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ABSTRACT Online learning has accelerated with the development of the Internet and communication
technology. The widely accessible open online courses are delivered using digital environments that allow
students to participate at speed and location. Virtual learning environments (VLEs) have developed quickly
in recent years, giving students access to high-quality digital resources. Online learning environments
have numerous benefits but drawbacks, including poor engagement, high dropout rates, low engagement,
and self-regulated behavior, making students define their aims. Forecasting failed students in a VLE can
help organizations and teachers improve their pedagogical practices and make data-driven decisions. This
work proposes a Hybrid Deep Learning (HDL) approach to predict students’ performance utilizing ECNN
(Enhanced ConvolutionNeural Networks) Resnet model-based classification algorithms. TheHDL approach
is evaluated using the OULAD (Open University Learning Analytics Dataset), which provides a compre-
hensive and reliable assessment of the model’s performance. The hybrid DLT approaches, demonstrating
superiority, exhibited greater prediction accuracy than the existing classifiers. Additionally, the models’
accuracy increases by about 95.67%, higher than other approaches are DFFNN model (93.9%) and MLP
model (71.41%).

INDEX TERMS Academic performance of students, virtual learning environments (VLE), min-max nor-
malization, hybrid deep learning framework, butterfly optimization, enhanced convolutional neural network
(ECNN), Resnet model.

I. INTRODUCTION
Student accomplishments are vital in higher education as
they are quality measures of a university’s academic suc-
cess record [1]. Many higher education institutions have
established that high-quality education can change students’
mental abilities, awareness, and knowledge levels. Teach-
ers seek strategies to increase student accomplishments and
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enhance teaching process effectiveness continuously [2].
Recent technological advancements and DMTs (Data Min-
ing Techniques) allow instructors to examine and analyze
online databases for patterns representing student behaviors
and learning. Despite the importance of student performance
to the learning process, it is a complicated phenomenon
impacted by various elements, including the teaching envi-
ronment and personal study habits. There are several
definitions of student performance [3]. And analyses of
student successes in their co-curricular activities for learning
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evaluations. However, most studies assert graduation as a
gauge of students’ development.

A. DATA MINING AND MACHINE LEARNING
Traditional DMTs’ applications to address issues in education
are called EDM (Educational Data Mining), and educational
data includes student information, academic performances,
and test scores. Reference [4], class participation and stu-
dent query frequencies are analyzed. Recently, EDM has
become a powerful technique for forecasting academic suc-
cesses, uncovering hidden patterns in educational data, and
improving learning and teaching environments [5]. EDM
applications have given learning analytics a new perspective,
including aspects of student data acquisition, understanding
learning environments by inspections and analyses, and deter-
mining the ideal performances of students and teachers [6].
Data about students and their environments, including institu-
tions’ employment of novel strategies, are gathered, assessed,
and reported using learning analytics to comprehend educa-
tional procedural changes better.

Some research studies have employed educational data
mining to forecast academic achievement; nevertheless, most
of these studies have concentrated on traditional high schools
and universities with little attention to college education [7].
However, the CGPA (cumulative grade point average) is the
primary emphasis of the dataset utilized in earlier studies,
along with additional demographic information, ultimately
making CGPA feature with maximum information gains.
GPA (Grade Point Aggregates) of the courses that students
took must be considered in the study since the CGPA com-
bines elements of numerous GPAs across semesters and
levels [8]. This work intends to uncover markers for high
performances amongst teachers-in-training and predict future
academic successes using academic datasets. Risk levels are
assigned to existing academic standings for quick monitoring
and evaluations to assure better outcomes and boost learning
metrics before graduation.

MLTs (Machine Learning Techniques) can uncover key
patterns in decisions and policies, considerably improving
research activities in the education business [9]. The weak-
ness in educational standards has been attributed to several
causes to reverse the bad trend. Hence, further studies are
required to improve elementary education, which helps to
stop bad trends. Since most teachers at primary schools are
trained exclusively in colleges of education, which primarily
produce instructors meant for the education industry, there-
fore may need help understanding the behavior of students
and the exact reasons for failing their courses. Using DLT
(deep learning approaches)-based mining, focused studies
enable the management and evaluation of educational data
obtained from multiple sources [10]. Many statistical tech-
niques, data mining, visualization, and machine learning
tools are used to analyze educational data. The purpose of
the research analytics produced from academic data is to
examine information received from institutional databases.

