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ABSTRACT Data-intensive applications coupled with limited mobile resources make opportunistic compu-
tation offloading imperative. Therefore, efficient and reliable offloading strategies are crucial for achieving
optimal performance in terms of stabilizing data queues at various data rates, efficient task management and
reduced waiting times for users. This paper proposes a novel algorithm, Matrix Factorization-Based Deep
Reinforcement Learning Approach for Stable Online Offloading in Mobile Edge Networks (MFDROO),
that combines Orthogonal Non-negative Matrix Factorization (ONMF) and a Deep Reinforcement Learning
approach (DRL) to address the problem of stable online offloading in large networks. The proposed
algorithm utilizes ONMF to model network resource heterogeneity by decomposing it into a set of features,
capturing the underlying structure of data traffic flows by removing irrelevant information from data.
This reduces computational overhead and improves performance. Additionally, MFDROO incorporates a
DRL agent to learn optimal offloading decisions over time. By utilizing ONMF in conjunction with DRL,
MFDROO overcomes online offloading challenges. It optimizes user computation rates and enhances system
performance. Additionally, it maintains data-queue stability for large networks or higher data rates. Large-
scale network simulations were extensively conducted to demonstrate MFDROO effectiveness. Maintaining
stability while scaling up the users number is a challenge in network computation. Our results demonstrate
that MFDROO tackles this challenge and ensures that even with a 3.3% increase in user numbers (up to
100 users), computation networks remain stable and outperform other existing algorithms in terms of utility
maximization and stability. This improvement ensures optimal performance and provides scalability and
efficiency for various applications.

INDEX TERMS Computation rate, data offloading, deep reinforcement learning (DRL), mobile edge
computing, orthogonal non-negative matrix factorization (NMF), queue stability.

I. INTRODUCTION
Edge computing technology has emerged as a promising
solution to overcome the challenges associated with process-
ing the vast volumes of data generated by mobile devices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hadi Tabatabaee Malazi .

One of the primary goals of edge computing is to minimize
latency and ensure real-time responsiveness, which is crucial
for applications that require immediate data processing and
analysis.

In this paradigm, computing resources are strategically
positioned near mobile devices at the edge of the network.
This enables local processing of data and facilitates tasks
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such as filtering, aggregating and pre-processing before trans-
mitting the data to the cloud for further analysis. Such an
approach not only reduces the volume of data that needs
to be transmitted over the network but also reduces the
processing load on centralized cloud servers [1]. As tech-
nology continues to advance, utilizing edge computing can
yield too many advantages, such as reducing network traffic,
enhancing data security, ensuring uninterrupted services and
heightening reliability. This in turn results in optimizing the
network performance while meeting the evolving demands
of the digital generation. The decision to offload all tasks
to mobile edge servers should be carefully considered based
on various factors. These encompass evaluating the costs and
benefits of the approach, as well as considering the specific
requirements of the mobile computing system at hand.

In this respect, the Opportunistic Computation Offload-
ing (OCO) technique for Mobile Edge Computing (MEC)
offers a unique advantage. It leverages opportunistic network
conditions, such as the presence of an edge server with suffi-
cient processing power and low-latency communication links
between the mobile device and the edge server. By employ-
ing such a technique, computation tasks can be dynamically
allocated either locally or at the edge station [2], [3]. This
flexibility enables the optimization of resource utilization,
leading to improved system performance and reduced energy
consumption [4]. Various approaches were adopted to deal
with OCO in MEC using heuristic algorithms [5] such as
machine learning-based techniques [6] and game theory-
based solutions [7], [8]. The performance of these algorithms
were evaluated based on factors such as offloading delay,
energy consumption and processing time [9], [10]. How-
ever, making decisions based on multiple variable choices
often requires solvingmixed-integer non-linear programming
(MINLP) problems. Solving such problems can be computa-
tionally complex, especially when dealingwith large datasets.
This complexity makes it difficult to interpret the results and
make informed decisions based on the optimization solution.

From this perspective, the use of deep reinforcement learn-
ing (DRL) techniques is considered a promising solution
as it offers several benefits for online computation offload-
ing. Among these are enabling more efficient and effective
decision-making and handling complex and dynamic envi-
ronments. In addition, DRL learns how to balance different
factors such as computation time, energy consumption and
network bandwidth despite limited computing resources [11].
However, maintaining stable system operation is closely
related to guaranteeing DRL stability. Stability is a crucial
factor in the success of data offloading as it is an indicator
that the system does not undergo an over-fitting scenario in
the data offloading system. Over-fitting occurs when a system
model is too complex or closely fits the training data but
fails to generate well to the unseen data. Therefore, over-
fitting could manifest as instability in the data offloading
(queue instability) process, resulting in serious consequences
of delays in decision-making and missed opportunities due

to the loss of some important data and hence reducing the
efficiency and driving away potential customers [12]. There-
fore, the objective of maintaining a stable system (ex. queue
stability) in the context of using the DRL with respect to the
OCO technique for MEC is considered challenging.

In [6], the authors introduced an approach that aimed at
determining the optimal allocation of tasks between mobile
devices and edge servers tominimize costs, these costs related
to both computation-rates and energy consumption. However,
this approach requires a large amount of training data to learn
optimal offloading decisions, posing challenges in practice.
Moreover, it did not guarantee queue stability for networks
with more than ten users. Queue stability referred to the
ability of a data offloading system to maintain consistent
and reliable performance under varying loads (specially in
networks having higher number of users) and various data
rates. In this respect, a stable offloading systemwas necessary
in ensuring smooth data transfer, and efficient processing
concerning achieving the user’s request tasks requirements
regardless of network conditions [7].
The approach proposed in [10] utilized deep learning

techniques to optimize offloading decisions and improve
computation efficiency in MEC networks through parallel
processing. This was accomplished by dynamically allo-
cating tasks either to the local device or the MEC server
based on their respective capabilities and workload. While
the approach showed promising results in terms of maxi-
mizing the weighted sum computation rate, it was crucial
to carefully consider that eliminating strict queue stability
requirements might reduce its efficiency. The authors in [13]
focused on minimizing the overall energy consumption and
latency while maximizing the Quality of Service (QoS) for
user tasks. They could achieve this goal by dynamically
adjusting offloading decisions based on real-time channel
conditions and energy availability. Although the proposed
algorithm demonstrated promising results, the authors noted
that they should focus on long-term performance optimiza-
tion and maximizing the Spectral Efficiency (SE) of mobile
edge networks in future research. In [14], the authors pro-
posed an optimization-based approach for selecting suitable
computation offloading candidates in MEC networks, which
was a promising approach that combined optimization and
machine-learning techniques to improve task allocation effi-
ciency in MEC networks. However, they pointed out that
additional research was needed to evaluate the scalability
and effectiveness of their approach under different workloads
and network conditions. Finally, in [15], the authors pro-
posed a DRL-based binary computation offloading scheme
that exploited the energy harvesting capabilities of wireless
devices. Simulation results demonstrated the effectiveness of
the proposed approach by reducing the computation latency
and energy consumption of mobile devices. It was worth
notable that the simulations were conducted on a relatively
small scale, and the results might not be generalizable to
larger and more complex MEC networks.
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It is therefore evident that there is still a need for new
techniques that would increase the offloading data-queues
stability at various data rates, especially for large networks,
accelerating request tasks for users and so maximizing their
computation rates. For this reason, higher loads need to be
considered since they not only strain the network resources
but also increase the likelihood of encountering performance
bottlenecks. Without proper stability measures (ex. Check
Data-Queue stabilization), any proposed system may suf-
fer from over-fitting, that leads to accuracy deterioration
due to the excessive complexity and over-fitting to training
data (means data arrival rate has surpassed the computation
capacity).

In this paper, a novel algorithm is proposed to accel-
erate data processing and reduce the likelihood of pro-
cessing delays or queue instability for networks with
higher loads (significant user bases). We propose an
online computation offloading algorithm, a non-negative
Matrix Factorization-Based Deep Reinforcement Learning
Approach for Stable Online Offloading named MFDROO.
The proposed MFDROO algorithm enables efficient online
offloading decision policies in the sense that the decisions
are made without the assumption of knowing the future real-
ization of channel conditions and data arrivals. It optimizes
computational rates while providing stability for the long-
term system. Our simulation results are highly promising,
demonstrating the MFDROO’s potential to enhance network
performance and improve overall user experience. The main
contribution of this paper can be summarized as follows:
1- Leveraging orthogonal non–negative matrix factoriza-

tion (ONMF) machine learning, which is a powerful
matrix factorization network technique, to model network
resource heterogeneity by decomposing a network into a
set of features, capturing the underlying structure of data
traffic flows by removing noise and irrelevant information
from data. As a result, computational overhead will be
reduced, performance will be improved and data offload-
ing will be optimized.

2- MFDROO integrates a DRL agent to provide decision-
making capabilities. DRL is a powerful technique that
allows agents to learn from experience and optimize their
behavior over time. By incorporating a DRL agent, the
system achieves optimal offloading decisions.

3- Utilizing ONMF in conjunction with DRL makes
MFDROO an innovative algorithm that succeeds in
enhancing the computation offloading in terms of sta-
bilizing data-queues at various data rates, efficient task
management so accelerating demand tasks for user and
therefore optimizing user’s computational-rates.

4- Our results demonstrate that MFDROO outperforms other
existing algorithms listed in the literature in terms of user’s
average weighted sum computation-rate optimization and
stability control. MFDROO ensures that even with a 3.3%
increase in user numbers (up to 100 users), computa-
tion networks remain stable and ensure optimal system
performance.

