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ABSTRACT The Internet of Things (IoT) facilitates intelligent building management by deploying IoT
devices as crucial components of building subsystems. However, the ongoing evolution of intelligent
buildings presents challenges in network management, scalability, and security. In this regard, smart
buildings require innovative network architectures capable of adapting to meet future requirements.
The Recursive InterNetwork Architecture (RINA) emerges as a clean slate network architecture aiming
to overcome various current network limitations and simplify network complexity. While RINA has
demonstrated several advantages in multi-homing, scalability, and security, these benefits must be analyzed
in realistic conditions. This paper introduces a RINA-based environment monitoring subsystem that
implements and deploys RINA components within specific IoT hardware and software in a relevant
environment. The subsystem comprises several RINA sensors, RINA-based IoT gateways, and an edge node.
The subsystem’s design and implementation details are provided for efficient and secure communication
between RINA sensors and the edge node. The RINAsense architecture was used to implement the sensors,
with additional enhancements for resource management and energy efficiency. Also, the IRATI open-
source software facilitates the implementation of the IoT gateway and edge node to ensure smooth RINA
communicationswithin the subsystem. The subsystemwas evaluated in terms of latency, goodput, and energy
consumption, and it achieved a 2.05-millisecond delay, 0.86 Mbps as goodput, and reduced 82% energy
consumption. Finally, the feasibility of using RINA in smart buildings was confirmed by integrating the
proposed subsystem into an operative intelligent building system.

INDEX TERMS Future networks, Internet of Things (IoT), recursive InterNetwork Architecture (RINA),
smart buildings systems, smart sensors.

I. INTRODUCTION
Smart buildings are designed to maximize efficiency, reduce
operational costs, and improve the comfort and safety of their
occupants by optimizing available resources. To accomplish
this purpose, smart buildings rely on various technologies
such as sensors, networks, data analytics, and AI to collect
and analyze valuable data [1]. Automation in smart buildings

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurizio Casoni .

includes subsystems such as lighting, Heating Ventilation Air
Conditioning (HVAC), security, and energy management, all
equipped with sensors and devices to monitor and control
the building environment. The real-time data generated by
the sensors and devices are analyzed to make automatic
adjustments that ensure optimal performance and energy
efficiency [2]. However, smart buildings constantly evolve
by integrating new heterogeneous technologies, communi-
cation protocols, and automation systems. The expansion
of the smart buildings concept introduces challenges such
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as network management complexity, scalability, interoper-
ability, and security. Consequently, smart buildings require
innovative network architectures capable of accommodating
future requirements while providing flexibility [3].

Future network architectures have been proposed to solve
traditional networking issues. Software-defined Networking
(SDN) and virtual network function (VNF) are fundamental
technologies for modeling the next generation of Internet of
Things (IoT) network architectures. Separating the control
and data plane has resulted in more efficient networks [4].
SDN technology has enhanced smart buildings’ network
management, network performance, bandwidth efficiency,
and quality of service (QoS) [5]. Additionally, smart
building energy management can be achieved by adequately
provisioning VNFs to support distributed automation and
orchestration on IoT devices [6]. Although SDN technology
has provided new ways to simplify network management
complexity and improve network flexibility, some open
challenges in current literature (e.g., scalability, security,
or reliability) require attention [4], [7].

A few years ago, Recursive InterNetwork Architecture
(RINA) emerged as a revolutionary paradigm to overcome the
limitations of traditional networks based on the Transmission
Control Protocol (TCP)/Internet Protocol (IP) stack. RINA
provides a robust, scalable, and flexible framework for
interconnecting computer networks, as evidenced by several
studies [8], [9], [10], [11]. RINA is based on a unique pro-
grammable layer, which is called Distributed Inter-Process
Communication Facility (DIF). The DIF layer is simpler and
more affordable than comparable IP solutions [12]. The most
relevant aspect of RINA is its recursion, allowing for the
repetition of the DIF layer to meet the evolving requirements
of networks and using a uniform interface model [13]. This
recursive nature ensures that the network can scale up or
down based on the building’s evolving needs and available
communication facilities and networks. In addition, each
layer’s properties (e.g., routing, QoS schemes, and security,
among others) can be programmed by defining policies
specific to the requirements of the DIF and potentially
different from other DIFs. As a result, each layer can
have appropriate security mechanisms, and communication
between layers can be controlled and authenticated. This is
particularly crucial in smart buildings, where security and
privacy are essential to protect sensitive data and ensure
the integrity of critical systems, as well as the integration
with pre-existing security mechanisms. RINA can potentially
reduce the network complexity of the smart building network
and provide a flexible framework to improve scalability, secu-
rity, traffic differentiation, and performance. Although these
benefits have been evaluated and validated in experimental
and generic application environments, they have yet to be
analyzed in a specific context.

The main motivation of this work is to apply RINA
principles in a specific use case and implement the RINA
components within specific hardware (e.g., sensors and
IoT platforms). Toward this goal, this work proposes

an innovative environment monitoring subsystem based
on RINA for improving scalability within smart building
environments. The system comprises several RINA-based
sensors, an RINA-based IoT gateway, and an edge node.
The RINA sensor has been implemented using the ESP-32
System on a Chip (SoC) IoT platform and the RINAsense
software developed previously in [14]. Additionally, the
RINA-based IoT gateway has been deployed on a Raspberry
Pi 4 using the IRATI software for prototyping Linux-
based RINA nodes [15]. The system has been deployed
and seamlessly integrated into Centre for Research and
Technology Hellas (CERTH)’s smart building infrastructure
as part of the TERMINET project [16]. Following this
implementation, an evaluation of the performance of RINA
devices has been conducted, along with an analysis of their
respective advantages and limitations.

To sum up, our contributions are:
• Design and implementation details of the RINA network
for smart buildings (sections III, IV).

• Smart building’s network efficient communications
regarding latency management, data transmission effec-
tiveness, and protocol efficiency through the RINA-
based resource optimization, protocol optimization, and
minimizing overhead (subsection III-C).

• Smart building’s network secure communications
through the RINA-based secure policies and its principle
of secure by design architecture in where a self-
contained security layer operates independently, elim-
inating the need for additional, specialized protocols or
equipment (subsubsection III-B2).

• Programmable layers and flexible protocol design
to accommodate the growing network requirements
(subsection III-B).

The remainder of this document is organized as follows:
Section II reviews the current smart building application
and presents the RINA concept and its developments.
Section III describes the proposed smart building climate
monitoring system based on RINA. Section IV presents the
system implementation and deployment. Section V discusses
the results. Section VI compiles the lessons learned, and
Section VII presents proposals for future work.

II. STATE OF THE ART
In our initial phase, we thoroughly examined the relevant
literature concerning Smart Buildings, emphasizing environ-
mental subsystem architectures, including communication
protocols, sensors, security, scalability, and communication
efficiency. Regarding theoretical fundamentals, we compre-
hensively examined the basic principles of RINA, which
include an in-depth analysis of its advantages, as well as
recent studies and advances aimed at overcoming security and
scalability issues. Additionally, we delved into recent studies
and advances in RINA applied to the IoT ecosystem. This
study served as a basis for proposing potential solutions to
transition the RINA experimental study into more mature and
applied technology. This section presents the state of the art
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FIGURE 1. Smart building concept.

of the smart buildings concept, related works, and the main
features of RINA and its recent advances in IoT domains.

A. SMART BUILDING SYSTEMS
A smart building encompasses any structure that manages its
resources using automatic processes to control the building
operations [17]. These buildings contribute to overall envi-
ronmental sustainability goals by reducing greenhouse gas
emissions, minimizing waste, and fostering efficient resource
utilization [2]. A smart building relies on several subsystems
to control the building’s resources, such as lighting, HVAC,
security, and energy management, among others, to achieve
the goals above. Figure 1 depicts a high-level smart building
concept and its subsystems.

