
Received 28 May 2024, accepted 17 July 2024, date of publication 29 July 2024, date of current version 7 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3434682

Energy-Aware Spatial and Temporal Resolution
Selection for Per-Title Encoding
MOHAMMAD GHASEMPOUR , (Student Member, IEEE), HADI AMIRPOUR , (Member, IEEE),
AND CHRISTIAN TIMMERER , (Senior Member, IEEE)
Christian Doppler Laboratory ATHENA, Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, Austria

Corresponding author: Mohammad Ghasempour (mohammad.ghasempour@aau.at)

This work was supported in part by Austrian Federal Ministry for Digital and Economic Affairs; in part by the National Foundation for
Research, Technology and Development; in part by the Christian Doppler Research Association; and in part by the Christian Doppler
Laboratory ATHENA (https://athena.itec.aau.at/).

ABSTRACT Video streaming has become an integral part of our digital lives, driving the need for
efficient video delivery. With the growing demand for seamless video delivery, adaptive video streaming has
emerged as a solution to support users with varying device capabilities and network conditions. Traditional
adaptive streaming relies on a predetermined set of bitrate-resolution pairs, known as bitrate ladders, for
encoding. However, this ‘‘one-size-fits-all’’ approach is suboptimal when dealing with diverse video content.
Consequently, per-title encoding approaches dynamically select the bitrate ladder for each content. However,
in an era when carbon dioxide emissions have become a paramount concern, it is crucial to consider
energy consumption. Therefore, this paper addresses the pressing issue of increasing energy consumption
in video streaming by introducing a novel approach, ESTR, which goes beyond traditional quality-centric
resolution selection approaches. Instead, the ESTR considers both video quality and decoding energy
consumption to construct an optimal bitrate ladder tailored to the unique characteristics of each video content.
To accomplish this, ESTR encodes each video content using a range of spatial and temporal resolutions,
each paired with specific bitrates. It then establishes a maximum acceptable quality drop threshold (τ ),
carefully selecting resolutions that not only preserve video quality above this threshold but also minimize
decoding energy consumption. Our experimental results, at a fixed τ of 2 VMAF steps, demonstrate a
32.87% to 41.86% reduction in decoding energy demand for HEVC-encoded videos across various software
decoder implementations and operating systems, with a maximum bitrate increase of 2.52%. Furthermore,
on a hardware-accelerated client device, a 46.37% energy saving was achieved during video playback at
the expense of a 2.52% bitrate increase. Remarkably, these gains in energy efficiency are achieved while
maintaining consistent video quality.

INDEX TERMS Video streaming, spatial complexity, temporal complexity, per-title encoding, HEVC,VVC.

I. INTRODUCTION
With the ubiquity of video streaming in the digital age,
the efficient delivery of high-quality video content is of
paramount concern. As more and more aspects of our
lives migrate to online platforms, from entertainment and
education to business and communication, the demand
for seamless, high-resolution video streaming experiences

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

continues to surge. To meet this increasing demand for video
content, advanced compression techniques such asHigh Effi-
ciency Video Coding (HEVC) [1] and Verstile Video Coding
(VVC) [2] have been developed, which efficiently compress
video streams to make the transmission of high-quality
videos feasible. However, it comes at a significant cost
of increased energy consumption [3]. The energy-hungry
nature of video streaming has raised critical concerns, not
only in terms of operational costs but also concerning
its environmental impact. Therefore, optimizing the energy
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consumption associated with the video streaming workflow
becomes a pressing challenge for researchers and industry
experts [4].

Video streaming relies primarily on HTTP Adaptive
Streaming (HAS) [5], a technique that divides videos into
small segments, typically ranging from 2 s to 10 s in duration.
Each segment is encoded in various bitrates and resolutions,
referred to as bitrate ladder. This approach ensures that each
user receives the most appropriate representation based on
their device’s capabilities, such as screen resolution and
processing power, as well as prevailing network conditions.
However, it is essential to note that providing multiple
versions of the same content to accommodate adaptivity
increases the energy demands of the video streaming
workflow, which affects both encoding and decoding energy
consumption.

Recently, research efforts have been dedicated to enhanc-
ing the energy efficiency of the video encoding process, e.g.,
for HEVC [6], [7], [8], [9] or VVC [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19]. Numerous studies have explored
ways to accelerate the encoding process by predicting the best
coding modes [6], [9] or by introducing early skip [7], [11],
or early termination methods [10]. Alternatively, other
approaches seek to simplify individual components of the
codec, such as intra-mode decision [8], [12], motion estima-
tion [13], or transform [15] component. Amirpour et al. [20]
introduced a recommended preset for each encoding, aiming
to balance energy-efficient encoding and video quality.

However, it is essential to note that decoding is more
prevalent in Video on Demand (VOD) scenarios than in
encoding. Within VOD platforms, videos are encoded once
on the server and then repeatedly decoded on the client
side during multiple viewings. Consequently, as the number
of views (or impressions) increases, the significance of the
decoding process becomes increasingly apparent. As an
example, YouTube reported that the amount of videos
encoded is only around 65×103 every day, while in the same
period, there are about 108 videos decoded and viewed [21].
Furthermore, it is reported that people, on average, spend
about 17 hours per week watching online video content in
2023 [22]. Netflix recently disclosed that over six months,
nearly 100 billion hours were viewed across more than
18 000 titles, accounting for 99% of all viewing on the
platform [23]. This massive demand for online video content
underscores the crucial need to optimize the energy efficiency
of decoding.