II. RELATED WORKS
Numerous studies in the literature have proposed a variety
of approaches and architectures for the application of deep
reinforcement learning in the context of online data offload-
ing. The authors in [16] proposed a DRL based offloading
decision and resource management (DECENT) algorithm
that utilizes the advantage actor-critic method that optimizes
the offloading decision in real-time, as well as computes
the resource allocation for each arriving task. This enabled
cumulative weighted response time minimization. However,
one limitation was its failure to consider how the task arrival
rate influences the effectiveness of the offloading algorithm.
In cases where task-arrival rates were high, communication
and computing queues could become congested, affecting
the accuracy of waiting time estimation and the offloading
decision.Moreover, the authors did not consider the impact of
network topology on the offloading algorithm. If the network
topology was complex, multiple paths or hops between the
IoT devices and the MEC servers can affect communication
latency and reliability. Therefore, capturing the realistic sce-
narios of mobile edge computing with multiple objectives
and constraints was not realized. The authors in [17] pro-
posed a DRL based Online Offloading (DROO) framework
that implemented a deep neural network as a scalable solu-
tion, thereby learning the binary offloading decisions from
experience. However, this approach failed to account for the
influence of task-size on the effectiveness of the offloading
algorithm. If the task sizes are large, communication over-
head has the potential to dominate computation overhead,
which can have a negative impact on energy efficiency and
latency of the offloading decision. Moreover, the authors did
not take into account how task dependencies would impact
their offloading algorithm. For example, If tasks depend
on one another, then data dependency and synchronization
among them must be factored into any decision-making pro-
cess for optimal feasibility. The authors in [18] proposed
a DRL-based dynamic task offloading (DDTO) adaptable
algorithm for the dynamic and complex environment and
re-formulate the task offloading problem as a Markov deci-
sion process (MDP). As the optimization objective, the
proposed algorithm reduces network service delay and energy
consumption by weighted sums. However, if lots of mobile
terminals aggressively offloaded their computation tasks to be
executed on the edge server, this would lead to severe conges-
tion on wireless links and hence result in a significant delay
in executing MEC. The authors in [6] proposed a Lyapunov
guided DRL (LyDROO) framework that solved the online
computation offloading problem, claiming it could achieve
high computation performance executed at very low latency
while maintaining queue stabilization. However, they did not
consider network size’s impact on the offloading algorithm.
Therefore, realistic scenarios of mobile edge computing with
complex tasks and data could not be captured.

From that perspective, focusing on using matrix factor-
ization technique gained researchers attentions last years.
Matrix factorization is a technique used in both artificial
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intelligence and machine learning to reduce the dimension-
ality of high-dimensional data by decomposing it into lower-
dimensional representations. Such techniques are commonly
used in various applications, including image processing,
natural language processing, and recommender systems. Fur-
thermore, matrix factorization can be highly advantageous
for machine learning tasks where the original feature space
is excessively large or noisy [19]. The factorization process
aims for feature extraction in data offloading. It helps in cap-
turing and identifyingmeaningful patterns and the underlying
characteristics in the data that can used for machine learn-
ing tasks and hence optimize queue operations in real-time.
This allows for timely decision-making leading to improved
efficiency.

Orthogonal non-negativematrix factorization (ONMF) and
non-negative matrix factorization (NMF) are two popular
techniques used to analyze and transform data. However, they
differ in the way they handle missing data and the com-
putational complexity. NMF is a dimensionality reduction
technique that finds a lower-dimensional representation of a
non-negative matrix by factorizing it into two non-negative
matrices. NMF is known for its ability to capture the under-
lying patterns or dependencies in the data. However, NMF
has several limitations when applied specifically to time-
series data. One key limitation is the potential for correlated
factors. In NMF, the factors are typically chosen to minimize
an objective function, such as the sum of squared residuals
or mutual information. However, this can result in correlated
factors, which can introduce noise into the decomposition and
make it difficult to interpret the results [20].
The ONMF is a type of unsupervised machine learning

technique that is widely used in various fields of data analysis.
One of the key applications of ONMF is in the field of queue
management, where it plays a crucial role in ensuring the sta-
bility of queues. ONMF-based queue management systems
utilize the concept of matrix factorization. ONMF imposes an
additional constraint on the factor matrix to be orthogonal, the
idea behind the orthogonality constraint in ONMF is to ensure
that the latent factors are aligned in a particular way, resulting
in a subset of latent factors that are mutually orthogonal. The
motivation for orthogonality constraint in ONMF is that the
orthogonal matrices have low rank (reduced dimensionality),
meaning they can be decomposed into smaller matrices that
are easy to interpret and visualize as the extracted patterns are
not confounded by redundant information, leading to more
interpretable and meaningful representations [21].

The authors in [22] proposed an improved multi-view
clustering algorithm that integrates multiple NMF with
co-orthogonal constraints to enforce orthogonality between
feature matrices from different views. However, the exper-
imental results were conducted on a limited number of
datasets. Therefore, the computational complexity of the pro-
posed algorithmmight be highwhen dealingwithmany views
or high-dimensional data, so further research was needed
to improve its scalability. The authors further proposed an

advanced initialization procedure for the NMF algorithm,
which enabled it to converge more quickly and accurately
to the global minimum. Despite the NMF method’s effec-
tiveness, it was still computationally expensive compared to
other factorization methods. Moreover, the authors did not
conduct experiments on synthetic or simulated data to eval-
uate the robustness or sensitivity of the proposed algorithm
and its applications to different scenarios [23]. An NMF
model generalized by [24] defined basis vectors as data
points instead of separable vectors. The proposed model
could be solved efficiently by a convex optimization model
or a heuristic algorithm. The authors also claimed that the
proposed model could achieve better or comparable results
than existing separate NMF or standard NMF algorithms.
This was on synthetic, document, and image data sets. How-
ever, it was assumed that the data was generated from a
specific probabilistic model, which might not always be the
practice case, and it might suffer from high computational
complexity, particularly when the data size was large. In [25],
the authors designed a new formulation of ONMF problem
for clustering to improve the performance of clustering algo-
rithms. The work incorporated transferring the orthogonality
constraint problem into an ONMF one, which helped in cap-
turing the underlying structure of the data and improving the
quality of the clustering results. However, a limited general-
izability was considered as the work focused on a specific
variant namely the orthogonal NMF problem for cluster-
ing. Additionally, a lack of real-world application made it
difficult to assess the practical usefulness of the algorithm
in real-world scenarios. In [26], the authors introduced a
bi-stochastic graph regularization term that encourages the
learned factor matrices to be both row-stochastic and column-
stochastic, leading to more accurate clustering results. This
algorithm was robust to noise and missing data and could
manage high-dimensional datasets with varying degrees of
sparsity. However, the work only addressed clustering tasks,
and the algorithm’s generalizability to other problems, such
as dimensionality reduction or feature extraction, was not
explored. A maximum-entropy-principle approach for solv-
ing the ONMF problem was proposed in [27]. This approach
incorporated the maximum entropy principle to regularize the
factor matrices, leading to more accurate factorization and
enforcing orthogonality on the factor matrices. Therefore, the
ONMF approach enhances the interoperability of the factors.
However, all the proposed DRL or ONMF methods failed
to address the performance constraint parameters while opti-
mizing the user’s computation-rate under a dynamic larger
network. So, from that perspective, the proposed MFDROO
algorithm is a promising algorithm in addressing the afore-
mentioned challenges by leveraging the ONMF technique as
a preprocessing step before being applied to the subsequent
DRL leading to more robust and reliable predictions.

Accordingly, the remainder of the paper will be orga-
nized as follows. Section III explains and illustrates the
system model and problem formulation in addition to the
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Lyapunov optimization technique used to solve stable compu-
tation offloading problems [28], [29], [30], [31]. Section IV
introduces the MFDROO algorithm to solve the problem
in Section III using the combination of ONMF with DRL.
Section V evaluates MFDROO through extensive simula-
tions. Lastly, Section VI concludes the paper.
Notation: Throughout this paper, Superscripts ()T and the

log function denotes the transpose and the element-wise log-
arithm operation of a vector respectively.

III. SYSTEM MODEL, PROBLEM FORMULATION AND
LYAPUNOV OPTIMIZATION
This section describes the systemmodel followed by explain-
ing the problem formulation in section B and then utilizing
the Lyapunov optimization in section C. A summary of the
notations used in this section is summarized in Table 1.

A. SYSTEM MODEL
TheMECmulti-user computing network shown in Fig.1 con-
siders an edge station (ES) communicating with M wireless
devices (WDs) sequentially within equal time-frames dura-
tion (T). On a time division multiple access (TDMA) basis,
WDs offload tasks to ES using the same bandwidth (B).

FIGURE 1. MEC multi-user computing network.

For each t time-frame, we denote the raw data-tasks arriv-
ing at the ith WD queue as dti (in bits). These tasks follow
a general independent and identically distributed (i.i.d) dis-
tribution. We also denote cti as the channel gain between
the ith WD and ES, assuming a block fading model. This
model assumes that the channel gain remains constant within
a time-frame but can vary from one frame to another.

Suppose that in tth time-frame, a connecting WD i
processes pti bits of data followed by a computation out-
put generated at the termination of the time-frame. In this
respect, we follow the binary computation offloading rule [6].
Based on this rule, during each time-frame, it is either
possible to process the raw tasks locally at the WD or
offload them remotely at the ES for illustration. As shown
in Fig.1, the WDs 2&3 compute their tasks locally while
WDs 1&4 offload them at the ES. A binary variable vti is
used to express the offloading decision, where vti = 1 denotes
that WD i executes their computing tasks remotely (offload),
while vti = 0 denotes that the tasks are computed locally.