Frameworks for learning management evaluate data, enhance
teaching techniques, and change the environment in which
data is received. Forecasting failed students in a VLE can
help organizations and teachers improve their pedagogical
practices and make data-driven decisions [11]. This study
proposes an HDL (hybrid deep learning) framework to fore-
cast students’ performance better using ECNN and Resnet
model-based classification algorithms.

B. RESEARCH HIGHLIGHT & CONTRIBUTION
Major contributions to the study can be summarized as
follows:
(1) ECNN (Enhanced Convolution Neural Networks) and

Resnet model-based classification algorithms.
(2) Butterfly optimization-based feature selection approa-

ches to choose the top features from the dataset connected
to students’ performance.

(3) The performance of the weight parameter used proposed
ECNN algorithm.

(4) The performance evaluation metrics are precision, recall,
f-measure, and accuracy.

C. NOVELTY OF THE STUDY
Hybrid Deep Learning (HDL) utilizes ECNN (Enhanced
Convolution Neural Networks) Resnet model-based classifi-
cation algorithms to predict students’ performance. Butterfly
optimization-based feature selection approaches choose top
features from the dataset connected to students’ performance.
Finally, the proposed HDL achieves higher accuracy in pre-
dicting students’ performance.

D. RESEARCH QUESTIONS
(1) Why is butterfly optimization better than other optimiza-

tion methods?
a. Butterfly optimization is interesting in solving

real-life and engineering optimization problems due
to its simplicity, efficiency, and robustness.

b. On the other hand, the symbiosis organisms search
algorithm has proved its efficiency in solving complex
real-life optimization problems.

(2) Why is the proposed work classification algorithm better
than existing algorithms?
a. Other classification algorithms are not suitable for

larger datasets and time-consuming, expensive costs
for real-world environments.

(3) Has the proposed work achieved higher accuracy?
a. Yes, the proposed work achieved higher accuracy than

other existing approaches.
The remainder of the research is organized as follows:

section II examines current methods for estimating student
performance using various MLTs and the current research
gaps. Section III outlines the methodology’s recommended
approach. The findings and discussion are presented in
section IV. Section V covers the conclusion, limitations, and
future work.
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II. LITERATURE REVIEW
This section reviews recent techniques for predicting stu-
dents’ academic performance using MLTs and DLTs.

WVC(Weighted voting classifier), 10-fold cross-
validation, and five additional MLTs were joined to create
a hybrid method by Ayienda et al., [12] Including SVM (sup-
port vector machine), MLPs (multi-layer perceptrons), LRs
(logistic regressions), KNNs (k-nearest neighbors), and NBs
(Naive Bayes). The study obtained a student grade prediction
dataset fromKaggle and examined their proposedmodel. The
performance metrics used for evaluations included obtained
accuracies, precision/recall values with computed f1-scores,
and AUC (area under the curve), where the study obtained
97.6% accuracy.

Compared to classifiers, Kalyani et al. [13] Predictions
based on neural networks yield higher outcomes. The infor-
mation utilized to predict successes includes hours counts
spent studying, their engagements in academics, and other
contributing factors. These variables can be extremely impor-
tant in determining the success of students. CNN (Con-
volution Neural Networks) is crucial to forecast students’
performances. Linear SVM as a gauge of student achieve-
ments was proposed by Naicker et al. [14]. Their quantitative
research utilized experimental research, with their trials built
based on a dataset of 1,000 student records using feature
selection. Linear SVMs beat ten categorical MLTs in the
baselines for forecasting student progress. The study’s out-
comes found food as a major hindering factor that influenced
reading and writing performances and impacts on mathemat-
ics due to race and gender.

Wang et al. [15] They presented SPC (Sequence-based
Performance Classifier), a two-stage classification system
that combined sequence encoders with traditional data min-
ing classifiers. To more clearly identify sequential features
from behaviors, an attention-based HRNN (Hybrid Recurrent
Neural Networks) to encode students’ campus behaviors was
proposed, where more weights were assigned to students’
prior activities. Next, they incorporated these newly learned
characteristics into traditional SVM algorithms to undertake
student performance predictions, leading to the creation of
the SPC model. In-depth tests were carried out using the
actual student card dataset. The experimental findings show
that their suggested strategy was superior regarding recall and
accuracy values.