In addressing the reduced energy consumption of video
decoders, the literature has explored a range of approaches
dedicated to optimizing video decoding energy consumption.
Some of these enhancements focus primarily on simplifying
the decoder components. For example, techniques include
disabling the deblocking filter for the largest coding units [24]
and simplifying motion compensation by reducing Finite
Impulse Response (FIR) filter sizes [25]. Furthermore,
an approach for implementing approximate computing in

HEVC decoding is introduced in [26]. This method adjusts
the interpolation filter of luma and chroma blocks based on an
approximation level control parameter. The authors have also
defined a skip control parameter to bypass deblocking and
Sample Adaptive Offset (SAO) filters as needed for energy
savings. Another approach addressing motion compensation
and deblocking filter operations is proposed in [27], where a
complexity control method is proposed for non-salient areas
to enhance subjective video quality. In another study [28],
the scalable extensions of HEVC are explored, presenting a
method to disable a significant portion of deblocking filter
and motion compensation operations in the base layer of the
video.

Various studies have considered decoding energy
consumption as the third variable within the Rate-
Distortion (RD) optimization concept [29], [30], [31]. These
methods typically involve modeling decoder energy and
selecting the coding mode that minimizes decoding energy
consumption at the encoder side, with the cost of losing
compression efficiency in terms of RD trade-offs. For
instance, in [29], the authors proposed a decoder complexity
model and modified the cost function used in the RD
optimization process. Similarly, Correa et al. [30] estimate
the decoding energy consumption based on the encoding
process and employ the Running Average Power Limit
(RAPL) tool [32] to measure the actual decoding energy.
Their approach achieved a reduction of more than 11%
in decoding energy with a 3.7% decrease in compression
efficiency in terms of Bjøntegaard Delta Rate (BD-Rate).
Furthermore, Herglotz et al. [31] introduces a mathematical
theory and develops a new optimization function at the
encoder, considering the desired maximum bitrate and
decoding energy. They also introduce a tunable parameter
to control the balance between bitrate and decoder energy
consumption. According to their findings, they achieve a
reduction of up to 30% in energy consumption when the
bitrate increases in the range of 20% to 50%, depending on
the video content.

The aforementioned approaches primarily focus on opti-
mizing either the encoding or decoding process for a single
encoding. However, the optimization of video decoding
within the context of video streaming, i.e., where multiple
encodings of the same content are involved, has not yet
been addressed. For example, when it comes to per-title
encoding [33], [34], [35], the impact on energy is not
considered, and only the quality is taken into account. Per-
title encoding is a dynamic video compression technique
that optimizes encoding parameters, such as resolution, for
individual videos. This method selects encoding parameters
that yield the highest quality at specific bitrates, enhancing
the overall viewer experience.

In this paper, our focus is on decoding energy consumption
during the construction of the bitrate ladder. We introduce
a novel approach referred to as the Energy-aware Spatial
and Temporal Resolution (ESTR) selection for per-title
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TABLE 1. HLS bitrate-resolution pairs for HEVC/H.265.

encoding, which is designed to optimize both video quality
and decoding energy consumption by selecting the most
appropriate encoding parameters, such as spatial resolu-
tion and temporal resolution (framerate), for each bitrate.
Our proposed approach does not employ any changes to the
implementations or configurations of the encoder or decoder,
making it easily applicable to existing streaming systems.
Moreover, we propose a control method to balance video
compression efficiency and decoding energy consumption.

The remainder of the paper is organized as follows.
Section II provides background information on basic per-title
encoding and illustrates the motivation behind our approach
through examples. Section III describes the proposed ESTR
approach in detail, while Section IV presents the experimen-
tal results. Finally, Section V concludes the paper.

II. BACKGROUND AND MOTIVATING EXAMPLES
This section provides an overview of the background related
to bitrate ladder construction and basic per-title encoding.
It performs a comparative analysis of energy consumption
across various resolutions and framerates. These insights
serve as a basis for the ESTR approach presented in this paper.

A. BACKGROUND
In HAS, to accommodate the heterogeneous environment
consisting of devices with varying bandwidth and device
types, the same video content is made available in multiple
representations, often encoded using a fixed bitrate ladder
consisting of predetermined bitrate-resolution pairs. For
instance, Table 1 provides a fixed bitrate ladder recommended
by Apple [36], known as HTTP Live Streaming (HLS) bitrate
ladder. It comprises 12 different bitrate-resolution pairs,
with bitrates ranging from 145 kbps to 16800 kbps and their
associated spatial resolution ranging from 360p to 2160p.
This ‘‘one-size-fits-all’’ bitrate ladder is easy to implement;
however, it is suboptimal as it ignores the characteristics of
the video content.