In the case of local data processing by WD (vti = 0),
we must consider the local CPU frequency as fti limited
by fmax

i . The locally processed raw data (in bits) and the

amount of energy consumed during the time-frame are rep-
resented by (1) below:

pti,L = ftiT/z, ∀vti = 0,

eti,L = k
(
fti
)3 T, (1)

The parameter k indicates computing energy efficiency
(k> 0) and the parameter z indicates how many calculation
cycles are required to analyze a single bit of raw data (z > 0).

Otherwise, for edge processing (vti = 1), we represent τ tiT
as the time allotted to the ith WD for computation offloading,
where τ ti∈ [0, 1] and

∑M
i=1τ

t
i ≤ 1. The transmit power

denotes as sti bound by the maximum power sti ≤ smax
i .

We disregard the edge computing delay and hence, the vol-
ume of the data that is processed at the edge in the allotted
time-frame using the Shannon capacity theorem is:

pti,O =
Bτ tiT

ωu
log2

(
1+

stic
t
i

Np

)
, (2)

where ωu≥ 1 represents the overhead of communication and
the noise-power is represented by Np. Data offloading con-
sumes energy formulated as eti,O = stiτ

t
iT, and then the

processed data at the edge can be expressed as:

pti,O =
Bτ tiT

ωu
log2

(
1+

eti,Oc
t
i

τ tiTNp

)
,∀vti = 1, (3)

The total number of bits computed and the total amount of
energy consumed during the time-frame t are represented as:

pti ≜
(
1− vti

)
pti,L + vtip

t
i,O,

eti ≜
(
1− vti

)
eti,L + vtie

t
i,O, (4)

Therefore, the computation-rate ctri and the power consump-
tion ptci in tth time-frame can be defined as:

ctri =
pti
T
=

(
1− vti

)
fti

z
+ vti

Bτ ti

ωu
log2

(
1+

ptci,Oc
t
i

τ tiNp

)
,

ptci =
eti
T
=
(
1− vti

)
k
(
fti
)3
+ vtip

t
ci,O , (5)

where ptci,O ≜ eti,O/T, taking into consideration the assump-
tion of T=1 for exposition simplicity while maintaining
generality in the following derivations. As each WD is char-
acterized by its queue length Li(t) at the beginning of the tth

ith time-frame, the queue dynamics can modeled as:

Li(t+ 1) = max
{
Li(t)−P̃

t
i + dti, 0

}
, i = 1, 2, · · · , (6)

where P̃
t
i = min

(
Li (t) , pti

)
and Li(1) = 0. For controlled

problem-solving tractability, we have considered infinite
queue capacity in this paper. Therefore, the queue dynamics
can be simplified by enforcing the data causality constraint
pti ≤ Li(t), including that Li(t) ≥ 0 as follows:

Li(t+ 1) = Li(t)−pti + dti, i = 1, 2, · · · . (7)
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B. PROBLEM FORMULATION
The paper aims to optimally learn the best decision policies
for online offloading while optimizing the resource alloca-
tion decisions using a well-designed algorithm framework.
The algorithm framework aims to optimize the long-term
system performance in terms of maximizing the average
weighted sum computation-rate for all WDs while ensur-
ing data-queue stability under the opportunistic computation
offloading scheme. A feasible analysis method is adopted,
following the multi-stage stochastic Mixed Integer Nonlin-
ear Programming problem (MINLP) formulation [32], [33].
In particular, for each time-frame, the formulation takes into
account the absence of knowledge of the future dynamics
realizations of random channel conditions and data arrivals.
we denote vt =

[
vt1, · · · ,v

t
M

]
, τ t
=

[
τ t1, · · · ,τ

t
M

]
, ft =[

ft1, · · · ,f
t
M

]
and ptcO =

[
ptc1,O , · · · ,ptcM,O

]
, and let v ={

vt
}K
t=1, τ =

{
τ t
}K
t=1, f =

{
ft
}K
t=1 and pcO =

{
ptcO

}K
t=1

.

The MINLP problem formulates as follows:

maximize
v,τ,f,pcO

lim
K→∞

1
K
·

K∑
t=1

M∑
i=1

ηictri

subject to the following constraints∑M

i=1
τ ti ≤ 1,∀t, (8a)(

1− vti
)
fti

z
+ vti

Bτ ti

ωu
log2

(
1+

ptci,Oc
t
i

τ tiNp

)
≤ Li (t) ,∀i, t,

(8b)

lim
K→∞

1
K
·

∑K

t=1
E
[(
1− vti

)
k
(
fti
)3
+ vtip

t
ci,O

]
≤ γi,∀i,

(8c)

lim
K→∞

1
K
·

∑K

t=1
E [Li (t)]<∞,∀i, (8d)

fti ≤ fmax
i , ptci,o ≤ smax

i τ ti ,∀i, t, (8e)

vti∈ {0, 1},τ
t
i , f

t
i, p

t
ci,O≥ 0,∀i, t. (8f)

Here, ηi indicates the fixed weight of the ith WD and E is
the expectation taken with the random system events [34].
Constraint 8(a) indicates the offloading time constraint. This
constraint indicates that τ ti = ptci,O = 0, the offloading time
must be satisfied at the optimum when vti = 0. In other
words, if the offloading decision variable vti is equal to 0, then
the offloading time must hold at its optimal value. Similarly,
fti = 0 must hold if vti = 1. It corresponds to the con-
straint (8b) which takes the data causality into account.
Moving on, constraint (8c) corresponds to the average power
threshold γi constraint in the context of the problem. Con-
straint (8d) represents the data-queue stability constraints.
Constraint (8e) corresponds to that fti must be upper bounded
by fmax

i and (8f) represents the binary variable vti that
holds 0 or 1 to denote the offloading decision, and that
the variables τ ti , f

t
i, p

t
ci,O must hold a values ≥ 0 under the

stochastic nature of the channels and data-arrivals. It is worth
noting that due to the stochastic nature of the channels and

data-arrivals, satisfying the long-term constraints mentioned
above can be challenging. These constraints are concerned
with maintaining data-queue stability, meaning that it must
be ensured that the data-queue will not grow without bounds
and will remain stable over time. The variability and unpre-
dictability of the system make it difficult to guarantee the
fulfillment of these constraints over extended periods. In the
following sub-section, we shed light on the Lyapunov opti-
mization technique, which shall be utilized in the proposed
MFDROO algorithm explained in section IV.

C. LYAPUNOV OPTIMIZATION
The multi-stage stochastic problems are characterized by
uncertainty and sequential decision-making, making them
computationally challenging. To successfully address these
problems, it is crucial to consider the inter-dependencies
between decisions and uncertainties. To address this com-
plexity, the proposed algorithm used in this work utilizes
Lyapunov optimization, which offers a powerful framework
for addressing multi-stage stochastic problems. By decou-
pling the problem into per-frame deterministic sub-problems,
our algorithm simplifies the optimization process while still
ensuring performance bounds. The applications of Lyapunov
optimization are extensive, spanning areas such as wireless
networks, energy management, and transportation systems.
This technique has proven its effectiveness in enhancing
system performance and tackling complex optimization chal-
lenges. In the subsequent analysis, we take on the procedure
outlined in [6].

Introducing M virtual energy-queues {Yi(t)}Mi=1, one for
eachWD. Particularly, we set Yi(1) = 0 and update the queue
as:

Yi(t+ 1) = max
(
Yi(t)+sptci − sγi, 0

)
, (9)

for i = 1, · · · ,M and t = 1, · · · ,K, where ptci in (5) is the
energy consumption at the tth time-frame and s is a positive
scaling factor. Yi(t) represented as a queue with random
energy-arrivals (sptci ) and fixed service-rate (sγi).
We define the total queue backlog as B(t) = {L(t),Y(t)},

where L(t) = {Li(t)}Mi=1 and Y(t) = {Yi(t)}Mi=1 to mutually
control the data and energy queues and introducing the Lya-
punov function L(B(t)) as:

L(B(t)) = 0.5
(∑M

i=1
Li(t)2 +

∑M

i=1
Yi(t)2

)
, (10)

and Lyapunov drift 1L(B(t)) [34] as:

1L(B(t)) = E{L(B(t+ 1))− L(B(t)) | B(t)}, (11)

The drift-plus-penalty minimization approach is used to
simultaneously optimize the time average computation-rate
andmaintain the stability of the queueB(t). Each t time-frame
has the objective of minimizing the upper-bound of the drift-
plus-penalty expression:

3(B(t)) ≜ 1L(B(t))− O·
∑M

i=1
E
{
ηictri | B(t)

}
, (12)
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where O > 0 is denotes as the weight to scale the penalty and
as proved in [6], the drift-plus-penalty upper bound expres-
sion in (12) will be:

B̂+
∑M

i=1

{
Li(t)E

[(
dti − pti

)
|B(t)

]
+Yi(t)E

[
ptci

−γi |B(t) ]−OE
[
ηictri | B(t)

]}
. (13)

where B̂ is a constant derived as proved in [6]. The
queue backlog B(t) plays a crucial role in determining the
board of offloading and resource allocation control action.
By closely monitoring the queue backlog, we can make
informed decisions that aim to minimize the upper bound
of (13). The technique of opportunistic expectation mini-
mization [34] is applied to ensure that the resources are
allocated efficiently and effectively, mitigating any poten-
tial bottlenecks or delays. In the context of a control
algorithm, it is important to observe that only the second
term in the equation is directly linked to the control action.
By eliminating the constant terms from the initial observa-
tion at the beginning of the tth time-frame, the algorithm
can make decisions based on maximizing the following
expression:∑M

i=1
(Li(t)+ Oηi) ctri −

∑M

i=1
Yi(t)ptci , (14)

where ctri and p
t
ci are in (5).When aWD has a long data-queue

backlog or a high weight, it intuitively leads to an increase
in the computation-rates. This is because a larger backlog
implies a greater number of tasks waiting to be processed,
which in turn requires the WD to operate at a higher rate to
clear the backlog. Similarly, a higher weight assigned to a
WD signifies its importance or priority, resulting in a higher
computation-rate to meet the expectations associated with
that weight. On the other hand, WDs that surpass the average
power threshold face penalties. These penalties are imposed
to discourage excessive power consumption. By penalizing
these WDs, the system encourages a more balanced distri-
bution of power consumption. To facilitate our analysis and
decision-making process, auxiliary variable ctri,o is introduced
for each WD i, the collection of all ctri,o values, denoted as

ctrO =
{
ctri,o

}M
i=1

, provides us with a comprehensive overview
of the system’s current state. To address the per-frame con-
straints, it is necessary to solve a deterministic per-frame
sub-problem within the tth time-frame. This sub-problem
takes into consideration the specific constraints that apply to
each frame.