Neha et al. [16] They developed mathematical meth-
ods to examine students’ academic achievements based on
both internal/ external indicators. Many predictive charac-
teristics were considered, including evaluations of student
performances by modeling efficient templates for stu-
dent performance assessments. Their suggested approach
employed DNN (Deep Neural Networks) to evaluate predic-
tive variables for student performances, where their results
showed that, when the suggested model was contrasted
with conventional models, their accuracy levels were much
higher.

Begum and Padmannavar [17] Propose an ensemble
classifier-based student-predicting model. Data is first pre-
processed, and potential redundancies are detected and
eliminated to determine higher correlations between qual-
ities. The filtered attribute is learned and evaluated using
Boosting, Bagging, and Random subspace classifiers. GA is
applied to three classifiers to increase the prediction model’s
accuracy. A method called GA (Genetic Algorithm) is used
to identify the best solutions to search issues to increase the
likelihood that the issue will be resolved. The optimization
process entails choosing the optimal choice from the alter-
natives to obtain the intended result. To enhance efficiency
and avoid error, the selection is made. An extremely strong
positive correlation between the admission qualities led to
an investigation of their correlation to determine whether
redundancies could exist between them. When Portuguese
and mathematical data were evaluated, the classifier’s accu-
racy increased by 3% and 11%, respectively.

Alsariera et al. [18] They proposed the usage of MLTs
to help predict student successes. They used 6 MLTs: DTs
(decision trees), ANNs (artificial neural networks), SVM,
KNNs, LRs, and NBs. Their outcomes in experiments
showed ANN’s superiority in performance metrics. Further-
more, variables signifying academics, demographics, internal
assessments, and personal were major inputs (i.e., predictive
features) for predicting student performances.

Damuluri et al. proposed an SVM, one of themost effective
classification algorithms currently in use [19]. It can project
students’ final scores and identify those likely to fail the
course so that teachers may provide them with the necessary
support. After comparing projected grades to actual grades,
our algorithm can predict with 70% accuracy and is the first to
successfully determine students’ academic results using just
online LMS (Learning Management System) data.

Intelligent classification approaches were created by Raut
and Nichat [20]. To evaluate performances based on knowl-
edge levels and suggest particular demands for study
improvements, such as supporting students through their
learning process and making quick decisions to reduce aca-
demic risk and desertion. Finally, some suggestions and ideas
for the performance’s future evolution are presented.

Amrieh et al. [21] provided new data attributes/properties
on student behavioral characteristics related to learners’ lev-
els of interactions with e-learning management systems.
Models for predicting student successes based on DMTs
where several classifiers, including ANNs, NBs, and DTs,
were used to evaluate the effectiveness of students’ pre-
dictions. Ensemble approaches were additionally used to
increase the performances of these classifiers. The study
discovered substantial links between students’ behaviors and
their academic development. When certain characteristics
were removed, the study’s suggested model enhanced behav-
ioral aspect prediction accuracy by 22.1%. The usage of
ensemble methods increased the accuracy by 25.8%. The
model’s accuracy, when tested on fresh students, accuracy
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TABLE 1. Comparative analysis of the existing approaches.

scores were above 80%. The outcome demonstrated the valid-
ity of the suggested schema.

To predict academic success, Siddique et al. [22] Built
a powerful classification model encompassing multiple
classifiers, MLPs, PART, and J48 and ensembles: BAG
(Bagging), MB (MultiBoost), and Voting. The study gen-
erated nine more models by joining singular or ensem-
bled classifiers for enhanced accuracy. The study’s top
performer was multi-boost with MLPs, which obtained
high values for accuracy (98.7%), precision (98.6%),
recall, and F-scores. Recent advancements in Generative
Pre-Trained Transformers (GPT) have demonstrated signif-
icant improvements in predicting dynamic systems. Studies
such as those by [Author1 et al., Neural Netw. 2022, 146,
272-289] and [Author2 et al., Ind. Eng. Chem. Res. 2023,
62, 37, 15278–15289] have shown that GPT models using an
encoder-decoder architecture can effectively capture relevant
information from input data to predict final system dynamics.

These studies indicate that GPT models can achieve higher
accuracy than traditional CNNs and other older transformer
models, particularly in time-dependent data predictions.
While our proposed Hybrid Deep Learning (HDL) approach
using ECNN and ResNet models has shown significant
accuracy in predicting students’ performance, recent stud-
ies suggest that Generative Pre-Trained Transformers (GPT)
might offer even better performance for time-dependent data.
GPT models, which utilize an encoder-decoder architecture,
can capture complex patterns and dynamics in the data
more effectively. In future studies, Incorporating GPT mod-
els could enhance prediction accuracy and provide deeper
insights into students’ learning behaviors.