Smart building subsystems continually advance by imple-
menting diverse technologies, communication protocols,
and automation systems. This expansion of the smart
building concept is introducing network management com-
plexity, scalability, and security challenges. Sensors and
devices deployed in smart buildings utilize a wide range
of application protocols and wireless technologies (e.g.,
Wireless Fidelity (Wi-Fi), Bluetooth Low Energy (BLE),
and ZigBee) for communication [18]. In current practice,
the Message Queuing Telemetry Transport (MQTT) and
the Constrained Application Protocol (CoAP) serve as IoT
application protocols to facilitate communication between
sensor devices and the cloud. While the Datagram Transport
Layer Security (DTLS) protocol is employed to ensure secure
communications in cloud-based IoT architectures, it has been
observed to degrade communication performance in terms
of latency and throughput [19]. Additionally, an evaluation
of energy consumption for DTLS and CoAP revealed
opportunities for minimizing energy consumption. Conse-
quently, this technological heterogeneity inherent in smart
building deployments exacerbates network management
complexity.

IoT communications also impact smart building efficiency.
IoT poses specific challenges, such as hardware malfunc-
tions, battery depletion, or wireless interference. As a result,
communication within IoT-enabled smart buildings must
be reliable and efficient. Al-Kadhim and Al-Raweshidy
studied the potential impact of IoT communications in smart
buildings [20]. Their work proposed several schemes for

optimized standby route selection, desired reliability levels,
reliability-based sub-channels, and data compression based
on reliability. Their QoS schemes reduced the negative
effect of reliability on traffic power consumption. Their
contributions not only focused on improving QoS but also
on efficient communications and scalability. Sauer et al.
proposed a reliable system to collect data from IoT devices
based on Transport Layer Security (TLS) and Hypertext
Transfer Protocol (HTTP) [21]. Additionally, that work
provided several examples of data treatment and visualization
to ease decision-making. Ferrández-Pastor et al. studied
the implications of edge computing in scalability and
interoperability to improve IoT communications. Their work
proposed a model based on edge and fog computing for
designing and developing new services in smart building
scenarios [22]. Their system provides scalability based on the
edge-fog-cloud continuum architecture and QoS based on the
MQTT QoS levels.

One of the most critical aspects of every smart building is
to sustain a favorable and comfortable climate for residents,
while being energy-efficient. Such a task is complicated,
as the design must consider many factors, ranging from
area climate to building characteristics [2]. Kim et al.
proposed a system to monitor the building environment
and control seasonal energy consumption [23]. The authors
estimated the energy consumption by tracking the residents’
behaviour (e.g., room occupancy, occupancy time), enabling
the proposed system to take adaptive action to ensure thermal
comfort. Additionally, their research explored the use of
Secure Sockets Layer (SSL) for secure communications.
Rico et al. proposed an adaptive sensor fusion and hybrid
machine learning architecture to classify room activity states
[24]. Their advancements contributed to understand human
behaviour and spatial utilization patterns. Furthermore, their
system improves scalability issues by providing adaptability
to accommodate various rooms with minimal hardware and
software requirements.

As a building infrastructure evolves, integrating new
devices and sensors while ensuring seamless communication
and interoperability becomes challenging. A smart building’s
network must maintain reliable connectivity, low latency,
and high bandwidth effectively as it grows in size or
complexity. Due to the potential for security vulnerabilities
introduced by each new device, the sheer number of devices
in smart buildings directly impacts their security. Smart
building networks must be able to protect the ecosystem
without compromising their efficiency or being prohibitively
expensive or complex to manage. Consequently, smart build-
ings require innovative network architectures for addressing
present challenges and anticipating future ones. Our proposed
subsystem achieves these objectives based on the advantages
of RINA. RINA achieves scalability through recursion [8],
security by policies without adding protocols or special
equipment in the network [10], efficient communication by
reducing the protocol overhead [14], and QoS by providing
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TABLE 1. Similar subsystems comparative.

FIGURE 2. Example of a RINA network architecture.

customized QoS Cubes [25]. Table1 compares state-of-art
systems and our proposal.

B. RINA-BASED NETWORKS
RINA networks rely on the idea that a computer network
is embodied by a distributed application that provides
distributed Inter-Process Communication (IPC) services to
other distributed applications [13]. However, this networking
concept is not new; it dates back to the CYCLADES project
in 1970 and has its roots in RFC 61-62 [26], [27]. The
aggregation of two or more communicating Inter Process
Communication Processs (IPCPs) forms the basis of a DIF
layer. This DIF layer can be repeated as many times as
required by the network designer. For example, to iso-
late applications from underlying communication service
specifics (e.g., protocol), abstract dissimilar transports into
a unified one to present to applications, to group and protect
nodes within the same security domain, or to tune policies
(e.g., QoS, address length) to the needs of a group of nodes.
This re-utilization of the DIF layer is the most essential
aspect of RINA networks [13]. The DIF layer provides IPC
services to upper DIFs or applications through a well-defined
and standard Application Programming Interface (API).
Compared with traditional network architectures, RINA
avoids implementing redundant mechanisms and extracts
as much commonality as possible (patterns) [28]. RINA
facilitates network customization through policies thanks to
its separation of transfer mechanisms from policies [28].
Figure 2 illustrates an example of a RINA architecture

composed of a normal and shim DIFs. The shim DIF,
abstracted and implemented at each node using a shim IPCP,

can utilize any legacy or wire protocol available to connect
to other shim IPCPs and provide the standard RINA DIF
API to any DIF or application above it. This adaptability
allows RINA to seamlessly operate over any legacy network
or communication medium, freeing applications to use the
RINA API for communication without needing to be aware
of the specific legacy communication networks being used
in traditional networks to RINA. Currently, several shim
DIF adapters have been developed to overlay RINA on top
of traditional network protocols (e.g., Wi-Fi [15], Virtual
Local Area Network (VLAN) [29], and TCP/User Datagram
Protocol (UDP)), further demonstrating its compatibility with
legacy systems [30]. Meanwhile, the normal DIFs provide
network connectivity through the well-defined RINA API
[28]. The RINA API allows instances of applications or
IPCPs implementing higher DIFs to request flows to other
application instances or IPCPs. A normal DIF uses the
services of underlying DIFs (shims or normal) to transfer data
across the network.

Each DIF provides a set of two protocol frameworks:
(i) data transfer through the Error Flow Control Protocol
(EFCP) and (ii) layer management through the Common
Distributed Application Protocol (CDAP). The components
of the IPCP are grouped into three categories: (i) data
transfer, (ii) data transfer control, and (iii) layer management,
as shown in Figure 3.

The data transfer functionalities (sequencing, loss, and
duplication detection) and data transfer control functionali-
ties (transmission control, retransmission control, and flow
control) oversee the EFCP single data transport protocol
framework. To correctly manage these functionalities, the
EFCP has been divided into two parts: (i) the Data Transfer
Protocol (DTP) and (ii) the Data Transfer Control Protocol
(DTCP). The DTP implements tightly coupled mechanisms
to data transfer protocol data units (PDUs), and the DTCP
implements loosely coupled mechanisms [28]. The DTP is
decoupled from the DTCP through a vector state component,
which decouples the high-performance DTP actions from
the less-urgent DTCP actions; this decoupling enables
optimizing the hardware/software implementation split if
desired. DTP and DTCP functionalities are based on the
Delta-t protocol proposed byWatson [31]. Upon transmission
of an Service Data Unit (SDU), EFCP creates one or
more data transfer PDUs and hands them to the Relaying
and Multiplexing Task (RMT). The RMT is responsible
for forwarding decisions to transfer data using any or all
available N-1 DIF [28]. EFCP is complemented with SDU
delimiting, which provides SDU fragmentation, reassembly,
concatenation, separation, and SDU protection for SDU
integrity and error detection [28].