By doing so, we can ensure that each tth time-frame of the
algorithm is optimized and meets the requirements.

maximize
vt,τ t,ft,pcOtccOt

M∑
i=1

(Li(t)+ Oηi) ctri −
M∑
i=1

Yi(t)ptci

subject to
∑M

i=1
τ ti ≤ 1, (15a)

fti/z ≤Li(t),ctri,o ≤ Li(t),∀i, (15b)

crtio ≤
Bτ ti

ωu
log2

(
1+

ptci,Oc
t
i

τ tiNp

)
,∀i, (15c)

fti ≤ fmax
i , ptci,o ≤ smax

i τ ti ,∀i, (15d)

vti∈ {0, 1} , τ
t
i , f

t
i, p

t
ci,O≥ 0,∀i. (15e)

It is important to note that the constraints (15b) and (15c) can
be considered equivalent to constraint (8b). This equivalence
arises from the fact that there is only one non zero term on
the left hand side of (8b) at the optimum. This equivalence
allows us to simplify the problem and focus on addressing
the long-term constraints efficiently and effectively.

TABLE 1. Summary of notations.

IV. ORTHOGONAL NON-NEGATIVE MATRIX
FACTORIZATION-BASED DRL FOR STABLE
ONLINE OFFLOADING
In this section, we will present an algorithm that solves the
per-frame sub-problems in an online manner to satisfy all
the long-term constraints. This approach will enable us to
handle the time-frame that poses its challenges. Finding
an optimal solution within the given time-frame constraints
remains the challenge. This requires careful optimization
techniques and algorithms suitable specifically for MINLP
problems. By addressing the long-term constraints through
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the online solving of sub-problems and tackling the MINLP
problem in each t time-frame, we can effectively optimize the
overall solution and achieve the desired objectives outlined
in the problem formulation. The following sections will go
into the details of the proposed algorithm employed to solve
the long-term andMINLP constraints respectively. By under-
standing and implementing these methods, we can overcome
the challenges presented by the problem and achieve optimal
solutions within the given constraints.

To address this problem, we introduce a variable denotes as
ōt ≜

{
cti,Li(t),Yi(t)

}M
i=1, which consists of the channel gains

{ci}Mi=1 and the system-queue states {Li(t),Yi(t)}Mi=1. Based on
this observation, we can determine the control action

{
vt,yt

}
which includes the binary offloading decision vt and the

continuous resource allocation yt
{
τ t
i,f

t
i,p

t
ci,o ,c

t
ri,o

}M
i=1

. The
system queue states represent the queue lengths and the
backlog of the data-tasks for each user. These queue states
provide information about the current load on the system and
the amount of data waiting to be transmitted. By considering
these queue states, we can prioritize the users and allocate
resources accordingly, to effectively find the optimal solu-
tion with much less complexity compared to conventional
approaches.

In our pursuit to uncover the inherent structure and pat-
terns within the dynamic queue’s datasets, our objective is to
obtain a low-rank approximation. To achieve this, we employ
the technique known as Orthogonal Non-negative Matrix
Factorization (ONMF). ONMFutilizes the concept of decom-
posing a non-negative matrix into a product of two smaller
non-negative matrices, where each matrix is orthogonal to
each other. The matrices can be trained to learn different
patterns and relationships between different variables. This
could be utilized in the proposed algorithm to counteract
bottlenecks by handling high-dimensional data efficiently,
hence optimizing resource allocation, ensuring that tasks are
processed in a fair manner and so maximizing the average
sum computation-rates of users [35].
To apply ONMF, certain constraints must be satisfied.

Firstly, the matrix being factorized must be non-negative.
This ensures that the decomposed matrices also remain
non-negative. The non-negative constraint ensures that the
factorized matrices capture meaningful patterns rather than
arbitrary combinations of features which is necessary for
meaningful interpretations and applications. Furthermore,
the factorization should be orthogonal. This means that the
columns of the first-factor matrix should be uncorrelated
with the columns of the second-factor matrix. This constraint
ensures that the components extracted by the factorization
are uncorrelated, making it more distinct and meaningful.
The idea behind the orthogonality constraint in ONMF is
to ensure that the latent factors are aligned in a particular
way, resulting in a subset of latent factors that are mutually
orthogonal [21], [36].

There are other popular feature extraction techniques
such as Non-Negative matrix factorization (NMF), Principal

Component Analysis (PCA) and Independent Component
Analysis (ICA). NMF is known for its ability to capture the
underlying patterns or dependencies in the data. However,
NMF has several limitations when applied specifically to
time-series data. One key limitation is the potential for cor-
related factors in NMF, the factors are typically chosen to
minimize an objective function, such as the sum of squared
residuals or mutual information. However, this can result in
correlated factors, which can introduce noise into the decom-
position and make it difficult to interpret the results. PCA is
particularly good at capturing linear relationships and pre-
serving the structure of the data but on the other hand, it does
not require the components to be non-negative and focuses on
extracting uncorrelated components that may not provide any
clear interpretation. Also, PCA does not aim to preserve the
original structure but rather seeks to maximize variance. The
reconstructed principal components may not fully represent
the original data. ICA can handle non-linear relationships
and learn representations that capture the underlying structure
of the data but on the other hand, ICA assumes that the
sources are statistically independent, which may not always
be the case in real-world applications. Therefore, it is obvious
that ONMF does not impose any independence constraints,
allowing it to capture complex relationships between data
components [37], [38].
The strict orthogonality formulation constraint leads the

authors to use the ONMF instead of other feature extraction
as this constraint alleviates addressing the potential problem
of over-fitting and linear dependence between basis vectors
in deep neural networks (DNN). This has advantages for
increasing the classification performance of the subsequent
DNN algorithm in the proposedMFDROO algorithm leading
to more robust and reliable predictions [39].

ONMF is based on the maximum-entropy principle
(MEP-ONMF) [26], which seeks to maximize an entropy-
based objective function subject to orthogonal non-negativity
constraints where each column(row) ultimately has exactly
one non-zero element. The entropy-based objective function
represents the degree of randomness or disorder in the data,
and the constraints ensure that the learned factor matrices are
non-negative and orthogonal. The idea behind MEP-ONMF
is to achieve the maximum sparsity for the orthogonal factor
in thematrix. Sparsity refers to the presence of a large number
of zero elements in the matrix. By ensuring that no row or col-
umn in thematrix is entirely zerowhenR (the featuresmatrix)
or U (themixingmatrix) is orthogonal,MEP-ONMF achieves
maximum sparsity. The importance of orthogonality in the
features matrix lies in its ability to represent the original data
in a more compact and meaningful way. Each row or column
must have only one non-zero element so that MEP-ONMF
can ensure that the features are mutually independent and do
not overlap with each other.

In our proposed MFDROO algorithm, the ONMF is inter-
preted as a facility location problem (FLP). By considering
facilities as equivalent to the features matrix (R) and the
association probabilities of the MDs to facilities as the
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mixing matrix (U), we can gain a deeper understanding of
the underlying concepts. FLP is an NP-hard challenging
optimization problem that aims to allocate facilities to MDs
while minimizing the average distance. One approach to
solving FLP is by using the Deterministic Annealing (DA)
algorithm [40]. DA is an iterative algorithm that has been
successful in addressing FLPs and is efficient in handling
large problem instances. By relaxing the strict assignment
and introducing probabilistic assignments, the iterative nature
of DA allows for refining the probability distribution over
multiple iterations. Starting with an initial distribution, the
algorithm gradually updates the probability based on the
available data and determine the probability distribution by
using the maximum-entropy-principle (MEP) [41]. Through
this iterative process, The MEP ensures that the probability
distribution is maximally unbiased and consistent with the
available information. By employing this principle, DA can
find a solution that optimally balances the assignment ofMDs
to facilities. By combining the objective function with the
constraints, the proposed algorithm seeks to identify the most
informative and interpretable factors that capture the essential
features of the data in data-queues and quantify the weights
of these features.

For approximating the given data-queue matrix L(t), it is
expressed as the product of two non-negative matrices,
namely R and U. The primary goal of this approach is to
capture the crucial information embedded in the queue data
set while reducing its dimensionality. The ONMF technique
is particularly suitable for our purpose due to its ability
to handle non-negative data and its ability to extract non-
overlapping, interpretable features representing the original
data-queue components. By enforcing non-negativity and
orthogonality constraints on the factorized matrices R and U,
we can ensure that the resulting approximation remains non-
negative, which is often desirable in real-world scenarios.
Then the variable ōt expression defined to hold L̃(t), donated

as ŏt ≜
{
cti,L̃i(t),Yi(t)

}M
i=1

, where L̃(t) =
{
L̃i(t)

}M
i=1

.