Video content exhibits varying responses to compression,
influenced by factors such as complexity. Easy-to-encode

videos tend to achieve high-quality output at lower bitrates.
However, as videos become more complex in terms of
spatial and temporal complexity, the bitrates required to attain
high-quality output increase correspondingly. Therefore, the
bitrate range to avoid bandwidth wastage for easy-to-encode
videos and achieve high quality for hard-to-encode videos
strongly depends on the video content.

Another effective approach to enhance the quality of
encoding at a given bitrate is to determine the optimal
resolution for encoding. In scenarios with constrained
bitrates, such as lower bandwidth environments, videos often
lack the necessary bitrate allocation to be encoded at higher
resolutions like 4K. Consequently, encoding them at lower
resolutions ensures that individual video frames receive a
sufficient bitrate budget to achieve high quality. However,
this approach introduces a potential downside – the upscaling
artifact – especially when these lower-resolution videos
are displayed on high-resolution screens. The interplay
between resolution selection and encoding quality is a critical
consideration in the realm of video compression.

B. MOTIVATING EXAMPLES
Figure 1 shows the rate-distortion (RD) curves for two
selected videos, #58 and #52, from the Inter4K dataset [37],
as well as their corresponding relative decoding energy
consumption. These videos have been encoded with bitrates
ranging from 145 kbps to 16800 kbps, under two distinct
scenarios: (i) at their original spatial resolution of 4K,
and (ii) at a reduced spatial resolution of 1080p. In the
latter case, the videos were upscaled to 4K using the
bicubic method, and their quality was evaluated using Video
Multi-method Assessment Fusion (VMAF) [38]. VMAF is
a video quality assessment metric developed by Netflix
to predict the perceived quality score of video content.
In Figure 1 (a) and (b), the intersection between the two
RD curves occurs at b1, denoted by a green dot. Beyond
this point, the quality of the 1080p resolution becomes lower
than that of the 2160p resolution. This difference remains
below a threshold value until the bitrate b2, where the quality
difference between the two representations (i.e., v2 − v1)
exceeds the threshold. The specified area, shown in green,
is of interest because the quality difference between the
two resolutions remains below a threshold (in this case,
2 VMAF points) but the decoding energy consumption of
the 1080p resolution is significantly less than that of the
2160p resolution. It should be noted that the decoding energy
consumption was measured with the CodeCarbon tool1 and
normalized to the highest energy consumption of each video
representation.

This analysis yields three notable observations:
• The intersection bitrate (b1) is subject to variation depend-
ing on the distinct characteristics of the video content,
serving as the foundational principle behind per-title
encoding. In this approach, the optimal spatial resolution is

1https://codecarbon.io/, last access: Jan 8, 2024
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FIGURE 1. RD curves for video sequences (a) #58 and (b) #52, as well as the relative decoding energy consumption for video sequences (c) #58 and
(d) #52, encoded at two different resolutions.

chosen for each piece of content within a specified bitrate
range. For instance, as shown in Figure 1, the intersection
bitrate between the 1080p and 2160p resolutions occurs
at b1 = 2, 300 kbps for video #58, while it occurs at
b1 = 470 kbps for video #52.

• The observation regarding the relatively insubstantial
difference in quality between two representations, partic-
ularly within a specific bitrate range centered around the
intersection bitrate, underpins the premise of this paper.
For example, as shown in Figure 1, the quality between
1080p and 2160p resolutions remains similar over a broad
bitrate range (i.e., b1 to b2) after the intersection bitrate for
video #58, highlighted in green. Conversely, for video #52,
the quality difference between the two spatial resolutions
becomes substantial after the intersection bitrate, and it
only remains similar for a very narrow bitrate range.

• The observation regarding the consistent relative decoding
energy consumption of these video representations further
motivates the selection of a spatial resolution that addresses
the trade-off between video quality and decoding energy
consumption. As shown in Figure 1, when comparing
video #58 and video #52, it becomes evident that the rel-
ative difference in decoding energy consumption remains
fairly consistent, or at least not significantly divergent,
within the bitrate range.
Therefore, choosing the lower spatial resolution within this

specific bitrate range centered after the intersection point for
both videos, which offers similar quality to 2160p resolution,
will result in a noticeable reduction in decoding energy
consumption. For example, in the case of video #58, after
the intersection bitrate at 2,300 kbps, there is a substantial
bitrate range, highlighted in green, where the quality of

1080p remains comparable to that of 2160p. This presents
the opportunity to choose 1080p as the spatial resolution
rather than 2160p, resulting in a reduction in decoding energy
consumption with a negligible drop in quality. However,
for video sequence #52, this bitrate range is relatively
small.

Similar observations are noted when it comes to the
temporal resolution or framerate. Figure 2 shows the RD
curves for two selected videos, #38 and #65, from the Inter4K
dataset [37], as well as their corresponding relative decoding
energy consumption. These videos have been encoded with
bitrates ranging from 145 kbps to 16800 kbps, in two distinct
scenarios: (i) at their original framerate of 60 fps, and (ii) at a
reduced framerate of 30 fps obtained by sampling every other
frame. In the latter case, each removed frame is reconstructed
using a frame duplication process based on its preceding
frame to calculate the VMAF.