The layer management tracks and models the IPCP’s state
and provides functions and services to execute management
procedures. The IPCPs share states and layer management
information with peers over the network by communicating
with one another using the CDAP application protocol over a
RINAflow [28]. The Resource Information Base (RIB) stores
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FIGURE 3. Components of the IPC API.

the IPCP state as objects. The RIB objects model includes
object naming, relationships between objects (inheritance,
containment, among others), object attributes, and the CDAP
operations that can be applied to them [28]. The RIB
Daemon manages access to the RIB and exchanges CDAP
PDUs with the RIB Daemons of neighboring IPCPs. The
only operations that can be performed on objects are cre-
ate/delete, read/write, and start/stop. The IPCP implements
the Common Application Connection Establishment Phase
(CACEP), which exchanges naming information with peers.
CDAP implements layer management functionalities such as
the Enrollment Task, Flow Allocator, Resource Allocation,
and Forwarding Tables Generator. The Enrollment Task
is the procedure to join an IPCP to an existing DIF or
another unenrolled IPCP. This enrollment process ensures
the IPCP receives enough information to become a fully
operational DIF member [28]. The Flow Allocator is
responsible for creating andmanaging the flow life cycle. The
Resource Allocation oversees the management of network
resources (buffer space and scheduling capacity) inside
the IPCP to allocate resources to flows. The Forwarding
Table Generator maps the next-hop address and the IPCP port
identification (portId) to facilitate the routing process. The
policy implemented by the routing algorithm, which can be
customized in any DIF, computes these tables. The described
services and components briefly defined here are relevant to
understanding the content of this work. Detailed descriptions
and specifications are provided in the RINA report [28].
RINA has been widely studied, analyzed, and evaluated

in several research projects. The research efforts focused on
demonstrating howRINA solves the current networking chal-
lenges. Mainly, RINA has shown considerable advantages
in terms of security, mobility, multi-homing, and scalability.
RINA provides scalability through its recursion. From this
perspective, network designers can scale their network both
horizontally and vertically by creating larger DIFs or stacking
DIFs on top of each other [28]. Extensive scalability tests on
topological forwarding and routing policies were conducted

by Gaixas et al., and that work achieved a reduction in routing
communication and computational cost [8]. RINA’s security
approach has been analyzed and tested in the PRISTINE
project, demonstrating the benefits of protecting a complete
layer instead of individual protocols [32]. RINA minimizes
security costs and provides flexibility and reusability of
security policies [10]. Similarly, an extensive assessment of
threats and security risks was conducted to identify risks
in RINA components [10]. This security evaluation demon-
strated that RINA provides an inherently secure environment.
Additionally, RINA’s mobility and multi-homing properties
have been analyzed in the ARCFIRE project [33]. Mobility
management in RINA is an inherent advantage derived from
the complete naming scheme without specific protocols or
mechanisms to support mobility. In other words, RINA does
not require setting up tunnels or rewriting packet headers
to support mobility; instead, it combines routing updates,
changing the address of IPCP, and a proper design of DIF
layers [34]. Multi-homing can be considered a particular case
of mobility, as nodes can unsubscribe from one network and
subscribe to another [35]. Finally, RINA reduces network
complexity by providing only two protocols for data transfer
and management [12] while offering flexibility to adapt
the DIF layer to specific requirements through policies.
This flexibility empowers network designers to tailor the
DIF layer to their specific requirements, thereby simplifying
network design and management [12]. Thus, RINA networks
can adapt to growing network requirements and facilitate
network management through policy-based dynamic service
management [36].
Another remarkable project was IRATI, which aimed to

implement the RINA architecture [15] for GNU/Linux-based
systems. This project resulted in an open source software to
implement RINA networks for experimental environments,
available on the GitHub repository.1 Rlite is a lightweight
open-source implementation of RINA components focused

1https://github.com/IRATI/stack
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on robustness and performance [37]. Moreover, ProtoRINA
proposed in [38] aims to facilitate the prototyping of RINA
networks in academic environments. Along with ProtoRINA,
RINAsimwas implemented as a framework to simulate RINA
networks for educational and research purposes.

From the perspective of RINA in the IoT area, some
academic research has mapped the potential advantages of
implementing RINA in IoT environments. For example,
Ramezanifarkhani and Teymoori analyzed the security chal-
lenges of IoT and howRINA can address them [39]. Recently,
and Teymoori and Ramezanifarkhani studied the efficiency
and security of IoT using RINA [40], and Neelam and Shim-
ray demonstrated its applicability [41]. Additionally, a RINA-
based architecture for IoT was designed and studied in [42].
The authors of this RINA-based architecture discussed how
commonality in IoT can be achieved by introducing a
RINA DIF. Recently, the first RINA implementation for
embedded devices was presented in RINAsense [14]. This
RINAsense implementation showed several advantages in the
network regarding latency and goodput. Additionally, this
work studied the overhead of IoT protocols and how RINA
reduces this overhead. The application of RINA’s QoS in IoT
environments has recently received significant attention [43].
In that work, four RINAQoS Cubes were designed and tested
to support tactile Internet, virtual reality (VR), augmented
reality (AR), and IoT applications [43]. Thus, the RINAsense
implementation opens the opportunity to enable testbeds and
IoT devices to test RINA in IoT environments.

III. PROPOSED SUBSYSTEM ARCHITECTURE
The main objective of this work is to propose a RINA-
based environmental subsystem capable of supporting multi-
platform, energy- and resource-efficient RINA sensors,
providing secure and protocol-efficient communications
between all subsystem devices, and offering flexible and
programmable layers to accommodate future smart building
requirements. The adaptability of this subsystem is a key
feature, ensuring it can monitor specific parameters such
as temperature, humidity, and air quality and can interop-
erate smoothly with the current smart building subsystems.
At this stage of our research methodology, we designed the
architecture of the RINA-based environmental subsystem
to achieve the mentioned objective. The design process
defined the components, interfaces, modules, RINA protocol,
and policies needed to facilitate communication and data
exchange within the subsystem. The RINA principles of
recursion, single programmable and isolated layer (DIF), and
simple network design were mainly leveraged to achieve
flexibility, scalability, and security.

The smart building subsystem comprises several RINA-
based sensors, RINA-based IoT gateways, and an edge
node. Figure 4 shows a high-level architecture of the smart
building subsystem following the edge-fog-cloud continuum
IoT architecture. The RINA sensors are based on the
RINAsense architecture and its implementation described

FIGURE 4. Proposed high-level architecture for environmental monitoring
subsystem.

in [14]. The first version of the RINAsense architecture was
developed as a proof of concept to rapidly prototype RINA-
based sensors and test their performance in a controlled
environment. However, this version needed to be more
stable to operate in a production environment, thus requiring
some improvements, detailed in subsection III-A. These
improvements include resource allocator, battery manager
and portability. The RINA sensors are connected to the
RINA IoT Gateway using Wi-Fi and are distributed on each
floor. The RINA-based IoT Gateways are built upon the
IRATI open-source implementation. These RINA-based IoT
gateways are connected to the edge node using an Ethernet
switch. In this case, the subsystem uses a shim VLAN
Ethernet DIF to facilitate the communication. The shim DIFs
are connected using normal DIFs to enable scalable and
secure communication between RINA nodes. More details
about the design are explained in subsection III-B. The
design of RINA policies to support the routing and security
requirements is also detailed in subsection III-B. Finally, the
subsystem’s RINA network requirements guided the design
of the RINA protocol to enable seamless communication
between the RINA-based sensors, the RINA-based IoT
gateways, and the edge node. The RINA protocol design is
detailed in subsection III-C.