It provides valuable insights and contributes to the overall
understanding of the system.

To tackle the resource allocation problem, we will adopt
a proven algorithm that has been discussed in [6]. This
algorithm will be used to optimize the variable yt, then
we denote G

(
vt,ŏt

)
as the optimal value of the above

MINLP mentioned problem (15) by optimizing yt given
the offloading decision vt and the parameter ŏt. By solving
this MINLP problem, we are essentially finding the optimal
offloading decision, denoted as

(
vt
)∗, where it’s the argmax

of G
(
vt,ŏt

)
.

In the field of offloading decisions, obtaining the optimal
solution for the problem of

(
vt
)∗ generally requires enu-

merating 2M possibilities. This process, however, results in
a significantly high computational complexity, even when
the number of users M in the network is small. The
time-consuming nature of this approach becomes particularly
apparent when M is large. Moreover, the existing search

methods encounter significant time constraints, particularly
when dealing with a large number of M. Consequently,
neither of these methods proves to be practical for online
decision-making scenarios. In the light of this, we intro-
duce a groundbreaking algorithm that combines Orthogonal
Non-negative Matrix Factorization (ONMF) and Deep Rein-
forcement Learning (DRL) called MFDROO to address
the problem of stable online offloading in large networks.
MFDROO aims to construct a policy, denoted as þ, which
effectively maps the input to the optimal action

(
vt
)∗

with remarkably low complexity. Furthermore, the duration
needed for MFDROO to process the observations and pro-
duce control actions

{
vt,yt

}
remains within acceptable limits,

even with a large user population (e.g., M=200). This implies
that the efficiency of MFDROO in this regard is noteworthy
as it proves to be an efficient and practical approach for
handling a substantial number of users while maintaining
stable data-queues and high computation-rates.

A. DESCRIPTION OF THE PROPOSED ALGORITHM
A visual representation of the system architecture, high-
lighting the flow of data and decision-making within the
MFDROO algorithm framework is illustrated in Fig.2.
MFDROO is comprised of five main modules. The first mod-
ule is MEP-ONMF, which takes the input variable expression
ōt and generates the new variable expression ŏt producing
a new matrix of data-queue L̃(t), the second module is the
actor module which takes the input ŏt and outputs a set of
candidate offloading actions vti , These candidate offloading
actions are potential choices for offloading tasks from the
local device either locally or remotely to the edge servers.
The third module is the critic module, which assess the can-
didate offloading-actions vti generated by the actor-module,
based on this evaluation, the critic-module selects the best
offloading-action vt. The fourth module is the policy update
module is a crucial component in improving the actor-module
over time. This module is responsible for analyzing and
updating the policies that guide the decision-making pro-
cess of the actor module. By continuously evaluating the
performance of the actor module and collecting feedback
from the system, the policy update module ensures that the
actor module evolves and adapts to changing conditions.
The last fifth module is the queuing module; it plays a
vital role in updating the system queue states {Li(t),Yi(t)}Mi=1
after executing the offloading actions. This module man-
ages the queue of tasks or requests waiting to be processed
by the system. It keeps track of the current queue states.
Through repeated interaction with the random environment
{ci(t),di(t)}Mi=1, the five modules operate sequentially and
iteratively. They gather data, analyze, and process it, make
decisions, execute actions, and learn from the outcomes.
This systematic approach enables the system to adapt and
respond effectively to the ever-changing environment. The
following subsections give a detailed description of each
module.
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1) MEP-ONMF MODULE
Consider the data matrix L(t) ∈Rt×M

+ , where t represents
tth time-frame and M represents the number of WDs as
presented in (1). The product of two non-negative matrices
R ∈Rt×a

+ andU ∈Ra×M
+ (where the so called inner dimension

a≪ min(t,M)) is used to achieve the objective of approximat-
ing the data matrix. To formalize this objective, we can define
an optimization problem.

minD(L(t),RU),

s.t . Rij,Uij≥ 0 (16)

where D(L(t),RU) represents the distance function between
the two matricesL(t) andRUwhich measures the reconstruc-
tion error and both ith, jth represents node (M) and facility
respectively. The goal is to minimize this error to obtain a
good approximation of the original data matrix.

One of the key requirements of the ONMF is that one of the
matrices, either R or U needs to be orthogonal. By imposing
this orthogonality constraint, the ONMF formulates the fol-
lowing optimization problem:

min D(L(t),RU),

s.t. UUT
= I

Rij,Uij≥ 0 ∀i, j (17)

where I ∈Ra×a
+ is an identity matrix. In addition to the

orthogonality constraint on U, an alternative orthogonality
constraint can also be applied, which states that RRT

= I.
Having both non-negativity and orthogonality constraints
means matrices can take on to the requirement of having only
one non-zero element in every row or column when R(U) is
orthogonal.

Expressing the ONMF optimization problem as an FLP
one, it can be formulated as:

min
yjXj|i

∑Ma

ij=1
ẃid(Li, yj)Xj|i, (18)

where d(Li, yj) is a function of Li − yj that represents the
distance between the ith node and jth facility, ẃi∈ (0, 1) is
a priori known weight that gives the relative importance
of the ith WD node (

∑
i ẃi = 1 and ẃi = 1/M when all

the nodes are of equal importance), and the binary vari-
able Xj|i∈ {0, 1} is 1 only when ith node is assigned the jth

facility. Using the notations L(t) = [L1L2 . . . .LM] ∈Rt×M
+ ,

R = [y1y2. . .yj] ∈Rt×a
+ and U = [Xj|i] ∈Ra×M

+ , where then
D(L(t),RU) =

∑aM
ij=1 ẃid(Li, yj)Xji. Therefore, for any

given non-negative matrix L(t) ∈Rt×M
+ , we can interpret the

ith columns of the L(t) matrix as the node’s locations (fea-
ture vector). Their corresponding facility set is denoted as{
yj(t)

}a
j=1 and this results that the facility-location matrix

R ∈Rt×a
+ and the assignment matrix U ∈{0, 1}a×M are both

non-negative, U is an orthogonal matrix and L(t) ≈ RU.
As a result of the complexity that arises from the constraint

on Xj|i∈ {0, 1} to be binary variables, the DA algorithm is
employed to alleviate these hard assignments and is replaced

by soft assignments ẃj|i∈ [0, 1], hence the optimization prob-
lem can be formulated as:

A = D
({
ẃj|i

}
,
{
hj
})
−

1
β
H(
{
ẃj|i

}
), (19)

where
{
ẃj|i

}
is the probability mass function (PMF)

that relates ith data points Li to the features hj, while
D
({
ẃj|i

}
,
{
hj
})
=

∑M
i=1 ẃi

∑a
j=1 ẃj|id(Li, hj) is the cost

function’s expected value in (17) and the Shannon entropy
H
({
ẃj|i

})
=
∑M

i=1 ẃi
∑a

j=1 ẃj|i log ẃj|i measures the uncer-
tainty of the associated PMF

{
ẃj|i

}
. 1

β
examines how the

target cost function affects the formulation, and how much
randomness is introduced because of the PMF [27], noting
that A is convex in consideration to

{
ẃj|i

}
for a fixed β.

In the given optimization problem formulation, we view
all the characteristics (defined by value

{
hj
}
) as having equal

importance, a relative weight wrj can be assigned to the jth

feature by assuming that wrj units of jth feature occur at
value hj and by considering the MEP and employing the
Euclidean distance metric for d(., .), we can determine the
optimal solutions by setting ∂A

∂ẃj|i
= 0. By doing so, we can

then reinterpret the distribution in the PMF as:

ẃj|i =
wrje
−β∥Li−hj∥

2

∑a
g=1 wrge

−β∥Li−hg∥
2 , (20)

Setting ∂A
∂hj
= 0 and ∂A

∂wrj
= 0 yields the locally optimal values

of
{
hj
}
,
{
wrj
}
,which yield:

hj =
∑M

i=1
ẃi|jLi and wrj =

∑M

i=1
ẃiẃij|i, (21)

where ẃj|i = ẃiẃj|i/wrj . Thus, at a given we find the optimal
(local) solutions for

{
ẃj|i

}
and

{
hj
}
at a fixed β, these optimal

values can then be used to construct matrices R and U by
simply putting R:j = hj and Uij = ẃj|i, where R:j is then will
be the updated input to the actor module L̃(t)←R:j.

DA success in optimizing the problem and maximizing the
entropy by optimizing each of these non-negative values with
respect to θi to minimize the ONMF cost function:

E =
∑M

i=1
∥Li − θihi∥2

θi =
LT
i hi
∥hi∥2

, (22)

and replace the ones in the ith columns of U with (θi) s.