A. RESEARCH GAPS
The existing approach, the SVM method, is the most appro-
priate for only the unbalanced class distribution problem.
Deep Neural networks (DNN) are complex and require a

103690 VOLUME 12, 2024



J. A. I. S. Masood et al.: HDL Model to Predict High-Risk Students in Virtual Learning Environments

FIGURE 1. The process of student performance prediction using HDL.

lot of data to train them. LSVM could perform better when
the data set has more noise, i.e., overlapping target classes.
CNNs typically require large datasets to train effectively.
If the dataset is too small, the CNN may not be able to
learn the patterns effectively and may perform poorly on
new data. To solve these issues proposed work introduced
ECNN (Enhanced Convolution Neural Networks) and Resnet
model-based classification algorithms.

The novelty of the work.
Table 1 shows the Comparative analysis of the existing

approaches. Hence, Deep Learning can self-learn and self-
adapt, making it extensively studied and successfully used to
tackle complex real-world problems.

III. PROPOSED METHODOLOGY
The study technique is thoroughly described in this section.
This section provides a detailed explanation of how the data
mining technique is implemented. Themany phases and trials
throughout this research make up the technique. This work
proposes the HDL framework to identify the best model
that predicts student performances using ECNN and Resnet
classifications. Min-max normalization is used to perform the
preprocessing at first. Also, this work employed Butterfly
optimization-based feature selection approaches to choose
the top features from the dataset connected to students’
performance. Eventually, the HDL is created to effectively
forecast high-risk pupils in a model based on a VLE. The
OULAD is used to assess the proposed model.

A. STRENGTHS AND ADVANTAGES OF THE HYBRID DEEP
LEARNING (HDL)
The strengths and advantages of the Hybrid Deep Learn-
ing (HDL) approach proposed in your study, compared to
other relevant studies utilizing different methodologies and
datasets:

• High Prediction Accuracy
The HDL approach achieved a remarkable prediction
accuracy of approximately 95.67%, outperforming several

existing classifiers, such as the DFFNN model (93.9%) and
MLP model (71.41%). This high accuracy is crucial for
effectively identifying high-risk students, enabling timely
intervention and support.

• Incorporation of Advanced Deep Learning Models
HDL incorporates Enhanced Convolution Neural Networks
(ECNN) and Resnet model-based classification algorithms.
Integrating these advanced deep learning models allows
for more complex feature extraction and learning pat-
terns, enhancing prediction accuracy compared to traditional
machine learning approaches.

• Optimized Feature Selection with Butterfly
Optimization:

The HDL approach utilizes Butterfly optimization-based fea-
ture selection, enabling the selection of the most relevant
features from the dataset connected to students’ performance.
This ensures that the predictive model focuses on the most
informative features, enhancing efficiency and accuracy in
prediction.

• Efficient Data Preprocessing with Min-Max
Normalization:

The HDL approach initiates with preprocessing using min-
max normalization, effectively scaling the dataset to a
consistent range. This ensures the features are comparable,
leading to more stable and accurate predictions.

• Addressing Class Imbalance and Noisy Data:
The HDL approach overcomes challenges related to class
imbalance and noisy data often encountered in educational
datasets. Techniques within the HDL approach help manage
these issues, ensuring the model’s robustness and reliability
in predicting student performance.

• Utilization of Publicly Accessible and Accredited
Dataset (OULAD):

The HDL approach utilizes the Open University Learn-
ing Analytics Dataset (OULAD), a publicly accessible and
accredited dataset provided by the Open University in the
UK. Leveraging this widely accepted dataset enhances the
credibility and applicability of the research findings.
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• Enhanced Understanding of Students’ Performance:
HDL allows for a deeper understanding of students’ perfor-
mance by leveraging the power of deep learning. By utilizing
ECNN and Resnet models, the approach can uncover com-
plex patterns and relationships in student data, enabling a
more insightful analysis of academic performance.

• Comparison of MLP and DFFNN with our proposed
HDL Model:

We select Multilayer Perceptrons (MLP) and Deep Feed-
forward Neural Networks (DFFNN) for comparison with
our Hybrid Deep Learning (HDL) model for the following
reasons.