A. RINA SENSOR ARCHITECTURE
The RINAsense architecture aims to enable RINA net-
works to operate in embedded systems. The first instance
of RINAsense architecture focused on implementing the
essential IPCP components and testing them as a proof of
concept. This first version was composed of the following
components: EFCP, RMT, RIB, RIB Daemon, Enrollment,
Flow Allocator, RINA task, shim Wi-Fi, RINA API, Identifi-
cation (IDs)Manager, and the RINA timers. However, several
tests in a controlled environment evidenced the necessity
of a resource allocation scheme and battery management
policy. These requirements were addressed in the RINAsense
implementation version proposed in this work. Also, the
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FIGURE 5. RINAsense stack implementation.

new version of RINAsense supports the Arduino framework
thanks to its Portability layer. Figure 5 shows the components
developed to overcome the limitations of the first version in
dark grey. These new components are the Resource Allocator,
the Battery Manager, and the Portability layer. Each compo-
nent is described in the following subsubsections.

In addition to the aforementioned enhancements, we have
improved the initial version by isolating the normal DIF and
the shim DIF. This isolation was achieved by separating the
RINA task into two tasks dedicated to each DIF. Furthermore,
we have introduced the RINA task manager, which oversees
both the RINA task and RINA shim task. Data buffers
were also incorporated to facilitate communication between
the RINA tasks. Figure 5 also includes these components.
By implementing these changes, the updated version adheres
to the crucial concept of DIF isolation in RINA.

1) RESOURCE ALLOCATOR
Memory allocation is a critical aspect in the operation of
embedded devices, which often operate with limited memory.
The careful allocation of memory ensures that applications
have the necessary resources for specific uses when needed.
This is particularly crucial for temporary buffers, connection
state, application state, or various temporal data structures.
Some usage is fixed and predictable, providing a comforting
known factor in your work; some, such as memory for
connection state and buffers, can be dynamic, with the
instantaneous need based on the use case or activity level.

Typical heap memory allocation, such as malloc/free,
allocates anonymous memory blocks. Identifying where all

the memory is used when memory runs short, or performance
problems appear is often complex. Managing dynamic mem-
ory usage by its purpose can be an invaluable aid to debugging
(e.g., finding a memory leak), preventing over-commitment
of memory to less-important usages, and tuning. RINAsense
provides an allocator that allows dynamic allocation of
objects of a specific type and keeping track of them. We call
each such object an ‘‘rsrc’’, short for ‘‘resource’’, and the
allocator the ‘‘rsrc allocator’’. The allocator manages this
with collections, or ‘‘pools’’, of objects of the same type,
as described below.

Using a straightforward API, each ‘‘pool’’ can be created
as a statically allocated array of same-size objects or a pool
of dynamically allocated same-size or different-size objects
(different-sized objects are allocated from and returned to the
heap). A pool can be fixed in size or defined to be extensible
in increments up to a limit as needed. For example, if based
on testing, a developer determines that a pool should be
static instead of dynamic or vice versa, a one-line change
to the definition makes that change without affecting any
uses elsewhere in the system of that pool. Every pool knows
about every object of that type that it is managing, making it
possible to collect statistics per object type. If compiled in, the
object maintains each resource’s ‘‘user’’ –typically a calling
function or allocation purpose– as a debugging tool.

The rsrc pool mechanism provides a per-object-type print
function to simplify printing objects. The rsrc pool structures
themselves are rsrc’s. When the generic print functions are
called on a pool’s rsrc, the default short print routine prints
the statistics for the pool (allocated, free, total usages, high
and low counts). Especially during testing and tuning, being
able to sample the instantaneous resource usage of the entire
system by object type is very valuable. In addition, runaway
allocation can be immediately identified, and the ‘‘user’’ of
the resources can often point the developer directly to the
malfunctioning code.

2) BATTERY MANAGER
IoT devices sometimes require a power source to operate
and cannot always be connected to a power grid. In such
scenarios, these IoT devices rely on alkaline and lithium-
ion batteries. However, these batteries have limited capacity,
and their duration depends on the demands of the use case.
To address this, the battery manager was integrated into
the RINAsense implementation. Achieving a modest power
consumption is challenging as it relies on the behavior
of IoT hardware and RINA components. To tackle this,
we conducted a thorough analysis of the communication
components, ensuring a robust and effective communication
strategy.

Communication components such as Wi-Fi drivers or
BLE drivers consume the most energy. The battery manager
module aims to optimize the use of these communication
components. In a sensor node, the battery manager powers
off the drivers when they are not required and powers them
on only when the sensor needs to send data. The battery
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manager was configured to take advantage of the long periods
between packets in some IoT applications. DIF isolation,
achieved by adding a new task for the shim DIF, facilitates
the activation and deactivation of communication drivers.
This ensures that the battery optimization phase, which may
involve imminent destruction of the shim Wi-Fi flows, does
not affect the normal DIF. The RINA shim task calls the
battery manager API when the normal IPCP adds a new PDU
to the buffer. Consequently, the battery manager activates the
communication driver and empties the buffer by sending the
PDUs. When the buffer is empty and the waiting time is over,
the battery manager powers down the drivers.

3) PORTABILITY
IoT devices can be implemented using various hardware
and software platforms. The choice of a specific hardware
platform for a product can be constrained by cost, physical
size, interfaces, power consumption, size and type(s) of
memory available, supply chain issues, etc., leading to a
bewildering variety of potential hardware/software combina-
tions. These include different Central Processing Unit (CPU)
architectures, vendor-supported software tools, supported
standards, executive/Operative System (OS) choices, etc.
In this environment, software portability techniques can help
tominimize the disruption ofmoving to a different underlying
platform or supporting multiple platforms with a common
code base.

RINAsense was initially designed to work on an ESP32
board IoT platform using the Free Real-Time Operative
System (FreeRTOS). It was subsequently ported to run on
Linux on larger computers to facilitate application validation
during application development stages. This Linux support
was accomplished using a ‘‘portability’’ layer of functions
that take advantage of Portable Operating System Interface
(POSIX) APIs to emulate hardware control primitives on a
target that supports POSIX, an interface to Linux networking
to enable access to Wi-Fi, and additional support functions to
eliminate some dependencies on the FreeRTOS environment
such as queues and ‘‘console’’ printing. The previous cmake-
based build code was enhanced to allow target selection for a
build, with the target selecting the correct set of libraries and
commands.

The Linux port serves several purposes. First, it enables
RINAsense development to take place in a large-machine
environment with powerful tools such as debuggers, Valgrind,
testing frameworks, and CPU profiling available to aid
development. Second, it also opens up a potential new
target for RINAsense: RINA-enabled applications capable of
supporting a network of RINA IoT devices on any OS that
supports POSIX APIs but does not necessarily require OS-
level RINA support. The hardware-platform independence
layer can be extended to other Real-Time Operative System
(RTOS) or hardware targets.

In addition to RTOS and CPU dependencies, IoT applica-
tion developers need to manage the underlying hardware’s
peripheral and connectivity interfaces, as well as the devices

FIGURE 6. RINA standard graph of the proposed subsystem

connected to them, such as sensors and communication links.
The widely-used Arduino environment provides APIs that
supports various CPU and hardware targets, along with many
standard hardware interfaces. Additionally, Arduino serves as
a demonstration and reference target for numerous sensors
and other devices commonly used in the IoT environment,
making sample code readily available. To leverage this
widely-used environment, RINAsense and its build process
were enhanced to build RINAsense as a library and
enable building Arduino ‘‘sketches’’ within the Arduino
environment. Currently, this extension provides access to
the existing Arduino environment for multiple ESP-32-based
targets, but it could be extended to any other underlying
hardware platform that supports Arduino and FreeRTOS.
This improvement allows an Arduino IoT ‘‘sketch’’ to
incorporate the RINA protocol using RINAsense, providing
access to an extensive suite of example codes for many
devices, such as sensors that are well-supported in the
Arduino space. This capability is in its early stages of
development —it does not yet fully support all of the RINA
API or the Arduino Integrated Development Environment
(IDE) (sketches are built using the cmake environment that
underlies it).