The following observations were made:
• The intersection bitrate (b1) is subject to variation depend-
ing on the distinct characteristics of the video content.
For example, as shown in Figure 2, the intersection bitrate
between the framerates 30 fps and 60 fps occurs at (b1 =
3, 900 kbps) for video #38, while it occurs at (b1 =
700 kbps) for video #65.

• The minimal quality difference is notable between the
framerates 30 fps and 60 fps, especially within a bitrate
range (i.e., b1 to b2). For example, in Figure 2, the
quality stays similar over a broad bitrate range after b1 for
video #38 (highlighted in green). However, for video #65,
the quality difference becomes significant beyond the
intersection, remaining similar in only a narrow bitrate
range.
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FIGURE 2. RD curves for video sequences (a) #38 and (b) #65, as well as the relative decoding energy consumption for video sequences (c) #38 and
(d) #65, encoded at two different framerates and 4K resolution.

• The consistent relative decoding energy consumption
of these videos motivates selecting a lower framerate
within a specific bitrate range. Comparing videos #38
and video #65 in Figure 2 reveals that the decoding
energy remains fairly consistent within the bitrate range.
For example, after b1 = 3, 900 kbps for video #38, there
is a substantial bitrate range (highlighted in green)
where the quality of 30 fps remains similar to 60 fps.
This offers an opportunity to choose 30 fps for reduced
decoding energy consumption with a minimal qual-
ity drop. However, for video #65, this bitrate range
is smaller.

In summary, it is evident that decoding energy consump-
tion significantly depends on both the spatial and temporal
resolution of the video, aligning with findings in multiple
studies [39], [40]. This disparity offers an opportunity
to optimize spatial and temporal resolution selection, not
only by prioritizing quality but also by considering energy
efficiency.

III. ENERGY-AWARE SPATIAL-TEMPORAL
RESOLUTION SELECTION
In Section II, we presented the RD curves for various
representations across multiple videos in Figure 1 and
Figure 2. It was shown that each representation provides
a different level of quality at each specific bitrate. Nev-
ertheless, encoding a video at every possible bitrate is
impractical due to resource constraints. Thus, each video
representation is encoded at a set of predefined bitrate values,
which are the steps in the bitrate ladder (e.g., as listed
in Table 1). Using these bitrate points on each video’s
RD curve, a Pareto Front (PF), often referred to as the

FIGURE 3. Example of RD curves and convex hull construction for the
video sequence #32.

convex hull, can be constructed. This convex hull is then
employed to determine the bitrate-representation pairs of the
bitrate ladder. An example of the convex hull is shown in
Figure 3 using empty blue circles. For instance, at bitrates of
145 kbps, 300 kbps, and 1600 kbps, the video representations
with resolutions of 540p, 1080p, and 2160p provide the
highest quality. The bitrate ladder is built from the set of
representations that offer the highest quality at each specific
bitrate. This is exactly the approach taken by quality-centric
methods like basic per-title encoding [33], where the highest
quality representation is selected at predefined bitrate ladder
steps.

However, such methods tend to neglect the energy
consumption of video representations, which can lead
to huge energy consumption in the streaming process.
In response to this challenge, we introduce ESTR, which
is designed to enhance energy efficiency in the streaming
ecosystem without requiring modifications to the decoder
or encoder implementations, making it compatible with
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FIGURE 4. The workflow of ESTR.

existing streaming systems. We first describe the workflow
of ESTR, and we then explain how the core decision-making
module works.

A. THE WORKFLOW
The workflow of the proposed energy-aware per-title
encoding approach is shown in Figure 4. The proposed
ESTR employs the essential elements of basic per-title
encoding [33] (enclosed within the dotted box). However,
it introduces additional components, including the decoding
energy measurement element, a threshold, and the core
decision-making block (highlighted in green). To simplify the
workflow of ESTR, we have assigned numerical labels to the
inputs and outputs of intermediate components, which will be
elaborated in the following. In addition, the red symbols on
the arrows indicate the number of instances passing from one
element to the next element.

For a given input video sequence and a set of bitrate
values, which are meant to be the steps in the bitrate ladder,
ESTR constructs a decoding energy-aware bitrate ladder.
As shown in Figure 4, the downscaling module acquires
the input video sequence at its original resolution and
framerate, along with a set of spatial-temporal resolutions,
denoted as R. It then generates (i) downscaled versions of
the input video sequence at the set of various framerates
and resolutions (i.e., R). Subsequently, the encoder processes
all of these videos using a set of input bitrates, denoted
as B, to generate (ii) multiple video representations. Each
representation is subsequently sent to a standard decoder
to produce (iii) downscaled raw videos, which are later
upscaled by the upscaling module to restore them to (iv) their
original spatial-temporal resolution. At this point, the quality
evaluation module evaluates (v) the quality of this encoding
by considering both the original video and the processed
one. Finally, ESTR utilizes (vi) decoding energy consumption
and quality of representations, the set of bitrates (B), and
a tunable threshold to construct the energy-aware bitrate
ladder.

