.3 -
TrajectoryCNN [21] 14.9 354 46.4 184 44.8 71.5|12.8 27.8 58.7 [20.0 47.8 103.0(22.3 61.7 104.2|28.8 62.9 123.8(23.2 59.7 110.6
TF-CNN [59] 148 344 - |17.1 426 - |127 276 - |[18.7 468 - (229 65.1 - |274 60.7 - |22.6 584 -
HR-STAN [55] 17.0 519 - |12.1 385 - |104 33.0 - |18.1 619 - |139 49.1 -175|581 - 17.0 [564 -
MA-WGAN [79]  21.1 424 68.2 159 35.0 653 |14.3 30.4 63.4 (22.7 54.6 102.2(20.9 47.0 83.5 |28.2 64.5 125.2|22.5 50.8 96.4
£BITGAN [77] - - 605 - - 730| - - 700 - - 1164 - - 1063 | - - 1413 - - 1111
gProgDec [102] 145 345 412 |18.1 453 67.9 (132 275 583 | - - 103.1(22.7 584 - - - - 238 602 -
AdvMT [81] 239 39.9 55.0 [18.3 36.1 59.3|22.8 455 77.736.0 66.7 101.0| - - 1035 - - 1422 - - 106.6
siMLPe [47] - 396 557| - 36.1 745| - 363 693| - 643 1163| - 558 106.7| - 708 1424| - 573 1094
G-G Mixer [48] - 386 556| - 341 743| - 363 688 | - 634 1150 - 557 106.8| - 692 138.6| - 56.7 108.6
EqMotion [35] 17.5 39.2 52.8 |13.6 36.5 73.0|11.3 29.3 63.4|18.9 53.9 105.6(15.8 50.1 - |26.5 70.7 - |20.1 55.0 106.9

3) Average Pairwise Distance (APD) calculates the diver-
sity within the predicted future motion. L? distance is
calculated between all motion samples.

The importance of robust datasets and comprehensive
evaluation metrics becomes increasingly clear as the com-
plexity of human motion prediction tasks is recognized.
As elaborated, the Human3.6M dataset [116] stands out as
a frequently utilized resource for these tasks, and many
motion prediction methods have been benchmarked against
it. According to the literature, future motion prediction is
quantified in two distinct scenarios. The first is short-term
prediction, focusing on future human poses up to 400ms. The
second scenario is long-term prediction, which includes poses
that exceed this 400ms threshold.

This paper has summarized the outcomes of various motion
prediction algorithms discussed earlier. We have primarily
used the MAE and MPJPE as our evaluation metrics,
reflecting their common usage among these methods. The
data presented in Tables 1 and 2 are sourced directly from
the corresponding published papers. Since the methods are
trained and evaluated with different numbers of joints,
we refrained from highlighting the best results to maintain a
fair and uniform comparison across all approaches. We have
included results for both short-term predictions (at 160ms
and 400ms) and long-term predictions (at 1000ms). First,
we include an analysis of four primary actions from the
Human3.6M dataset, namely walking, eating, smoking, and
discussion. To deepen our comparison, we also examine more
challenging actions such as directions and sitting down, with
the latter presenting considerable challenges due to occlusion
and a wide range of movements. The findings suggest that
GCN-based methods tend to perform better in terms of
prediction accuracy, benefiting from their ability to leverage
the geometrical structure of the human body.
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VI. FUTURE RESEARCH DIRECTION

A. META-LEARNING

The meta-learning approach shows promise in advancing
human motion prediction, especially in situations with
limited data and varied environments [121]. Meta-learning
models undergo training across a multitude of tasks during
meta-training, which in turn equips them with the capacity to
rapidly adjust to novel situations using only a small amount
of task-specific data. Such a capability is indispensable
in situations where immediate predictions are paramount, and
the acquisition of new data is infeasible.

Additionally, meta-learning enhances model generaliza-
tion by integrating knowledge across a wide variety of
tasks [122]. This accrued knowledge encapsulates recurring
human motion patterns prevalent in various contexts, ensur-
ing precise predictions even when confronted with subtle
motion deviations. Analogous to how humans draw from
prior experiences to swiftly adapt to new circumstances, these
models can benefit from their past learnings, capitalizing
on their meta-knowledge to render predictions that are both
efficient and of high quality.

In the context of human motion prediction, the potential of
meta-learning is evident. These models, with their adaptabil-
ity and proficiency in transfer learning, suggest a promising
avenue for future research. By transferring insights from
one specific context to diverse scenarios, they can provide
well-informed predictions even as conditions change. This
versatility positions meta-learning as a valuable direction
for further advancements in human motion prediction,
particularly in environments that are constantly evolving.

B. CAUSAL LEARNING

Causal models enable counterfactual reasoning, which
involves asking questions about how outcomes might differ
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if certain conditions were altered [123]. For instance,
researchers can inquire about the effect of changing the
starting position on their future trajectory. The models
can simulate interventions virtually. If there is a need to
understand how adding an obstacle affects the walking
trajectory, the model can simulate the changed scenario.
By adjusting input variables, the model could project how the
altered conditions would impact the predicted motion.

Beyond predicting motion based on observed patterns,
causal models quantify the effects of interventions. They
provide numerical estimates of how much motion changes
due to specific alterations, offering a deeper understanding
of the implications of interventions. By predicting outcomes
of interventions, causal models assist in making informed
decisions, especially when optimizing motions for desired
outcomes while considering various constraints.

Causal models let us explore hypothetical scenarios,
simulate interventions, and understand the ramifications of
changes. This could aid in making informed decisions,
optimizing motions, and adapting motion predictions for
various real-world situations.