B. RINA DIF DESIGN
The proposed RINA network subsystem comprises two shim
DIFs and one normal DIF, as shown in Figure 6. The
employed shim DIFs are the shim Wi-Fi DIF for underlying
the Wi-Fi interface and the shim Ethernet VLAN 10 for the
Ethernet interface. These DIFs use a switch Ethernet with
support for VLANs to connect the IRATI-based IoT gateways
with the Edge Node (more details about shimWi-Fi and shim
Ethernet VLANs can be found in [15] and [29]). Over these
shim DIF layers is the Slice1 normal DIF. This Slice1 DIF
provides the communication for the devices in the RINA
network (sensors, gateways, and the edge node). The Slice1
DIF’s QoS, security, and routing policies were designed to
enable a scalable and secure network. These policies are
described below.

1) QoS DESIGN
RINA defines a set of supported QoS models through the
QoS Cubes. A QoS cube is an N-dimensional performance
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space with N-independent parameters (such as latency, loss,
and others) [28]. A DIF can support one or more QoS
cubes, allocating its resources (communication, buffering,
etc.) to provide a range of QoS capability to flows; each
flow is assigned to a QoS cube. Each QoS Cube has a
set of associated policies designed to comply with the
range supported by the cube. Such policies mainly deal
with flow control, forwarding, scheduling, and congestion
management [28]. The latency and loss parameters are crucial
in the design of the QoS Cubes.

In the current design, the subsystem’s sensors are not time-
sensitive and are tolerant of packet loss. These sensors send
packets with low data sizes at frequent intervals, and data
(such as temperature or humidity) do not change significantly
in short intervals. As a result, for example, if a packet
containing temperature data is lost, it would not significantly
affect the subsystem. In this view, unreliable QoS services
were selected to offer a service that is not guaranteed.

Since retransmission is not required, this QoS cube
does not use the DTCP component, which oversees the
transmission and retransmission control. Since this simple
QoS cube does not require prioritization of traffic, the RMT
was configured using the First Input First Output (FIFO)
scheme as a relaying PDUs policy. Since all the Normal
DIF traffic has these simple requirements, one QoS Cube
was configured with unreliable QoS service and without
retransmission control.

2) SECURITY DESIGN
The security manager policy defines the security configura-
tion for authentication and SDU protection profiles, known
as ‘‘authSDUProtProfiles’’. The authentication profiles aim
to establish secure parameters for communication with all
neighbor IPCPs or with the N-1 DIF. RINA provides the
‘‘PSOC-authentication-password’’ policy to enable device
authentication using a password. This authentication profile
hashes a random string with a shared secret (password).
This policy ensures that only the RINA nodes with the
correct password can enroll in the Slice1 DIF. Two ‘‘PSOC-
authentication-password’’ profiles were employed to provide
security in the DIF. The first was used for secure com-
munication between IPCPs in the same DIF, and the other
for secure communication with the N-1 DIF. Each profile
was configured with a different shared secret (password).
Additionally, this policy includes an error check (Protection)
policy based on Cyclic Redundancy Check (CRC) with
32 bits of polynomial length, known as CRC32. This policy
ensures the integrity of the PDU.

3) ROUTING DESIGN
The Routing policy defines how the next hop is generated
and maintained. A static routing policy was configured in
this case because the current version of RINAsense only
supports static routing. The subsystem requires unidirectional
flows to enable communication between sensors and the
edge node since the objective of the subsystem is to monitor

the climate and air quality inside the building in this
initial implementation phase. In a second phase, other kind
of sensors (motion sensors, smoke sensors, water leakage
sensors, light sensors, and contact sensors) will be added to
the subsystem to monitor other smart building parameters.
In this context, the RINA-based IoT gateway oversees
the route of the packet received through the shim Wi-Fi
to the edge node via the shim Ethernet VLAN. Consequently,
the RINA-based IoT gateway must know all the IPCP’s
addresses (sensors and node edge) to route PDUs to the
correct address.

C. RINA PROTOCOL DESIGN
The RINA protocol design involves the protocol logic for
exchanging state information between IPCPs. Each IPCP
inserts Protocol Control Information (PCI) into each PDU
on one side (sender) and strips it on the other (receiver)
[28]. The following subsubsections detail all these policies
and the PDU format. The PDU consists of two parts: (i) the
PCI, which is understood and interpreted by the DIF, and
(ii) the User-Data, which is incomprehensible to this Protocol
Machine (PM) and is passed to its user.

The RINA PCI format is defined by policy, and may be
different for different DIFS. The format defines a fixed set
of fields, but each field can be of any length appropriate
for the DIF requirements —perhaps even zero in some
cases. A DIF-wide agreement on the PDU format and other
constants is necessary for IPCPs to understand each other,
and all IPCPs learn these constants upon enrollment. The
DIF-wide protocol constants are the QoS identifier length,
the port identifier length, the connection endpoint (CEP)
identifier length, the sequence number length, the address
length, the PCI length (lengthLength), the data rate length,
the DIF Integrity, and the Maximum Packet Lifetime (MPL).
All length-based constants are expected to be defined in bits.
The DIF integrity defines if the PDU is encrypted, and the
MPL is an integer number to define the maximum PDU
lifetime. Meanwhile, the PCI structure, shown graphically
in Figure 16, illustrates how these constants determine the
format of the PCI.

In RINA, the data transfer constants can be set on a
per-DIF basis, allowing the network designer to tune the
PCI format for variables like DIF size (number of IPCPs
participating), number of outstanding flows per IPCP pair,
etc. This allows the designer to minimize PCI length and
simplify its processing, to adopt large values for a large
network, or to adopt a wider public standard set of values if
such per-DIF tuning is unnecessary. For this project, the data
transfer constants chosen were:

• AddressLength: refers to the IPCPaddress. The value
assigned is 1 byte because the RINA network will not
be extensive. There are no more than 256 devices in the
RINA network.

• CepIdLength: is a data transfer instance identifier
unique within the application entity. The value assigned
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FIGURE 7. PDU structure and protocol header PCI.

is 1 byte because only a few flows between pairs of
IPCPs will be needed.

• PortIdLength: Port identifier to bind the application
process and the IPC flow. The PortID is internal to an
IPCP. The value assigned is 1 byte as each IPCP will
only support a few flows at once.

• QoSIdLength: identifies a QoS cube unique within
the DIF. The value assigned is 1 byte because this
implementation is anticipated to eventually need four
QoS cubes.

• RateLength: refers to the maximum number of PDUs
sent in a time unit. By default, 4 bytes are required to
identify the maximum rate.

• SequenceNumberLength: PDU sequences number on
a flow. By default, 4 bytes.

• LenghtLength: total PCI length. In this case, 4 bytes
encode the total PCI length.

The PDU format indicates the standard PCI fields or
PDU’s headers. It is relevant to mention that the User-Data is
formatted according to PDU-Type (data PDU or management
PDU). Figure 16 shows the PDU structure and its standard
PCI fields.

• Version: An identifier indicating the version of the
protocol.

• Destination-Address: A synonym for the remote
Application-Process-Name.

• Source-Address: A synonym for the local Application-
Process-Name.

• Connection Id: A three-part identifier unambiguously
used to identify the connection between IPCPs.

– QoS-Id: The QoS Cube assigned for this connec-
tion.

– Destination-CEP-id: Identifier unique within the
system in which the destination IPCP resides.

– Source-CEP-id: identifier unique within the system
in which the source IPCP resides.

• PDU-Type: Identifies the type of PDU, Data Transfer
PDU, DTCP PDU, or management PDU.

• Flags: indicates conditions that affect the specific
properties of a PDU.

• PDU-Length: indicates the total length of the PDU in
bytes.

• Sequence-Number: indicates the sequence number of
the PDU.