To explain the functionality of ESTR, let us consider three
sets: a set of spatial resolutions, denoted as S = {si | i ∈
{0, 1, . . . ,NS − 1}}, a set of temporal resolution (framerate),
denoted as F = {fj | j ∈ {0, 1, . . . ,NF − 1}}, and the
predefined bitrate values, denoted as B = {bk | k ∈
{0, 1, . . . ,NB − 1}}. These bitrate values form the bitrate
ladder and depend on the service provider’s choice and user
requirements. For example, one might adopt HLS bitrate
ladder values (provided in Table 1) as the predefined bitrates
and encode the videos accordingly. After the downscaling
process, the number of raw videos, referred to as NR,
is determined as follows:

NR = NS × NF (1)

We now have a set of raw videos denoted as R = {rl |
l ∈ {0, 1, . . . ,NR − 1}}, each of which is then encoded at
various bitrates (B) of the bitrate ladder. Therefore, after the
encoding process, we have NB ×NR representations for each
video sequence.

After decoding, upscaling, and quality measurement, each
representation with a bitrate k and spatial-temporal resolution
l has a quality qk,l in comparison to its original raw version.
In addition, it has a value of ek,l , indicating the amount
of energy consumption during the decoding process. It is
important to note that the quality and energy consumption
values are measured after the temporal/spatial upscaling
processes. This implies that the downscaled video is first
upscaled to the original resolution and framerate before
being compared to the original raw version. Additionally, the
energy consumption includes both decoding and upscaling
processes. Now, we establish two sets, Q and E , which
include the quality and energy consumption values for all
qk,l and ek,l , where k ∈ {0, 1, . . . ,NB − 1} and l ∈
{0, 1, . . . ,NR − 1}.

Having the sets Q and E at hand, it becomes feasi-
ble to identify the highest-quality representation and its
quality difference compared to other representations at
each specific bitrate. The following explanation details the
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Algorithm 1 ESTR Bitrate Ladder Construction
Data: Set of qualities (Q), set of decoding energy con-

sumption values (E), set of bitrates (B), set of
spatial-temporal resolutions (R), quality threshold (τ )

Result: Energy-aware bitrate ladder (EBL)
EBL ← ∅
for k=0 to NB do

lmax ← argmax(Q[k])
selected ← lmax
for l=0 to NR do

if ((Q[k][lmax]− Q[k][l]) < τ ) then
if (E[k][l] < E[k][selected]) then

selected ← l

EBL.append((B[k],R[selected]))
return EBL

decision-making core to ESTR, which utilizes these sets to
construct the energy-aware bitrate ladder.

B. DECISION-MAKING CORE
Before introducing the decision-making module, we intro-
duce a tunable parameter denoted as (τ ). This parameter
serves as a tool for fine-tuning the trade-off between video
compression efficiency and decoding energy consumption
based on the service provider’s considerations, offering
flexibility in optimizing the energy efficiency of the video
streaming workflow. The mechanism of this parameter
operates such that if the video quality differences between
the highest quality representation and one or more other
representations at a specific bitrate fall below the thresh-
old, the representation with the lowest decoding energy
consumption is selected to construct the bitrate ladder.
Therefore, the higher the value of τ , the more energy is
saved per each decoding process. However, this energy
saving comes at the cost of reduced compression efficiency.
It should be mentioned that τ is a continuous value defined
based on the chosen video quality metric. For instance,
if VMAF is the quality metric, the unit of τ aligns with that
of VMAF.

Given the defined threshold and the measured sets of
Q and E , the representations for the energy-aware bitrate
ladder construction are determined using the pseudo-code
presented in Algorithm 1. At each bitrate, the algorithm
tries to identify the representation that offers the highest
quality and calculates the quality difference for other
video representations. Subsequently, among the candidate
representations with quality differences below the threshold,
the algorithm aims to select the one with the lowest decoding
energy consumption. This iterative process is carried out
for every bitrate step, reaching to the creation of the set of
representations, which constitutes our energy-aware bitrate
ladder. Within the algorithm, the index selected specifies
the index of the chosen representation for the specific
bitrate. If none of the representations meets the threshold

condition or their energy consumption is not lower than
that of the highest quality representation, the selected index
remains unchanged, retaining the index of the highest quality
representation, which is initialized for each bitrate in the
algorithm.

IV. EXPERIMENTAL RESULTS
In this section, we present the experimental results for
the ESTR approach, designed to select the most suitable
spatial and temporal resolutions of each video content while
considering decoding energy consumption. We evaluate the
performance of the proposed approach compared to basic
per-title and fixed-resolution streaming. For this purpose,
we first explain the dataset and codec configurations
utilized in IV-A. Subsequently, in Section IV-B, we describe
the metrics employed for quality assessment and energy
consumption. In Section IV-C, we conduct a performance
evaluation of the ESTR comparing it against two different
video streaming approaches. The first approach involves
maintaining a constant spatial and temporal resolution for all
bitrates, where we consider two different spatial resolutions
and two temporal resolutions (framerates) to enhance the
depth of this comparative analysis. The second approach
involves the utilization of two ‘‘one-size-fits-all’’ bitrate
ladders. Following that, in Section IV-D, we analyze how
adjusting the threshold value (τ ) affects both the decoder
energy consumption and compression efficiency. Furthor-
more, in Section IV-E, we explore the impact of various video
decoder implementations and end-device operating systems.
Finally, in Section IV-F, we apply our method to a range of
video codecs, including HEVC, VVC, and AVC [41], and
evaluate its performance.