2) THE ACTOR-MODULE
The actor module is a crucial component of the system,
comprising two main components: a Deep Neural Network
(DNN) with sigmoid activation function at the output layer
and an action quantizer. This module enables the system
to make informed decisions and take actions based on the
current state and policy. At the start of each tth time-frame, the
DNN parameter is represented as ϑ t. It is important to note
that ϑ t is randomly initialized according to the standard nor-
mal distribution when t is equal to 1. In this context, the input
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FIGURE 2. MFDROO algorithm framework.

is represented as ŏt, which corresponds to the observation at
a given time t. The DNN processes this input and produces
an output v̂t∈[0, 1]M presents a relaxed offloading decision.
Then the input-output formalization is expressed as:

þϑ t :ŏt 7→v̂t =
{
v̂ti ∈ [0, 1], i = 1, · · · ,M

}
, (23)

We proceed by discretizing the continuous variable v̂t into Nt,
where Nt is a feasible time-dependent candidate binary
offloading actions, thus can express the quantization function
as:

qf Nt
:v̂t 7→oft =

{
vtj|v

t
j∈ {0, 1}

M, j = 1, · · · ,Nt

}
, (24)
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where oft refers to the offloading-action set in the tth

time-frame. To guarantee effective training convergence, the
noise order-preserving (NOP) quantization function [32] is
employed. This enables the generation of a diverse set of
candidate actions Nt ≤ 2M and based on the assumption
that Nt is an even number, it generates the first Nt/2 actions
using the order-preserving quantizer (OPQ) described in [17]
to process the variable v̂t. To calculate the first action vt1 =
[vt1,1, . . . .,v

t
1,M], a specific formula is applied as:

vt1,i =
{
1 v̂ti> 0.5,
0 v̂ti ≤ 0.5,

for = 1, . . . .,M, (25)

where v̂t(i) represents the i
th ordered entry of v̂t and v̂t(i)’s are

used as the decision threshold to quantize v̂t, where the next
Nt
2 − 1 actions are generated by arranging the entries of v̂t

on the basis of the distance to 0.5. Then the nth action vtn,
for n =2,. . . , Nt/2 is obtained as a result of the entry wise
comparisons of v̂t and vt(n−1).
That is:

vtn,i =


1,v̂ti > v̂t(n−1)or

{
v̂ti = v̂t(n−1) and v̂t(n−1) ≤ 0.5}

0,v̂ti < v̂t(n−1)or
{
v̂ti = v̂t(n−1) and v̂

t
(n−1)> 0.5

} ,

for n = 2, . . . .,
Nt

2
&i = 1, . . . .,M (26)

Lastly, the remaining Nt/2 actions are derived from a noisy
version of v̂t denoted as ṽt = Sigmoid(v̂t + n), where n
is the random Gaussian noise and then by replacing v̂t with
ṽt in (25) and (26) and applying OPQ, the remaining Nt/2
actions vtn will be derived.

3) THE CRITIC-MODULE
The critic-module plays a crucial role in evaluating the best
offloading action in the context of DRL. By analyzing the
optimal resource allocation problem, the critic-module can
identify and select the best offloading action, denoted as vt

from the set of available offloading actions
{
vti
}
. MFDROO

selects the best action as:

vt = arg max
vtj∈oft

G
(
vtj, ŏ

t
)

, (27)

where G
(
vtj, ŏ

t
)
is based on resource allocation optimization

given vtj.

4) THE POLICY-UPDATE MODULE
MFDROO is a reinforcement learning algorithm that utilizes
labeled input-output samples

(
ŏt, vt

)
to update the policy

of the DNN. To facilitate this process, MFDROO maintains
a replay memory that is updated with the most recent ds
data samples. Before training the DNN, the replay memory
is initially empty. However, training commences once more
than half of the desired number of data samples, denoted
as ds/2 have been collected. This approach ensures that
there is a sufficient amount of data in the replay memory to

start training the DNN effectively. The DNN is exposed and
trained to a diverse range of inputs at 3T regular intervals
and we check if mod (t,3T) = 0, then we selecting randomly
a batch of data samples

{(
ŏτ , vτ

)
, τ ∈Tt

s
}
which helps to

maintain the model’s generalization ability and avoid the risk
of over fitting and then updating the parameter of the DNN
by employing the Adam algorithm [42], which minimizes its
average cross-entropy loss function EF

(
ϑ t) denoted as:

EF
(
ϑ t)
= −1/

∣∣Tt
s

∣∣ .∑
τ∈Tts

[(
vτ
)T logþϑ t

(
ŏτ
)

+
(
1− vτ

)T log
(
1− þϑ t

(
ŏτ
))]

, (28)

where
∣∣Tt

s

∣∣ is the sample-batch size and Tt
s is the set of

selected samples’ time indices. Lastly, after the training com-
pletes, the actor module parameter will be updated in the next
time-frame to ϑ t+1.

5) THE QUEUING-MODULE
The system incorporates the joint computation offloading vt

and resource allocation action yt to effectively handle the
processing of data

{
pti
}M
i=1 and the consumption of energy{

ptci
}M
i=1 as specified in (5). To adopt the dynamic nature

of the system, we considering
{
pti, p

t
ci

}M
i=1 and the observed

data arrivals
{
dti
}M
i=1 during the tth time-frame and then the

queuing module continuously update the data and the energy-
queues {Li(t+ 1),Yi(t+ 1)}Mi=1 utilizing (7) and (9) at the
start of the (t+ 1)th time-frame.With the wireless channel

gains observation
{
ct+1i

}M
i=1

, the system has the new input

parameter ōt+1 =
{
ct+1i ,Li(t+ 1),Yi(t+ 1)

}M
i=1

and a new
iteration is initiated from the MEP-ONMF first module.

MFDROO algorithm described above provides a notable
benefit through its ability to decrease the dimensionality of
the input data-queues matrix and extract the most crucial
features from the beginning. By doing so, the algorithm
can concentrate on learning the optimal state-action pairs,
which ultimately results in the creation of a more efficient
policy. Significantly, this process is carried out efficiently,
ensuring that computational resources are utilized effectively.
The dimensionality reduction allows the algorithm to identify
the key patterns and relationships within the data, enabling it
to make informed decisions regarding the best actions to take
in a given state. This targeted approach not only improves
the algorithm’s performance but also enhances its ability to
adapt and generalize to new situations. Consequently, the
MFDROO algorithm offers a valuable advantage for applica-
tions that require efficient and effective policy development
based on high-dimensional input data. The pseudo-code for
MFDROO is summarized in Algorithm 1.

V. SIMULATION RESULTS
In this section, simulations are conducted to provide valuable
insights into the performance and robustness of the proposed
MFDROO algorithm. All the computations are executed on
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Algorithm 1 MFDROO Algorithm for Solving
Offloading Decision Action Problem

input: the wireless channel gain cti of WDs
for i = 1, 2, ..,M and t = 1, 2, . . .;
output: Control actions

{
vt, yt

}
;

1- Initialization set the DNN parameters ϑ1 randomly.
2- Empty the initial data-queue Li (1) = 0 and

energy-queue Yi (1) = 0, for i = 1, 2, ..,M
3- for t = 1, 2, . . . ,K do
4- Set the input ōt =

{
cti,Li(t),Yi(t)

}M
i=1;

5- Apply ONMF on {Li(t)}Mi=1 and then update
Li(t)→L̃i(t);

6- Update ōt→ ŏt ≜
{
cti, L̃i(t),Yi(t)

}M
i=1

;

7- Generate a relaxed-offloading action v̂t = þϑ t (ŏt)
through the DNN;

8- Quantize v̂t into Nt binary actions{
vti | i = 1, . . . .,Nt

}
using NOP method;

9- Solve G
(
vti, ŏ

t
)
by executing the optimal resource

allocation yti in [6] for each vti;
10- Select the best offloading decision action

vt = argmaxvti G
(
vti, ŏ

t
)
and compute the join

action (vt, yt);
11- Update the replay memory by adding the action

pair (ŏt, vt);
12- If mod (t,3T) = 0 then
13- Randomly select a batch of data samples{(

ŏτ , vτ
)
, τ ∈Tt

s
}
from the replay memory;

14- Train the DNN using
{(
ŏτ , vτ

)
, τ ∈Tt

s
}
and

update ϑ t using Adam algorithm;
15-

end
16- t← t+ 1;

17- Update
{
L̃i(t),Yi(t)

}M
i=1

based on (vt−1, yt−1) and

data arrival observation
{
dt−1i

}M
i=1

using (7)
and (9)

18-
end

a Visual Studio Code platform. The simulation scenario is
set up based on a variation in the number of users M=10
WDs to 200 WDs. In this study, we shall assume that the
average channel gain c̄i is governed by a path-loss model
c̄i = Ag

(
3∗108
4π fcdsi

)pl
, i = 1, . . . ,M, in which Ag = 3 rep-

resents the antenna gain, fc = 915 MHz represents the
carrier frequency, pl = 3 represents the path loss exponent,
and dsi = 120+ 15 (i− 1) , for i = 1, . . . ,M represents the
distance between the WD and ES in meters. A line-of-sight
link gain of 0.3c̄i is based on an i.i.d. Rician distribution.With
respect to noise power Np, the noise power spectral density
should be considered Np = Bns with ns = −174 dBm/Hz
and for the fixed weight ηi, if i is an odd number then
ηi = 1.5 otherwise, ηi = 1. In allWDs, the arrival of task data

TABLE 2. Simulation-parameters.

follows an exponential distribution with an equal average rate
E
[
dti
]
= λi, i = 1, . . . .,M. Detailed information regarding

other parameters is given in Table 2.
MFDROO’s actor module is based on a fully connected

multi layer perceptron. This multi layer perceptron is com-
prised of four layers: an input layer, two hidden layers, and
an output layer. The input layer serves as the entry point for
the system, receiving the relevant data points. The first hidden
layer consists of 120 hidden neurons, which are responsible
for processing and transforming the input data. The second
hidden layer, on the other hand, comprises 80 hidden neurons,
further refining the processed information. Finally, the output
layer generates the desired output, which is utilized by the
system to make informed decision actions.

For performance comparison, the benchmark method
LyDROO [6] is considered. The performance of the LyDROO
method is verified through computer simulations. The results
indicate that this method appears to perform close to opti-
mally. In light of this, we regard LyDROO as the MFDROO
algorithm’s performance benchmark. However, it is impor-
tant to note that LyDROO does suffer from limitations
considering the system instability under network conditions.
The algorithmmay performwell in the specific network setup
studied, but it remains unclear how it will handle scaling to
large networks.