IV. IMPLEMENTATION
During this stage, we developed a prototype implementation
of the proposed RINA-based environmental subsystem.
This involved selecting appropriate hardware and software
components, configuring network elements, and implement-
ing communication protocols based on RINA principles.
Additionally, we deployed the developed prototype in a
relevant and controlled environment (an operational smart
building). The main challenge at this stage was to integrate
the RINA-based environmental subsystem with the existing
infrastructure of the smart building. The proposed subsystem
needed to ensure compatibility and interoperability with
other building systems, such as HVAC and management and
control systems.
The proposed subsystem was implemented in CERTH’s

smart house, situated in Thessaloniki, Greece. CERTH’s
smart house provides an Information and Communication
Technologies (ICT) infrastructure for rapid prototyping
and demonstration of novel technologies [44]. CERTH’s
smart house features embedded energy, lighting, HVAC,
flooring, and motion monitoring systems. The proposed
environmental monitoring subsystem was integrated with
the CERTH’s systems as part of the TERMINET project
pilot. The following subsections describe the software and
hardware employed to implement the proposed subsystem,
the deployment of the proposed subsystem in CERTH’s smart
house, and the integration with the existing infrastructure.

A. SOFTWARE AND HARDWARE
The RINA sensors were implemented using the RINAsense
architecture, incorporating the features described in
subsection III-A. The RINAsense implementation is available
on GitHub2 as open-source. Two kinds of sensors were
implemented with RINAsense. The first was a temperature

2https://github.com/Fundacio-i2CAT/rinasense
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FIGURE 8. Temperature and humidity RINA-based sensor.

and humidity sensor using the Espressif IoT Development
Framework (ESP-IDF). The second type was a Carbon
Monoxide (CO) using the Arduino framework. These sensors
were designed to utilize two frameworks to evaluate the
portability layer described in subsection III-A and introduced
in this new RINAsense version.

The hardware components to implement the RINA sensors
consisted of:

• ESP32-WROOM-32 development board kit: The
ESP32 is a low-cost SoC system that integrates Wi-Fi
and dual-mode Bluetooth. The ESP32-WROOM-32
features a Tensilica Xtensa dual-core 32-bits LX6
microprocessor, 320 KiloBytes (KB) Random Access
Memory (RAM), and 4MegaBytes (MB) flash memory.
This IoT platform was selected due to its popularity
among micro-controller units (MCUs). Additionally,
ESP32 supports IEEE 802.15.4 in its C6 version, pro-
viding potential for the future development of additional
RINA features to support IEEE 802.15.4.

• DHT22 sensor: a low-cost sensor to measure relative
humidity and temperature.

• MQ-7 gas sensor: low-cost high sensitive detector of
CO.

Figure 8a shows the RINA-based temperature and humid-
ity sensor in a black box (external view), and Figure 8b shows
the sensor components inside the black box (internal view).

The RINA-based IoT gateways were implemented using
the IRATI open-source software [15] and using as hardware

FIGURE 9. RINA-based IoT gateway.

a Raspberry Pi 4 with Debian Buster OS, Quad-core Cortex-
A72 (ARM v8) 64-bit SoC @1.8GHz and 4GB SDRAM.
IRATI was developed to integrate with any GNU/Linux-
based OS, and this software can be deployed on a Raspberry
Pi. A few minor changes to IRATI were made to support
new kernel and Debian OS versions, and it is available in the
IRATIGithub repository. Figure 9 shows the deployed RINA-
based IoT gateway.

The Edge Node is deployed as a Virtual Machine (VM),
using VirtualBox as the supervisor/virtualization software.
It is Ubuntu-based and supports docker and docker-compose.
Its specs are the following: 1GB RAM, 150GB Disk Space,
and 1-core CPU. The specs are relatively minimal but deemed
sufficient to demonstrate the use case. Two VMs were
deployed: the edge node core and the IRATI-based. The edge
node core VM had the EdgeX platform in charge of managing
the sensor data. The separate IRATI-based VM implements
the RINA edge node.

B. DEPLOYMENT
Many different subsystems are utilized in the CERTH’s smart
house, such as heating/cooling and lighting, as well as an
automation and control system. The HVAC system installed
in CERTH’s smart house is a Variable Refrigerant Flow
(VRF) air conditioning system used for both heating and
cooling of the occupied spaces. Two identical heat pump units
are installed in the building, with the first being responsible
for heating the ground floor, while the second is for the floor
above it.

Three temperature sensors and one air quality sensor were
deployed on the CERTH’s smart house. The sensors were
distributed in the CERTH smart house’s rooms. Figure 10
shows the sensors placed in the master room 10a, the nursery
room 10b, and the living room 10c. The air quality sensor
was installed in the living room. Finally, the RINA-based IoT
gateway was installed in the most centralized room (nursery
room) to cover the whole CERTH’s smart house.

The IRATI module is essential for managing the RINA
IPCPs in the edge node, installed and running in its separate
VM. Once all necessary components are operational, the
sensor should be capable of transmitting data to the EdgeX
component, which should then be visible on the CERTH
smart house’s dashboard. A RINA application was developed
to establish a connection between the RINA sensors and
the MQTT-based EdgeX Broker. This RINA application
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FIGURE 10. Deployment of sensors in the CERTH’s smart house.

translates the CDAP protocol used by the sensors into
the MQTT protocol employed by the EdgeX Broker. This
translation is imperative because the EdgeX platform cannot
utilize the RINA API. The Python-based RINA application
utilizes the rinacat application, which is a client/server
application designed to bidirectionally copy data between
a RINA flow and its own standard input/output files or a
forked command.3 The Python application receives data from
sensors, translates them, and publishes them into the EdgeX
MQTT broker using the paho-mqtt library.

V. PERFORMANCE EVALUATION
At this stage of the research methodology, we conducted
thorough testing and evaluation of the implemented environ-
mental subsystem. As part of the performance evaluation,
we assessed the proposed RINA subsystem in terms of com-
munication and energy efficiency, scalability, and security.
Ourmethodology involved comparing our subsystem to exist-
ing solutions, focusing on parameters such as goodput, delay,
and packet losses while contrasting the proposed RINA-
based architecture with similar communication protocols
and services. Additionally, we evaluated the subsystem’s
effectiveness in monitoring and controlling environmental
conditions within the smart building and validated its
deployment to identify any issues or areas for improvement.
The results are presented and analyzed in the following
subsections. The result analysis helps identify the specific
elements of the solution that are performing optimally and
the modules that may require redesigning or alteration,
contributing to our continuous improvement process.

A. RINA SENSOR PERFORMANCE
The RINA sensor performance was evaluated regarding
delay, packet losses, and power consumption. The main
goal was to evaluate the delay and packet losses in flows
allocated between the RINA sensor and the edge Node —
RINA network end-to-end delay—and to evaluate the power
consumption of the RINA sensor.

3https://github.com/IRATI/

1) DELAY AND PACKET LOSSES
The delay and packet losses were measured using the rinaperf
application in RINA networks. Rinaperf is a multi-threaded
client/server application that measures network throughput
and latency performance [37]. In this scenario, the edge node
hosted the rinaperf server application, while the RINA sensor
ran a rinaperf client application variation specifically adapted
for embedded RTOS. The rinaperf client requested two flows,
one for sending control information and the other for sending
user data. The rinaperf client required parameters such as the
number of SDUs to send, the SDU size in bytes, and the test
time interval during which the delay was measured.

Once the flow was allocated, the application sent an SDU
to the rinaperf server, activated a timer, and waited for a
response for 2 seconds. On the other side, the rinaperf server
returned the SDU as soon as possible. Upon reading the SDU
using the RINA_read() API, the rinaperf client halted the
timer, calculated the round-trip delay, and stored it. This
process was repeated for the configured number of SDUs in
the application.

At the end of the test, the rinaperf server transmitted a
message containing the test results, including the number
of packets received and the average number of packets per
second. These results were employed to calculate the packet
loss rate.