A. TEST SEQUENCES AND ENCODER CONFIGURATIONS
We collected the first 100 video sequences from the Inter4K
dataset [37], each of which was trimmed to contain 64
frames. These sequences have a native spatial resolution of
3840×2160, utilize a 4:2:0 chroma format, and maintain a
temporal resolution (framerate) of 60 fps with an 8-bit pixel
depth. We considered five spatial resolutions, specifically
S = {2160p, 1440p, 1080p, 720p, 540p} and applied
downscaling to each original video sequence using the
bicubic method. In addition to the 60 fps video sequences,
we generated their 30 fps versions by selecting every other
frame of each spatial resolution. Consequently, we have
10 different downscaled versions (NR = 10) for each
video sequence. Following this, we encoded all downscaled
videos using the HEVC encoder in the random_access
configuration, utilizing a Group of Picture (GOP) size of
32 frames, and employed the constant bitrate method with
the required target bitrates for experiments, which was the
bitrates in the HLS authoring specification [36] (cf. Table 1)
and theMulti-codec Dynamic Adaptive Streaming over HTTP
(MC-DASH) bitrate ladder [42]. Subsequently, these video
representations were decoded and upscaled to the original
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TABLE 2. The performance comparison of ESTR approach with fixed bitrate ladders.

resolution (i.e., 2160p at 60 fps), utilizing frame duplication
and bicubic filter. The entire HEVC encoding and decoding
process was performed using FFmpeg v6.1.1.2 We used an
Apple Mac mini with an Octa-Core Apple M1 processor,
and 16 GB of RAM, running macOSVentura (version 13.3.1)
for conducting these experiments.

B. METRICS
The performance of the proposed approach is evaluated in
terms of video quality, compression efficiency, and energy
consumption. Video quality is assessed using two commonly
used metrics, PSNR and VMAF, with reference to the
original YUV sequence (i.e., 2160p at 60 fps). For com-
pression efficiency, we employed Bjøntegaard Delta (BD)
metrics [43]. The BD-Rate metric quantifies bitrate savings
at the same video quality, and BD-VMAF metric specifies
the amount of quality degradation at the same bitrate.
To evaluate the energy efficiency of the decoder, we used
Bjøntegaard Delta Decoding Energy (BDDE), introduced
in [31], which measures energy savings as a percentage
for the same video quality. A negative BDDE indicates
that the same quality is achieved with reduced energy
consumption. Additionally, we quantified the energy con-
sumption associated with decoding each video representation
using the CodeCarbon tool, a lightweight and open-source
software package for estimating carbon dioxide emissions
from computing resources.

C. COMPARISON WITH FIXED BITRATE LADDERS
This section aims to compare the performance of the
proposed approach at fixed spatial and temporal resolutions,
as well as the ‘‘one-size-fits-all’’ bitrate ladders for HEVC-
encoded videos. Fixed spatial and temporal resolution ladder
refers to a scenario where all video sequences at different
bitrates are encoded at the same spatial and temporal res-
olution. Furthermore, we included two different predefined
bitrate ladders for our study, i.e., the HLS bitrate ladder for
HEVC and the MC-DASH bitrate ladder for HEVC. The
results are summarized in Table 2.

According to the results, the proposed approach demon-
strates an approximate 30% reduction in decoding energy
consumption compared to streaming at the original resolution

2https://www.ffmpeg.org/, last access: Jan 8, 2024

(3840× 2160 at 60 fps), while achieving a bitrate saving
of around 1%. This means that streaming at the original
resolution achieves near-optimal compression efficiency,
indicated by the RD curve of encoding at the original
resolution closely resembling the convex hull. However,
it is important to note that the energy consumption remains
relatively high, and there may be compatibility issues with
devices that do not support 4K decoding. On the other
hand, when compared to streaming at the lowest resolution
(960×540 at 30 fps), ESTR achieves a superior compression
efficiency of over 57%, measured in terms of BD-Rate, with
an accompanying increase in energy consumption of 78%.
Furthermore, the proposed approach provides 36.14% and
32.42% higher compression efficiency and requires 17.35%
and 26.98% more decoding energy consumption compared
to HLS and MC-DASH bitrate ladders, respectively. It is
because, the proposed approach dynamically chooses the
spatial-temporal resolution for each bitrate considering
both quality and decoding energy consumption for each
video content, as opposed to relying on a fixed set of
spatial-temporal resolutions for all types of content.