Through simulations, it can be figured out that the bench-
mark algorithm suffers from significant system instability in
complex networks & under certain conditions. Scalability is
a critical issue in mobile-edge computing networks. As the
number of nodes and applications increases, it becomes
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challenging to handle a large number of offloading requests
while maintaining low energy consumption. So, regarding the
benchmark LyDROO, when the number of users (M) is large
or when the data rate exceeds 3 Mbps for the same number
of users (M=10), LyDROO experiences notable instability.
These findings highlight the limitations of LyDROO in sce-
narios where there is a high number of users or a higher
data rate. It is crucial to consider these factors in real-world
applications.

By using Monto-Carlo simulation, the performance of
MFDROO is executed and evaluated compared to that of
LyDROO. The proposed MFDROO algorithm is first eval-
uated and compared with the LyDROO benchmark method.
Its worth mentioned that the main objective of the proposed
MFDROO algorithm is maximizing the long-term average
weighted sum computation-rate subject to data-queue sta-
bility. However, power consumption should be taken into
consideration as it is one of the system performance lim-
itations. The performance of both algorithms is evaluated
in terms of average data-queue length, the weighted-sum
computation-rate and average power consumption over time.

The proposed MFDROO algorithm through comprehen-
sive simulations proved that it’s an innovative algorithm as
it elaborates on the advancements regarding stability in com-
plex networks with variable data-arrival rates and focuses on
addressing these challenges by developing a robust algorithm
to ensure stability of the mobile-edge computing networks.
The algorithm incorporates an innovative framework to
overcome the stability challenges posed by the benchmark
method. One of the key aspects is its ability to adapt dynam-
ically to variations in the data-arrival rate and/or number of
users. By leveraging the MFDROO advanced framework, the
algorithm can anticipate and mitigate the effects of these
variations, ensuring that the network remains stable and deliv-
ers reliable performance, making the proposed MFDROO
algorithm an indispensable tool for ensuring the efficient
operation of mobile-edge computing networks.

This section is organized as follows. Section A exam-
ines the novelty of the proposed MFDROO algorithm in
comparison with LyDROO under the effect of the different
data-arrival rates at a constant number of users (M=10).
Section B illustrates the impact of varying the number of
users M, ranging from 20 to 200 users examined under dif-
ferent data-arrival rates. Section C examines the Performance
of the proposed MFDROO algorithm under different hyper
parameters( Batch size & Learning rate). Lastly, Section D
examines additional performance evaluation of the proposed
MFDROO algorithm.

A. DATA-ARRIVAL RATES EFFECT
To capture the behavior of the proposed algorithm accu-

rately, we consider i.i.d. realizations of random events in the
context of 10,000 time-frames, where each point in the figure
represents a moving-window average of 200 time-frames.

This section shows the novelty of the proposed MFDROO
algorithm compared to the LyDROO benchmark method

under the effect of data-arrival rates variation at a specific
number of users (M=10).

Fig. 3 illustrates the results for two different data arrival
rates, λi = 2.5 and 3 Mbps at same number of users
M=10. In Fig. 3(a), it is evident that both MFDROO and
LyDROO maintain stable data-queues for the given arrival
data rates (λi = 2.5 and 3 Mbps). However, in Fig. 3(b),
MFDROO outperforms LyDROO in terms of queue length
and computation-rate performance. The queue length is sig-
nificantly shorter in MFDROO over all the time-frames,
leading to higher computation-rate performance compared
to LyDROO and in Fig. 3(c), it is evident that the proposed
algorithm exhibits a higher average power consumption com-
pared to the benchmark method mentioned. However, when
TDMA is employed, the power consumption of MFDROO
compared to other related papers work in this topic as referred
in [13], [43], [44], [45], [46], and [47] is within an acceptable
range.

One notable advantage ofMFDROO is its fast convergence
as it approaches the optimal policy very fast, even in highly
dynamic queuing systems. On the other hand, LyDROO
requires more time to learn until it reaches the optimal pol-
icy for offloading in the early stages, where the amount of
data increases rapidly when t ≤ 3000 (at λi = 3Mbps).
This means that MFDROO adapts quickly to changes in the
queuing system, while LyDROO may take longer to achieve
optimal performance.

Fig. 4 illustrates an evaluation of the impact of the system
parameters while fixing the number of users (M) at 10 and
varying the data-arrival rate λi range from 3.2 to 3.8 Mbps.
Upon analysis, we observe from Fig. 4(a) that the aver-
age data-queue length associated with the LyDROO method
exhibits an almost linear increase over time. This finding
suggests that the LyDROOmethod struggles in stabilizing the
data-queues when the data-arrival rate exceeds the computa-
tion capacity. These results shed light on the limitations of
the LyDROO method in effectively managing data-queues.
It becomes evident that as the data arrival rate surpasses the
system’s computation capacity, the LyDROO method fails to
maintain stability in the data-queues. On the other hand, the
proposed MFDROO algorithm provides significant advan-
tages when it comes to stabilizing data-queues at various data
rates. This flexibility is particularly beneficial in scenarios
where data rates fluctuate, such as in wireless communication
networks or in applications that require real-time processing
of data. Additionally, the MFDROO algorithm offers scal-
ability and ensures low latency making it an effective and
reliable solution for a wide range of applications. Accord-
ing to our extensive testing, Fig. 4(b) shows that MFDROO
has demonstrated its superiority over LyDROO in terms of
computation-rate and data-queue lengths. This comparative
analysis highlights MFDROO’s ability to deliver signifi-
cantly higher computation-rates while maintaining shorter
data-queue lengths across different time-frames. This combi-
nation makesMFDROO a superior choice for data processing
and management tasks and Fig. 4(c) shows that MFDROO
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FIGURE 3. Different schemes’ convergence performance under λ i = 2.5 and 3Mbps. (a) Average data-queue length
(b) Weighted-sum computation-rate (c) Average power consumption. Each of (a),(b) and (c) is plotted
at (i) λ i = 2.5Mbps and (ii) λ i = 3Mbps.
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FIGURE 4. Performance comparisons under different data-arrival rates λ i (a) Average data-queue length (b) Weighted-sum computation-rate (c) Average
power consumption.

algorithm may consume more power on average but it’s
obvious that power consumption is within the normal range
compared to other related papers work and it is still operating
efficiently and effectively.

B. IMPACT OF CHANGING USERS NUMBER
This section examines the outperforming of the proposed
MFDROO algorithm under the impact of varying the number
of users M, ranging from 20 to 200 users at different data-
arrival rates.

Fig.5 illustrates the impact of varying the number of
users M, ranging from 20 to 200 users. Throughout this anal-
ysis, we maintain a fixed data rate (λiat 2.5, 3 and 3.2 Mbps).
In Fig.5(a), it is remarkable that the proposed algorithm
successfully maintains data-queue stability even when the
number of users reaches up to 200. In contrast, when we
examine the benchmark method, LyDROO, it is observed that
it exhibits unstable behavior in terms of the data-queue. Par-
ticularly, the data-queue becomes unstable when the number
of users is only 20.

These findings highlight the effectiveness and superiority
of our algorithm, MFDROO, in ensuring data-queue stability
within communication networks. It demonstrates its capa-
bility to handle larger numbers of users compared to the
benchmark method, LyDROO, which struggles to maintain
data-queue stability even with a relatively small number
of users. Additionally, MFDROO exhibits a shorter queue
length, indicating efficient task management and reduced
waiting times for users. In Fig. 5(b), the proposed algorithm
exhibits its capability to handle up to 50 users at a higher data
rate of λi = 3Mbps achieving a high computation-rate with
lower queue length, while the benchmark LyDROO exhibits
an almost linear increase over time demonstrates struggles
to stabilize the data-queues with lower computation-rate in
comparison with MFDROO. The results depicted in Fig. 5(c)
illustrate the performance of MFDROO at a data rate of λi =

3.2 Mbps. The proposed algorithm maintains queue stability
even with up to 30 users, resulting in a shorter queue length.

In contrast, the benchmark LyDROO fails to maintain
queue stability when the number of users exceeds 20 at
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FIGURE 5. Performance comparisons under variation in number of users M for different data-arrival rates λ i:
(a) λ i = 2.5Mbps, (b) λ i = 3Mbps and (c) λ i = 3.2Mbps. Each of (a), (b) and (c) is plotted as function of (i) Average
data-queue length (ii) Weighted-sum computation-rate (iii) Average power consumption.
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FIGURE 5. (Continued.) Performance comparisons under variation in number of users M for different data-arrival rates λ i:
(a) λ i = 2.5Mbps, (b) λ i = 3Mbps and (c) λ i = 3.2Mbps. Each of (a), (b) and (c) is plotted as function of (i) Average data-queue
length (ii) Weighted-sum computation-rate (iii) Average power consumption.

a data rate of λi ≥ 2.5Mbps. This highlights the limita-
tions of LyDROO in handling larger user populations and
higher data rates. This means that the proposed algorithm
provides a robust solution that ensures queue stability even
under demanding conditions. These findings demonstrate the

effectiveness of the proposed algorithm in managing network
resources and ensuring a smooth user experience.

Based on the obtained results, it is evident that the proposed
algorithm exhibits a higher average power consumption com-
pared to the benchmark method mentioned. This is due to the
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fact of using ONMF in the proposed MFDROO algorithm as
the ONMF involves solving optimization problems required
for the decomposition process which may require significant
computational power. However, when TDMA is employed,
the power consumption of MFDROO compared to other
related papers work on this topic as referred to in [13],
[43], [44], [45], [46], and [47] is within an acceptable range.
Moreover, it outperforms the aforementioned references for
scenarios involving 10 up to 200 users and arrival data rates.
This suggests that while the proposed algorithm may con-
sume more power on average, it is still operating efficiently
and effectively.