During the test, the rinaperf client was configured to send
1000 SDUs with an SDU size of 64 bytes, which is the
maximum SDU size for RINA sensors in this use case).
Figure 11 illustrates the Cumulative Distribution Function
(CDF) of round-trip delay experienced by flows allocated
between RINA sensors and the Edge Node. The flows
experienced an average round-trip delay of 2.0550 ± with
a standard deviation of 0.1674 milliseconds. This delay is
deemed acceptable for Wi-Fi connections. Comparing it with
the delay observed in MQTT, which is a protocol commonly
used in similar proposed systems, we observed that the
delay in RINA is lower than the 4.38 milliseconds analyzed
in [45] and the time to completion (min= 10.47milliseconds,
max = 118.33 milliseconds) analyzed in [46]. As Table 2
summarizes, the proposed subsystem provided lower delay
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FIGURE 11. Round-trip delay perceived by flows allocated between RINA
sensor and edge node.

TABLE 2. Delay and packet losses comparative.

than similar works based on MQTT and CoAP protocols.
Additionally, since the application in this use case is not
time-sensitive, the round-trip delay experienced by flows is
suitable for transporting sensor data. Moreover, the packet
loss rate was calculated during the test using the rinaperf
server results (average number of packets received per
second), which was found to be under 0.01%. As Table 2
summarizes, the proposed subsystem achieved a lower packet
loss percentage than similar works based on MQTT and
CoAP protocols.

2) ENERGY CONSUMPTION
On the other hand, the energy consumption was measured
to evaluate the sensor’s performance when utilizing the
battery manager module. The measurements were conducted
using the Otti-ARC power analyzer by Qoitech.4 This
analyzer allows users to obtain a power profile by measuring
current and voltage in real-time. Additionally, the Otti-
ARC facilitates the quickly identification of energy drains,
enabling optimization of battery life.

Figure 12 shows the sensor’s current profile in mil-
liamperes (mA) when the sensor was implemented using
RINAsense without the energy manager activated, serving as
our baseline. Figure 13 displays the sensor’s current profile in
mA when the sensor was implemented using RINAsense and
the battery manager is activated. For comparison, Figure 14
illustrates the sensor’s current profile in mA when it was
implemented using the MQTT protocol and the TCP/IP stack
protocol. The observed peaks in Figure 12 and Figure 14 are
quite similar, indicating various activities such as the Wi-Fi
initial handshake to associate and establish the connection,
data transmission, and Wi-Fi beacons for maintaining the
connection. In Figure 13, a few peaks are associated with data

4https://www.qoitech.com/

FIGURE 12. Sensor current (mA) profile baseline.

FIGURE 13. Sensor current (mA) profile when the battery manager is
activated.

FIGURE 14. Sensor current (mA) profile when the sensors is implemented
using the MQTT protocol and the TCP/IP stack.

transmission and some Wi-Fi beacons. The energy manager
effectively reduced theWi-Fi driver’s energy consumption by
activating the driver only when data is available to be sent and
managing the Wi-Fi beacon interval, thereby reducing Wi-Fi
energy consumption.

The sensor current profiles were sampled using a ten-
second sliding window to estimate the energy consumption
in microwatts. We used the Ottii tools to estimate the
average energy consumption for each window. Fifty samples
were captured using this method. Figure 15 compares the
three sensor current profiles (with and without activating
the battery manager functionality, and when the sensors
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FIGURE 15. Electrical energy consumption comparative.

were implemented using the TCP/IP stack and the MQTT
protocol). For the two RINA cases, the analysis initially
observed an average peak of 523 microwatts per hour
(µWh) in both scenarios. This peak was produced by
the initial sensor processes such as the shim Wi-Fi DIF
enrollment (association with the RINA-based IoT gateway),
the normal DIF enrollment (finding peers in the same
DIF and interchanging CACEP messages), allocating the
data flow with the edge node application, and sending
the first SDU. After that, the energy consumption was
stable, though at different levels, because at this stage, only
the sensors were sending data, and this process did not
produce significant consumption peaks. Similarly, theMQTT
consumption presented an average peak of 843 (µWh),
which was produced by the initial messages interchange
using TCP/IP and MQTT. Figure 15 shows that the battery
manager module significantly reduced the electrical energy
consumption at this stage. The sensor required 327.282 ±

11.43 µWh on average when the battery manager was not
activated, but the power was reduced as the RINA sensor
device required an average of 57.52 ± 8.77 µWh when the
battery manager was activated. This represents a significant
reduction in energy consumption. As a result, the battery
manager transformed the RINAsense implementation into an
energy-efficient one. This energy efficiency will be helpful
for sensor devices that need to be powered by batteries.

3) PROTOCOL EFFICIENCY
The efficiency of a protocol is a crucial factor in IoT
performance, as it determines how effectively data is
transferred between nodes. Each transport protocol uses
headers to assist in data transfer, but if the header size
exceeds the data size, efficiency decreases, directly affecting
the goodput. To calculate the protocol efficiency ratio,
we compared the data size to the total message size (data
size + header size). In our analysis, we compared the
performance of two well-known IoT application protocols,
MQTT and CoAP, with the TCP/IP stack and the RINAEFCP
protocol. We considered header sizes of 40 Bytes for TCP/IP,
28 Bytes for UDP/IP, and 14 Bytes for RINA EFCP. Figure16
provides a visual comparison of the protocol efficiency
ratio. The EFCP protocol exhibited greater efficiency than
the TCP/IP stack due to its smaller header size. This

FIGURE 16. Protocol efficiency ratio in function of message size.

efficiency is particularly noticeable when transferring small
messages (less than 300 Bytes), while it is similar for larger
messages (more than 1000 Bytes). As IoT typically involves
transferring small messages, the EFCP protocol is more
efficient for IoT applications compared to the TCP/IP stack.
These findings have practical implications, highlighting the
relevance and applicability of our research in smart building’s
network efficient communications.

B. RINA QoS CUBE PERFORMANCE
The main goal of this evaluation is to validate the RINA
network capability to accommodate the growing IoT devices
of the slice1 DIF QoS Cube in terms of goodput (quantity
of useful information) and latency, based on the number of
RINA sensor application flows.

The first part of the analysis aimed to investigate the impact
of sensor quantity on the goodput of the RINA sensor applica-
tion within the unreliable QoS Cube(subsection III-B1) over
the slice1 DIF. The test consisted of deploying ten RINA
sensors in the subsystem, allocating unreliable flows —
similar to a UDP connection— and sending as many packets
of 32 bytes SDU size as possible within a 10-second interval.
Using the rinaperf application [37], it was possible to evaluate
the goodput of each flow allocated by each sensor. Figure 17
illustrates the variation in goodput experienced by each
RINA sensor application as the number of sensors increased.
As anticipated, the goodput diminished as the number of
sensors increased due to heightened congestion and resource
utilization in the Wi-Fi channel resulting from the increased
transmission of flows and packets. Additionally, each RINA
sensor experienced different goodput, but their difference
was insignificant until reaching eight sensors. Subsequently,
with nine and ten sensors, some flows experienced an
increment in goodput, but others experienced a significant
decrease. For this quantity of flows, the range increased
significantly. For example, the range with nine flows was
0.166 Mbps (max 0.435 Mbps and min 0.269 Mbps), and
with ten flows was 0.197 Mbps (max 0.484 Mbps and min
0.287 Mbps). This variation in range, when the number
of flows increased, was caused by the limitations of the
IRATI version implementation, which was later addressed
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FIGURE 17. Goodput depending on number of sensors.

through investigation and resolution with the rlite open-
source software [37]. In summary, the findings indicate a
tendency for goodput to decrease as the number of sensors
increases.