To provide a more detailed explanation, Figure 5 and
Figure 6 show examples of selected representation by the
HLS bitrate ladder, basic per-title encoding, and ESTR
with τ = 1.00, along with their corresponding quality
and decoding energy consumption for videos #14 and #40.
Please note that the basic per-title encoding method only
selects the spatially downscaled representation. However,
we have displayed all representations for all approaches in
these figures for consistency reasons. The energy consump-
tion values are normalized against the maximum energy
consumption, which in this case is the energy consumed
energy for decoding 3840 × 2160 at 60 fps, measured by
the CodeCarbon tool. As can be seen, the HLS bitrate
ladder opts for lower spatial-temporal resolutions in lower
bitrates, resulting in lower energy consumption. However, the
compression efficiency of these selections is lesser than that
of basic per-title encoding and the ESTR approaches. On the
contrary, the basic per-title encoding approach selects the
highest-quality representation, usually from higher spatial-
temporal resolutions, leading to greater energy consumption.
The proposed ESTR approach achieves comparable quality to
basic per-title encoding, but by selecting representations with
lower energy consumption, it saves energy in comparison.
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FIGURE 5. The rate-quality curves for video sequence #14 when utilizing (a) HLS bitrate ladder, (b) basic per-title encoding, (c) ESTR approach and
their relative decoding energy consumption when employing (d) HLS bitrate ladder, (e) basic per-title encoding, (f) ESTR approach.

FIGURE 6. The rate-quality curves for video sequence #40 when utilizing (a) HLS bitrate ladder, (b) basic per-title encoding, (c) ESTR approach and
their relative decoding energy consumption when employing (d) HLS bitrate ladder, (e) basic per-title encoding, (f) ESTR approach.

The amount of energy savings also depends on the threshold
value τ , which is thoroughly investigated in the following
section.

D. IMPACT OF THRESHOLD (τ )
The proposed approach enables video streaming providers
to manage decoding energy consumption on the client side
by adjusting the threshold τ provided by ESTR. To achieve
higher energy saving at the decoder, the video service
provider can increase τ , keeping compression efficiency
within an acceptable range. This range can be customized by
the provider andmay vary across different streaming services.
This range is determined by the threshold value τ , which can

be interpreted as the maximum allowable quality degradation
for selecting a lower energy consumption representation.
It means that if the quality difference of several represen-
tations, compared to the highest quality option, is within
this threshold, they become candidates for selection. Among
these candidates, the one with the lowest energy consumption
will be chosen. It is worth noting that the threshold is based
on video quality metrics; for example, if VMAF is used to
measure video quality, the threshold will be expressed in
VMAF steps.

To evaluate the impact of threshold values, we compared
the ESTR to basic per-title encoding [33] with varying
threshold values ranging from 0.5 to 5.0, increasing by
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TABLE 3. The impact of changing the threshold value on the ESTR performance in terms of BD-Rate, BD-VMAF, and BDDE.

FIGURE 7. The evaluation of the ESTR at different threshold values in
terms of BDDE (vertical axis) and BD-Rate (horizontal axis) compared to
the basic per-title encoding.

0.5 each step. This comparison is shown in Figure 7. For
simplicity, specific threshold values are annotated, and each
marker represents a 0.5-step progression in the figure. It is
shown that increasing the threshold to higher values leads
to increased energy savings and BD-Rate. For instance, with
τ = 2.0, ESTR could save approximately 40% of decoding
energy at the cost of 2.5% compression efficiency compared
to basic per-title encoding. In addition, for τ < 1.5 (Gray
dashed line), ESTR outperformed basic per-title encoding
in terms of compression efficiency and decoding energy
consumption.

It is important to note that the enhanced performance
is achieved at the expense of increased server-side energy
consumption for encoding, as it considers both spatial and
temporal resolutions. In contrast, the basic per-title encoding
approach [33] optimizes only based on spatial resolution.
To assess this, we initially encoded all 100 test videos at
60 fps and measured the associated energy consumption.
We then compared this to the energy consumed when
encoding the complete set of spatial-temporal resolutions
specified in IV-A. On average, the encoding process required
by ESTR consumed 1.51 times more energy compared to
basic per-title encoding.

E. THE IMPACT OF VIDEO DECODER AND
OPERATING SYSTEM
In this section, we assess how different decoders and
client devices (including operating systems) influence the

performance of the ESTR in comparison to the basic per-title
encoding for various thresholds τ . The test setup involved
three computing devices: device 1, an Apple Mac mini
(as mentioned IV-A); device 2, a Lenovo ThinkPad P1 Gen2
laptop running Linux Ubuntu 22.04.3 LTS with an Intel
Core i7-9750H CPU at 2.60 GHz, 16 GB of RAM, and
Nvidia Quadro T1000 Mobile GPU; and device 3, the same
Lenovo laptop running Windows 11. For the evaluation,
two different HEVC video decoders (i.e., FFmpeg v6.1.1,
HM-18.0 (HEVC’s reference software) [44]) and two players
(i.e., FFplay v6.1.1, and VLC v3.0.203) were used. We also
explored the influence of hardware acceleration on video
decoding by testing GPU decoding with VLC, specifically
on device 3. The decoding energy consumption of HM and
FFmpeg software tools was measured after upscaling to
the original spatial-temporal resolution, and for FFplay and
VLC, the full-screen option was enabled, with the video
displayed on an external 4K monitor. The results are shown
in Table 3.
The results lead to several key conclusions. Firstly, while