The computational overhead of the proposed MFDROO
algorithm is examined by studying the time computa-
tional complexity big O notation which is found to
beO(Mlog2

(
1
σo

)
+M3Len)Nt, where the first term describes

the bi-section search in the adopted resource allocation
algorithm [6] and Len is the input length in a binary form
used in the second term that corresponds to solving the linear
programming problem in the resource allocation algorithm
and this is exactly the same as that of the benchmark
LyDROO [6].
However, as the DNN offloading action generation is

the most consuming time process. Therefore, the proposed
MFDROO algorithmCPU computation time is computed and
presented in Table 3 under different number of M users com-
pared to the benchmark LyDROO. This is done by running
both algorithms on a Visual Studio Code V8 platform with an
Intel Core i7-7500U CPU @ 2.70 GHz and of 8GB memory.

TABLE 3. Computation rate, queue stability and CPU computation time
under variation in number of users M.

As shown from the above table, the proposed MFDROO
algorithm exhibits higher CPU computation time than the
benchmark LyDROO and that translates in the computational
complexity overhead of the proposed algorithm. So, it is
worth noting that due to this time computational overhead,
there is a consequent increase in the energy consumption
of the algorithm, as more CPU cycles incorporated a more
energy is consumed.

Lastly, the paper would like to highlight that the strategic
use of the Edge Computing network and Task offloading
approach helps mitigate the power consumption issue from
the mobile device to the edge server, allowing the mobile
devices M to remain light and resource efficient.

C. HYPER PARAMETERS EFFECT
This section examines the performing of the proposed
MFDROO algorithm under the effect of different hyper
parameters.

Fig.6 illustrates the performance of MFDROO under dif-
ferent hyper parameters.

In Fig.6(a), we observe the convergence effect of
MFDROO while varying the batch size. It is evident that
when the batch size is set to 128, MFDROO exhibits the
most favorable convergence behavior. Moving on to Fig.6(b),
we focus on the impact of different learning rates on the
algorithm’s convergence. The abscissa in this figure repre-
sents the range of learning rates, spanning from too-high to
too-low values. It is evident that the best convergence effect
is observed when the learning rate is set to 0.01. This finding
highlights the importance of selecting an appropriate learning
rate and batch size to ensure optimal algorithm performance.

We present a comparison between MFDROO and
LyDROO in terms of computation-rate performance and
queue stability.

The comparison is conducted under different numbers of
wireless devices (WDs) denoted by M and varying data
arrival rates λi. The results are summarized in Table 4 for
users up to 100.

From the analysis, it is observed that MFDROO achieves
a higher computation-rate compared to LyDROO across the
range of WDs (M=10 up to 200) while maintaining queue
stability. This indicates that MFDROO is more efficient in
terms of computational processing, allowing for increased
data throughput.

Furthermore, the queue stability of MFDROO remains
unaffected by the variation in the number of users. This
implies that even with an increase in the number of
WDs, MFDROO can effectively manage the incoming data
and maintain a stable queue. This is crucial for ensuring
smooth and uninterrupted data transmission in wireless net-
works. By optimizing the utilization of available resources,
MFDROO maximizes the computational capacity of the sys-
tem, resulting in improved processing speed.

D. ADDITIONAL PERFORMANCE EVALUATION
In the following sub-section, to further evaluate and shed
light on the novelty of the proposed MFDROO algorithm,
we present an additional benchmark algorithm (QDRL) [48].
We compare the proposed MFDROO algorithm with the
QDRL benchmark algorithm concerning three commonly
used metrics: the normalized real computation-rate (RCR),
the RCR, and the average task queue length. The RCR is
commonly used to measure the real-time performance and
efficiency of algorithm whereas a larger RCR indicates how
great will be the system benefits and performance. we also
consider the average task queue length as a measure of the
system stability where the average task queue length rep-
resents the average number of tasks waiting to be executed
during a given period, so, a small average task queue length
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FIGURE 6. Performance of MFDROO under different hyper-parameters.(a) Batch size, (b) Learning rate. Each of (a) and (b) is plotted at
(i) λ i = 2.5 Mbps, (ii) λ i = 3 Mbps.

means the system is more stable. The normalized RCR should
be close to 1 to agree for better performance. As we adopt
in the above subsections of the simulation results section,
LyDROO as the benchmark method, it will be used as a
normalized reference to define the normalized RCR. Then we
define the normalized RCR = RCRalgorithm/RCRLyDROO.
To capture the behavior of the proposed MFDROO

algorithm, we conduct the comparison under the realization
of random events in the context of 1000 time-frames as used
in [48]. Fig.7 illustrates the results of RCR under data rate
λi = 3Mbps and fixed number of users (M=10). The figure
shows that MFDROO outperforms QDRL in terms of real
computation-rate performance and that’s a pivotal effect on
the system’s efficiency and performance.

Fig.8 shows the performance comparison under the nor-
malized long-term CR constraint. The figure shows that
both the proposed MFDROO algorithm and the benchmark
QDRL algorithm even exceed the near-optimal solution
(i.e., LyDROO)

FIGURE 7. Performance of MFDROO under fixed parameters
(λ i = 3 Mbps & M=10).

Fig.9 illustrates the average task-queue length of both the
proposed MFDROO algorithm and the benchmark QDRL.

It evident that MFDROO is slightly higher than QDRL
with a very small value as the average value of the task-queue
length over all the time-frames with respect to the QDRL
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TABLE 4. Computation-rate evaluation and queue stability check at different number of users M.

FIGURE 8. Performance of MFDROO under normalized long-term
constraint CR.

FIGURE 9. Average task-queue length plotted at (λ i = 3 Mbps & M=10 ).

benchmark is 6.25 Mb and for the proposed MFDROO
algorithm is 7.2 Mb and that difference sounds nothing
considering the higher real computation-rate that MFDROO
achieved it.

Fig.10 study the evaluation of the proposed MFDROO
algorithm under the variation of arrival data rates. The figure
shows that from λi = 2.5 up to 2.7 Mbps, MFDROO is lower
than the benchmark QDRL means that the system remains
more stable in that cases and from λi = 2.8 up to 3 Mbps, the
proposed MFDROO is slightly higher than QDRL but still
guaranteeing the system stability.
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TABLE 5. Comparison with various approaches.

However, Fig.11 shows that MFDROO achieves higher
computation rate under the different arrival data rates in
comparison with QDRL achieving both stable system and
maximizing the users satisfaction leads to efficient and reli-
able system performance.

The comparisons with both benchmarks LyDROO and
QDRL proved the novelty of the proposed MFDROO
algorithm and how it can maximize the computation-rates
guaranteeing system stability and ensuring its ability to
outperform in high-scale networks under variation of
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FIGURE 10. Average task-queue length plotted under variation of data
arrival rates (λ i = 2.5 up to 3 Mbps ) at M=10.

FIGURE 11. Real computation rate plotted under variation of data arrival
rates (λ i = 2.5 up to 3 Mbps) at M=10.

arrival data rates, achieving better system performance and
efficiency.

In addition, Table 5 shows a comparison of the pro-
posed algorithm with other existing approaches avail-
able in the literature. It provides an overview of the
key features and performance metrics considered for the
comparison.

Also, it’s worth noting that the authors in [45] demon-
strated the results of their existing method that tackled the
same problem. However, it is not included in the comparison
since the data arrival rate parameter used in this work is in
the range of Kbps, this is because the objective of the study
as stated by the authors in this article was increasing the
battery lifetime and enhancing the capability of IIoT networks
to achieve higher business requirements by achieving low
energy consumption systems. The authors did that by offload-
ing all Delay-sensitive and compute-intensive (DSCI) tasks
type workloads to mobile edge computing (MEC) servers
for processing because of the limited battery capacity of
the devices and the authors discarding offloading massive
amounts of tasks as it will lead to higher energy consumption
in the system. Therefore, the used data rate in the mentioned
article is much less than the proposed MFDROO algorithm,
as the used data arrival rate in MFDROO is in the range
of Mbps.

VI. CONCLUSION
This paper focuses on the problem of stable offloading com-
putations in a multi-user MEC network, considering the
uncertainties introduced by the stochastic nature of wireless
channel and arrivals of data-tasks. Our objective is to for-
mulate a multi-stage stochastic MINLP problem that assures
long-term data-queue stability while optimizing the average
weighted sum computation-rate of all WDs.

To address this problem, we proposed a novel algorithm
based on utilizing ONMF in combination with the DRL
approach, called (MFDROO). TheMFDROOalgorithm com-
bined the advantages of three key techniques: Lyapunov
optimization, non-negative matrix factorization (NMF), and
deep reinforcement learning (DRL).

The simulation results demonstrated the ability of
MFDROO to achieve optimal computation-rate and simul-
taneously satisfying the long-term constraint.

The proposed MFDROO was a promising algorithm that
offers a significant improvement in both the efficiency and
robustness of computation and represents a powerful tool
for optimizing computation-rate performance while main-
taining a high level of reliability and stability. The results
demonstrate the effectiveness of MFDROO in achieving bet-
ter overall system performance, which helped in guaranteeing
data-queue stability, even in scenarios with a large number of
users.

The proposed algorithm in this paper considers the
absence of knowledge of the future dynamics realiza-
tions of random channel conditions neglecting the user’s
dynamic behavior during computing offloading and resource
allocation. This oversight affects the performance of the
solution.

In future research, we will investigate distributed machine
learning techniques in MEC to study end-user mobility dur-
ing task processing, enhance user’s quality of service (QOS)
and also extend the algorithm to incorporate other long-term
performance relevant optimization factors such as energy
efficiency to include the IoT devices by overcoming the
limitations observed in the MFDROO algorithm.
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