The second part of the analysis aimed to determine
the latency experienced by each sensor application as the
flows within the slice1 DIF increased. Similar to the prior
analysis, the test involved deploying ten RINA sensors in the
subsystem, allocating unreliable flows, transmitting packets
of 32 Bytes SDU size, and assessing the latency experienced
by each flow. The rinaperf application measured the latency
by employing its round-trip delay operation mode. Figure 18
illustrates the latency experienced by each RINA sensor flow
as the number of RINA sensor flows increases. This behavior
was expected as a larger number of packets queued in the
RMT buffer introduces delays. Additionally, the allocation
of more sensor flows introduced greater variance. In other
words, the RINA QoS Cube did not guarantee a delay
nor prioritize traffic flows, but it could be configured by
specifying the delay during the QoS Cube set-up. This
aspect will be analyzed in future research experiments. The
minimum delay recorded was three milliseconds with one
sensor flow, and themaximumwas 9.5milliseconds with nine
sensor flows. In summary, the latency increases as the number
of sensors increases.

According to the findings, the performance of RINA
sensors only experienced a slight decrease, which is accept-
able considering that the sensors used in smart buildings
for these purposes do not require low latency or high
goodput. Therefore, the RINA-based IoT gateway ensures
that the system can effectively handle an increasing number
of sensors and provide scalable communications. However,
for more demanding smart building applications such as
video security, it is recommended to add additional RINA-
based IoT gateways (horizontal scalability) to ensure that
the system can effectively manage larger amounts of data.
This horizontal scalability is achievable due to RINA’s
recursive nature and its flexible programmability layer (DIF).
A detailed assessment of RINA’s scalability for this IoT
scenario was studied in [43] and [47].

C. RINA SECURITY POLICY EVALUATION
RINA offers a key advantage in its provision of secure layers
rather than protocols. This feature allows only the IPCPs

FIGURE 18. Latency depending on number of sensors.

within the same DIF to examine packets. RINA ensures
that only authenticated IPCPs can join the DIF through
authentication during enrollment, minimizing the risk of
unauthorized access or impersonation attacks. The main goal
of this evaluation is to validate the resiliency of the DIF
subsystem to avoid authentication attacks.

To achieve this, a RINA sensor (intruder) attempted to
spoof the data by becoming part of the DIF. The intruder
IPCP tried to enroll in the DIF using the CACEP. During the
CACEP, the IPCP must authenticate to be accepted into the
DIF. In this case, the RINA-based IoT gateway received the
CDAP authentication message, as shown in Figure 19, with
the authentication policy (PSOC_authentication_password)
highlighted. The RINA-based IoT gateway validated the
username and password, and it denied the intruder’s authen-
tication request because the credentials did not match,
as highlighted. An IPCP must complete the CACEP in RINA
before exchanging data messages. Since the intruder IPCP
did not successfully authenticate the CACEP, it could not
access data. RINA provides a high degree of flexibility in
implementing and updating security measures, allowing the
CACEP authentication policy to be tailored to the needs of a
DIF. For example, public key and other robust methods can
be appropriate, depending on the threat environment. As a
result, eavesdropping or spoofing attacks are avoided in the
proposed subsystem. Using a policy to manage security in
the proposed subsystem provided effective resiliency against
device authentication threats.

The proposed configuration ensures secure communi-
cation within the smart building environment monitoring
subsystem without the need for additional protocols or
equipment. By requiring the only trusted entities can inspect
the packets on the DIF, the impact of an attack is limited to
a single DIF, thereby preserving the integrity of the smart
building network and reducing the attack surface. Further-
more, RINA’s recursive nature allows for the reuse of security
mechanisms at various scales, minimizing smart building
network management and enhancing scalability. With strict
authentication and access control, unauthorized entities are
prevented from accessing or manipulating sensitive data
within the network, a critical aspect in IoT networks where
substantial amounts of potentially sensitive data are regularly
transmitted.
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FIGURE 19. RINA-based IoT gateway log security policy validation.

FIGURE 20. RINA application receiving data from CDAP and publising in
MQTT broker.

FIGURE 21. mosquitto subscription to sensor topic.

D. SUBSYSTEM INTEGRATION
CERTH’s smart house systems are IP-based and cannot use
the RINA API. For this reason, the Python-based RINA
application played a crucial role in translating the CDAP
protocol into the MQTT protocol. The integration tests of
the subsystem aimed to validate the accuracy of protocol
translation. On the RINA side, it was confirmed that the
rinacat application, using RINA protocol flows, successfully
received data from RINA sensors. Meanwhile, the data
collected by the RINA sensors from the EdgeX broker was
ingested into the EdgeX MQTT broker.

Figure 20 depicts the Python-based RINA application
operating in the IRATI VM at the edge node. This application
received data from the RINA sensor1, translated them and
published them in the EdgeXMQTT broker. Figure 21 shows
the Mosquitto client subscription results in the EdgeX VM.
As shown, the EdgeX MQTT broker successfully received
data from the RINA sensors. Internally, the EdgeX platforms
connected the MQTT broker and the core data storage.
Subsequently, the CERTH smart house system retrieved and
processed these data for extensive analysis.

Finally, the system integration was validated by displaying
the data in a user interface. The dashboard was generated
using Grafana software. This dashboard shows a summary

FIGURE 22. Humidity at living room.

FIGURE 23. Humidity at living room.

FIGURE 24. air quality at living room.

of data RINA data sensors and facilitates quick decision-
making. Figures 22, 23, 24 provide an example of the
temperature, humidity, and CO levels in the living room
gathered by RINA sensors.

VI. CONCLUSION
This paper has presented an innovative environment monitor-
ing subsystem based on RINA. The environment monitoring
subsystem comprised several RINA sensors deployed in
the CERTH’s smart house, a RINA-based IoT gateway,
and the CERTH’s edge node. We have improved the first
RINAsense architecture version, initially designed in [14],
by changing its operational structure, adding a battery and
a resource manager, and implementing a portability layer.
As a result, the RINAsense prototype has demonstrated
significant improvement in energy consumption. The battery
manager hasmet the specific requirements of sensors, and has
maintained the RINA DIF isolation principle.

Additionally, the RINAsense architecture maturity has
reached Technology Readiness Level (TRL) 5 (technology
validated in relevant environment) from its initial TRL
3 (experimental proof of concept). Furthermore, we have
designed the RINA protocol to facilitate seamless and secure
communication between sensors and control systems. The
RINA protocol design details we selected can guide IoT
practitioners in replicating or adapting it in other IoT
application domains.
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The feasibility of our proposal was validated by integrating
the environment monitoring subsystem into an operative
smart building system. A protocol translation was required to
ingest the RINA sensor data into the EdgeX MQTT broker
since current applications (TCP/IP-based) cannot use the
RINA API. This integration will reduce the barrier to using
RINA and open new opportunities for experimentation and
adoption of RINA in IoT domains.

VII. FUTURE WORK
RINA is still evolving, and widespread adoption requires
further development, standardization, and real-world testing.
Ongoing research and testing suggest that RINA has the
potential to become a feasible alternative to the current
Internet architecture in the future. Since the RINA protocol
is customized, further research will be conducted to study
the effects of changing the sizes of RINA constants (e.g.,
SequenceNumberLength and RateLength) on the RINAsense
prototype. Additionally, the proposed subsystem will be
evaluated inmore complex building systems and environment
configurations. The present RINAsense prototype currently
accommodates IEEE 802.11 as its physical layer. Therefore,
it will be imperative to broaden its support to include
additional physical layers, such as IEEE 802.15.4, and
conduct further analysis of its implications. Furthermore,
recent advances in lightweight cryptography algorithms
will enable efficient mechanisms to ensure privacy in the
RINAsense prototype. Though not measured in this experi-
ment, using CDAPmessages as an application protocol in IoT
environments requires special attention because it promises
to be more efficient than current protocols. Further research
will be conducted to understand how IoT applications can
be modeled to fit the CDAP protocol. Thus, the RINAsense
architecture and prototype will achieve further TRLs with
the vision of leveraging them as a commercial product in the
future.
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