the decoding energywasmeasured solely with Device 1 using
FFmpeg, ESTR demonstrates relatively consistent energy
savings across various hardware and software implementa-
tions and operating systems. Secondly, when it comes to
video decoders, ESTR showed greater energy savings when
HM is used for video decoding, compared to when FFmpeg
is used for both devices. This outcome is consistent with HM
being the reference software for HEVC decoding, whereas
FFmpeg represents a more optimized version of the HEVC
decoder. Thirdly, regardless of end-device hardware and
operating system, at τ = 1.50, where the compression
efficiency of both ESTR and basic per-title encoding is nearly
identical (i.e., BD-Rate ≈ 0), ESTR provides energy savings
of 28.8% to 40%, depending on the device and operating
system. Furthermore, according to the results, when the
VLC player was utilized at the client side with enabled
hardware acceleration, ESTR delivers energy saving ranging
from 22.35% to 46.37%, with a maximum of 2.52% increase
in BD-Rate. When FFplay is employed for video playback,
ESTR provides energy savings of 32.87% and 40.22% for

3https://www.videolan.org/vlc/, last access: Jan 8, 2024
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TABLE 4. The performance of ESTR compared to the basic per-title encoding across various codecs.

Device 1 (Apple Mac) and Device 2 (Lenovo Linux),
respectively. Moreover, across all end-device configurations,
the streaming platform using ESTRwith a τ = 0.50, achieved
a minimum of 18.03% more energy savings compared to
basic per-title encoding.

F. THE IMPACT OF VIDEO CODECS
Video streaming providers utilize various video coding
standards and their implementations, each with its unique
decoding energy demand and compression efficiency levels.
Therefore, to evaluate the performance of our approach in
diverse streaming environments, we explored three video
coding standards: AVC/H.264 [41], HEVC/H.265 [1], and
VVC/H.266 [2]. For decoding, FFmpeg libx264 for AVC,
FFmpeg libx265 for HEVC, and VVdeC [45] for VVC
implementations were used. We compared the proposed
approach with basic per-title encoding in terms of com-
pression efficiency and decoding energy consumption for
different thresholds τ . The results of this analysis are
presented in Table 4.

According to the results, the utilization of HEVC demon-
strates the highest energy savings compared to AVC and
VVC at the same threshold value when streaming platforms
employ the ESTR approach. Specifically, within the specified
range of τ (0.50 to 2.00), ESTR yields a significant reduction
in decoder energy consumption, ranging from 21.37% to
39.20% when compared to basic per-title encoding, all
while maintaining the same video quality. For AVC, ESTR
achieves decoding energy savings in the range of 14.46% to
17.47% with the threshold value applying a comparatively
lesser impact on energy saving. In the case of VVC, ESTR
demonstrates decoding energy savings ranging from 17.24%
and 33.59%.

In terms of compression efficiency, ESTR provides a
significant improvement of approximately 5% over basic
per-title encoding when τ = 0.5 and AVC is employed for
streaming. For HEVC and VVC, known for their efficient
compression capabilities, this improvement is 2.44% and
0.70%, respectively. Increasing the threshold value, the
energy savings rise at the expense of compression efficiency.
At τ = 2.00 for AVC, the improvement decreases to 2.99%,
while for HEVC and VVC, basic per-title encoding surpasses
ESTR in compression efficiency, with ESTR requiring 2.52%

and 7.02% more bitrate for the same quality. However,
at τ = 1.00 for VVC, adopting the proposed approach for
streaming empowers clients to save 24.4% in energy during
the decoding of the same content compared to basic per-title
encoding with only a 0.93% increase in bitrate.

V. CONCLUSION
This paper introduced an energy-aware approach for HTTP
adaptive streaming, empowering clients to reduce energy
consumption during video playback while maintaining video
quality. The proposed approach achieves this by selecting
spatial and temporal resolutions of each video that provide
video quality approximately identical to the highest quality
while minimizing decoding energy consumption at each
bitrate. This process is applied to each video content, and
the resulting spatial-temporal resolution at each bitrate is
combined to create bitrate-resolution pairs, forming the
energy-aware bitrate ladder. This ensures that users with vary-
ing bandwidths can watch videos with an acceptable quality
loss and lower energy consumption. The amount ofmaximum
acceptable quality degradation can be controlled by each
service provider through the tunable threshold value (τ )
provided by ESTR. Experimental results demonstrate that
in a video streaming platform using HEVC, regardless of
software decoder implementations and operating systems,
at a fixed τ of 2, ESTR provides a 32.87% to 41.86%
reduction in decoding energy consumption. Additionally,
it is shown that on a hardware-accelerated client device
running the Windows operating system, a 46.37% energy
saving is achievable during video playback at the cost of
2.52% compression efficiency decrease. Moreover, using
VVdeC for decoding VVC-encoded streams and adjusting
the threshold value, ESTR can reduce energy consumption by
24.4% with a 0.93% bitrate increase compared to basic per-
title encoding.
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