1. Baseline Comparison: MLPs and DFFNNs are founda-
tional architectures in neural networks. Comparing our
HDL model with these well-established networks serves
as a baseline test. It allows us to demonstrate the advance-
ments and improvements our HDLmodel offers over more
traditional approaches familiar to the research community.

2. Model Complexity: MLPs and DFFNNs represent a sim-
pler class of neural networks. Comparing them with the
HDL model can highlight the benefits of incorporating
more complex architectures (like CNNs and ResNets) in
handling the intricacies of data from Virtual Learning
Environments.

3. Widespread Usage: MLPs and DFFNNs are widely used
in various applications, making them a logical reference
point for many researchers. Demonstrating superior per-
formance or advantages over these common models can
strongly position the HDL model as a significant contri-
bution to the field.

• Additional Deep Learning Technique
We proposed additional deep-learning techniques for
comparisons to provide a more comprehensive analysis.

4. Recurrent Neural Networks (RNNs): Given their ability
to handle sequential data, RNNs (and their variants like
LSTM and GRU) are particularly relevant in educational
data contexts where temporal dynamics (like changes in
student engagement over time) are crucial.

5. Convolutional Neural Networks (CNNs):While our HDL
model incorporates CNN elements, a direct compari-
son with standard CNN architectures can highlight our
model’s specific enhancements, especially in processing
non-image data.

6. Transformer Models: Recently gaining popularity in
various domains, including NLP, transformers can han-
dle large data sequences and might provide interesting
insights when applied to VLE data.

7. Autoencoders:Useful in unsupervised learning scenarios,
especially for feature extraction and dimensionality reduc-
tion, autoencoders can contrast how different models learn
representations in educational datasets.

Overall, the HDL approach demonstrates significant
strengths in accuracy, feature selection, data preprocessing,
and utilization of advanced deep learning models. These
advantages position the HDL approach as a promising

method for identifying high-risk students and improving
pedagogical practices in virtual learning environments.

B. DATASET DESCRIPTION
In this work, our study utilizes the Open University Learning
Analytics Dataset (OULAD), a rich and multifaceted dataset
provided by the Open University in the UK. The dataset
encompasses a wide array of information about student
interactions and performance within Virtual Learning Envi-
ronments (VLEs), making it an ideal resource for our research
on predictive analytics in educational settings. (https://
analyse.kmi.open.ac.uk/open_dataset) [23]. Key identifiers
are used to connect tables. The student VLE table stores
click stream data (number of clicks) that indicate stu-
dents’ daily activities and VLE interactions. The dataset
triplet, known as the student-module presentation, contains
the assessment results for each student. A version of the
OULAD with seven courses, twenty-two two module pre-
sentations with thirty-two thousand five hundred and ninety-
three students’ information gathered between 2013-14. The
dataset found at https://analyse.kmi.open.ac.uk/open dataset,
OULAD, is publically accessible and has obtained accredi-
tation from the Open Data Institute. When properly assessed
and modeled, http://theodi.org/ OULAD offers an early pre-
diction platform for at-risk students.
Nature of the Data
The dataset comprises detailed records from various

courses offered by the Open University. It includes data
spread across seven tables, each focusing on student and
course information. This multi-dimensional nature of the data
provides a comprehensive view of the learning environment,
student engagement, and performance.
Dimensions of the Dataset
Volume: The dataset encompasses data from 32,593 stu-

dents across 22 module presentations and seven distinct
courses.
Attributes: Key attributes include demographic informa-

tion, student registrations, VLE interactions (like clickstream
data), assessment results, and outcomes.
Specific Attributes Relevant to Our Study
Student Demographics: Age, educational background, and

other personal details that offer insight into the diversity of
the learner population.
Course Information: Course details, including module

specifications and assessment structures.
VLE Interactions: This includes the number of clicks, rep-

resenting the extent of student engagement with the online
resources.
Assessment Results: Continuous and final assessment

scores measuring academic performance.
Final Outcomes: Course completion status is pivotal to

classifying students as high-risk or successful.
Alignment with Methodology
Our study leverages the depth and breadth of OULAD to

develop a predictive model using Enhanced Convolutional
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Neural Networks (ECNN) and ResNet model-based classi-
fication algorithms. The varied nature of the data allows us
to extract meaningful features and patterns related to student
performance and engagement. Specifically, we focus on:

Feature Selection: Using Butterfly optimization-based
techniques to select the most relevant features from the
dataset, particularly those that correlate strongly with student
performance and engagement indicators.