C. PROBABLISTIC MODELING

Probabilistic modeling has greatly enhanced human motion
prediction by tackling the inherent uncertainties in complex
movements. These models quantify uncertainty, offering not
only predictions but also the associated confidence levels. For
instance, the confidence-aware motion prediction approach
integrates a Bayesian belief model to maintain and update
its confidence in the human motion predictions [124]. This
method continuously updates its confidence based on real-
time observations, making it robust to unanticipated human
behaviors.

Probabilistic models enhance decision-making by provid-
ing insights into likely outcomes and can handle multimodal
data, capturing diverse behaviors by modeling multiple
possible trajectories. For example, the Bayesian Neural
Network (BNN) approach addresses the problem of human
motion prediction by extending deterministic models to
probabilistic ones [125]. It replaces deterministic weight
parameters with distributions over these parameters, enabling
the model to generate a range of possible future motions given
an observed sequence. This approach effectively captures
both uncertainty about the model itself and inherent noise
in the data, offering a more comprehensive and reliable
prediction framework.

However, these contemporary methods face specific
challenges in the context of human motion prediction.
Real-time updates and inference with Bayesian models
can be computationally demanding, limiting their practical
use. Additionally, the accuracy of these methods relies
heavily on the quality of the training data. The models
may produce unreliable predictions when the data is limited
or biased. Furthermore, although probabilistic models can
generate multiple potential outcomes, distinguishing between
these outcomes and identifying the most accurate prediction
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remains challenging, especially in scenarios with highly
variable human behaviors.

Despite these challenges, probabilistic models can adapt to
changing patterns and environments, making them suitable
for dynamic situations. Their proficiency in uncertainty
estimation is particularly beneficial in fields like human-
robot interaction, where safety and reliability are paramount.
Overall, further exploration and refinement of probabilistic
modeling approaches, such as improving computational
efficiency and ensuring high-quality training data, can lead
to significant advancements in the accuracy and reliability of
human motion prediction.

D. EQUIVARIANT SYMMETRY LEARNING

Efficient generalization in machine learning is often chal-
lenging and typically requires large datasets. However, the
principle of equivariant symmetry offers a practical approach
to this issue. Models built on this principle are adept
at utilizing inherent symmetries in the data, significantly
boosting data efficiency and generalizability.

Additionally, equivariance increases the models’ ability
to detect complex features within the data. By identifying
symmetries in the data, these models achieve a deeper
understanding and improved performance. For instance,
utilizing models like the Equiformer [126] or Tensor Field
Networks [127], we can extract type-/ features (e.g., type-0,
type-1, etc.). A type-0 features, like colors, remain invariant
to rotations, whereas a type-1 features are equivariant to
rotations, such as to 3D vectors. Exploiting these features
from the data enhances the models’ robustness compared to
when a conventional model is employed.

Therefore, equivariant symmetries present significant
opportunities for data efficiency and robust generalization.
Their ability to utilize symmetries and related information
decreases the amount of data required for effective training
and facilitates the extraction of more meaningful features.
Applying this concept in human motion prediction yields
considerable benefits, guaranteeing reliable results and data
efficiency, particularly in situations where data collection is
expensive.

VIl. CONCLUSION AND DISCUSSION

In this survey paper, we have presented an overview of the
latest developments in human motion prediction, including
their limitations and potential future research paths. This
topic has attracted significant attention in recent years,
leading to considerable improvements in the performance
of motion prediction models compared to earlier efforts.
However, human motion prediction remains a daunting
challenge. While many studies have shown success in short-
term prediction, long-term prediction accuracy still presents
difficulties.

In this field, the two primary modeling strategies that
have gained prominence are direct modeling and geometry-
aware methods. Direct modeling, while straightforward and
often effective for short-term predictions, tends to encounter
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difficulties when dealing with long-term predictions. On the
other hand, geometry-aware methods, which incorporate
the inherent structural and spatial information of human
joints, have shown promise in addressing some of the
challenges faced by direct modeling. By leveraging the spatial
relationships and constraints of human anatomy, geometry-
aware models often produce more realistic and precise motion
predictions over extended durations.

Given the current landscape, it is prudent to advocate for
a more profound exploration of geometry-aware methods.
Their innate ability to capture and utilize the spatial
connections of human body joints makes them potentially
more robust and reliable for diverse scenarios. However,
this does not diminish the value of direct modeling, which,
when combined with other techniques, can still offer valuable
insights and solutions. Accordingly, it is essential to explore
the potential of equivariant learning in human motion
prediction. ENNs could further enhance the robustness of
the predictions by exploiting the geometric features, which
increases the accuracy and reduces the volume of data.

Our focus should also pivot towards engineering real-time
human motion prediction systems that can provide instan-
taneous feedback and adapt to dynamic environments,
enabling applications in real-time human-robot interaction,
virtual reality, and interactive games [128], [129]. The
necessity for these systems is driven by their potential to
enhance user experiences and improve safety in interactive
applications. However, developing these real-time human
motion prediction systems is not straightforward. It requires
high computational efficiency for real-time processing,
as well as the ability to handle diverse and dynamic human
movements while maintaining robust performance under
varying conditions. Addressing these aspects would not only
yield more dependable forecasts but also empower systems
to make informed decisions rooted in prediction confidence.

Nevertheless, the journey of human motion prediction is
interspersed with challenges. While geometry-aware meth-
ods currently hold an edge, the dynamic nature of research
could lead to breakthroughs in direct modeling or even hybrid
approaches. Robustly addressing environment interactions,
occlusions, and varied scenes also present persistent chal-
lenges. We remain optimistic that advancements in human
motion prediction will catalyze transformative impacts across
sectors such as robotics, virtual reality, sports analytics, and
healthcare.
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