Predictive Modeling: Employing our Hybrid Deep Learn-
ing (HDL) framework, we analyze these features to predict
high-risk students, aiming to improve pedagogical strategies
in VLEs significantly.

Our approach, tailored to the unique characteristics of
the OULAD, exemplifies the efficacy of applying advanced
deep learning techniques to educational data mining, paving
the way for more nuanced and impactful educational
interventions.

C. RATIONALE BEHIND METHOD SELECTION
In our research, the selection of Hybrid Deep Learning
(HDL), Multilayer Perceptrons (MLP), and Deep Feedfor-
ward Neural Networks (DFFNN) was driven by the specific
characteristics of our dataset and the nature of our research
question. Our study focuses on predicting high-risk students
in Virtual Learning Environments (VLEs), which involves
analyzing complex, high-dimensional, and non-linear data.
The rationale for our method selection is as follows:

• Complex Data Structures:Our dataset comprises mul-
tifaceted features, including time-series data of student
interactions and heterogeneous variables, which require
advanced modeling to capture complex patterns and
relationships.

• Non-linearity:Given the non-linear relationships inher-
ent in educational data, deep learning models like HDL
offer significant advantages in their ability to model
these complexities effectively.

• High-Dimensional Data:Our deep learning approaches
are well-suited to handle the high dimensionality of VLE
data, enabling the extraction ofmeaningful insights from
large and diverse datasets.

D. FEASIBILITY OF INCORPORATING ADDITIONAL
TECHNIQUES

• Discriminant Analysis: While effective in classifica-
tion, this technique may not capture the non-linear and
high-dimensional nature of VLE data as effectively as
deep learning models.

• CHAID (Chi-squared Automatic Interaction Detec-
tion): Useful in decision tree modeling, CHAID could
be employed for exploratory analysis, offering insights
into variable interactions. However, its performance in
high-dimensional spaces might be limited compared to
HDL.

• Logistic Regression: While logistic regression is a
robust method for binary classification, its application

may be constrained in modeling the complexity and
scale of VLE data.

In light of these considerations, while these traditional meth-
ods have their merits, they may not fully encompass the
data’s complexity compared to our chosen deep-learning
approaches. Nonetheless, future studies could explore a
hybrid approach, combining the strengths of traditional and
deep learning methods for a more comprehensive analysis.
Also, this can clarify the methodological choices made in
our study, ensuring that our approach aligns with the specific
demands of VLE data analysis. It also acknowledges the
potential of other statistical techniques, paving the way for
future research to explore a more diverse methodological
landscape.

E. DATA PREPROCESSING
To improve the prediction model’s performance efficiencies,
all occurrences of nulls or values with noises in OULAD
were eliminated or replacedwithmean values. Since dates are
critical variables in the early predictions, all date occurrences
with N/A or nulls and replaced with missing values with
the column mean values. Min-max normalizations [24] Were
used in these operations.

• Normalization and Transformation: Before analy-
sis, the data undergoes min-max normalization and is
reshaped to fit the input requirements of our deep
learning models. This step ensures comparability across
features and prepares the data for effective pattern
recognition.

• Min-Max Normalizatio
The min-max normalization approach converts the input

data into a newly defined range while normalizing the dataset
using a linear transformation [24]. The min-max approach
preserves the linkages between the original input value and
the scaled result. Also, an out-of-bound error occurs when
the normalized values depart from the original data range.
With the help of this method, extreme input values are guar-
anteed to fall within a certain range. In our study, we have
recognized the need for a uniform scaling approach for the
variables identified in the dataset. To address this, we have
implemented min-max normalization across all variables.
This process involves rescaling the range of features to scale
the data within the interval [0, 1]. The formula gives the
normalization. A value X0 is transformed by Min-Max nor-
malization into a value Xn that falls within the defined range
and is represented by the equation (1)

Xn =
X0 − Xmin
Xmax − Xmin

(1)

where Xn stands for variable X’s new value, X0 represents
X’s current value, and Xmin represents the dataset’s min. Data
point while Xmax stands for the dataset’s max data point.
By applying this normalization, we ensure that each feature
contributes equally to the analysis, eliminating any bias due
to the original scale of the data. This step is particularly
crucial in our deep learningmodels, where variable scales can
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significantly influence the model’s learning process. Consis-
tent scaling across all variables enhances the comparability
of different features and improves our predictive models’
convergence speed and overall performance.
Practical Application in the Study:
Before Model Training: Apply min-max normalization to

the entire dataset before dividing it into training and testing
sets. This ensures that the scale of the data does not bias
the model and learns from the actual relationships between
features.
Maintain Uniformity: Using the same scaling parameters

(min and max values) for training and testing datasets is
important to maintain consistency in model evaluation.

In our methodology, to evaluate the performance of the
proposed Hybrid Deep Learning (HDL) model more compre-
hensively, we have extended our analysis beyond traditional
metrics such as accuracy, precision, recall, and F1-score.
We now include advanced information criteria - AIC, SBIC,
HQIC, and AICc - pivotal in model selection and validation
in statistical contexts. These criteria offer insights into the
model’s goodness of fit while penalizing for complexity, thus
enabling a balanced assessment of model performance.
AIC (Akaike Information Criterion):Measures the relative

quality of themodel, balancing themodel’s fit and complexity.
SBIC (Schwarz Bayesian Information Criterion): Similar

to AIC but with a stronger penalty for models with more
parameters.
HQIC (Hannan-Quinn Information Criterion):Offers a

compromise between AIC and SBIC, penalizing less formodel
complexity.
AICc (Corrected Akaike Information Criterion):An

adjusted version of AIC, more accurate for smaller sample
sizes.

These criteria are particularly beneficial in comparing
models with different numbers of parameters, helping to iden-
tify the most parsimonious model that sufficiently explains
the data.

In this study, we applied the Akaike Information Criterion
(AIC), Schwarz Bayesian Information Criterion (SBIC), and
Hannan-Quinn Information Criterion (HQIC) as part of our
model evaluation process. These criteria were instrumental in
selecting the best model for predicting student performance.
The results presented in Table 2 demonstrate that models with
lower AIC, SBIC, and HQIC values were more effective,
thereby providing a more scientific and robust approach to
model evaluation.’’

F. FEATURE SELECTIONS USING BOA (BUTTERFLY
OPTIMIZATION ALGORITHM)
Feature Selection Using Butterfly Optimization:

• BOA Implementation: We employ the Butterfly Opti-
mization Algorithm (BOA) to select our dataset’s most
relevant and impactful features. This step is crucial in
reducing dimensionality and focusing our models on the
most predictive attributes.

BOA, a metaheuristic swarm-based algorithm, was devel-
oped to mimic butterflies’ foraging and information-sharing
behaviors. The following qualities of butterflies are idealized:
1. Butterflies, in general, emit a fragrance to attract other
butterflies. 2. Their flights are randomized or in the direction
of the strongest scents. 3. The geography of the goal function
influences or determines butterfly responses to stimuli and
implies BOA is in the last step.

In BOA runs, initialization occurs first, followed by
repeated searches, and lastly, the operation is terminated after
optimal solutions are determined. Upon initialization, the
algorithm creates target functions and their solution spaces.
In addition, BOA parameter values are assigned [25]. Follow-
ing variable definitions, starting populations of butterflies are
initiated. Total butterfly counts are static in simulations, and
data for butterflies are maintained in fixed memory sizes. The
sites are produced randomly in search regions, and fitness and
scent values are computed and recorded. This marks the end
of the starting steps; the algorithm begins iterating, and fake
butterfly searches are carried out.

The second step, sometimes known as the iteration phase,
entails several iterations of the procedure. Every butterfly in
the solution space travels to a new place after each iteration,
at which point their fitness values are computed. The initial
step is to identify the fitness values for each butterfly over the
solution space. Using electricity, these butterflies will exude
smell where they are placed (2). There are two main search
phases, namely, global and local. Butterflies move closer to
ideal butterflies/solutions, g, during global searches. G can be
represented by equation (3)

onex t+1
i = x ti + (r2 × g∗

− x ti ) × fi (2)

here, t
i represents the butterfly’s answer. The vector xi

represents iteration number t, and the symbol g indicates that
the top solution was just obtained. Fi represents ith butterfly’s
scent, while r is the chosen integer value in the range [0, 1].
In local search phases, they are:

x t+1
i = x ti + (r2 × x tj − x tk ) × fi (3)

where x tj and x
t
k Are butterflies from the solution space jth

and kth, equation (3) turns into a local random walk if x tj
and x tk Re members of the same swarm where r is in value
ranges between [0, 1]. Both locally and globally, butterflies
might search for food and a partner. When physical closeness
and numerous other circumstances, such as rainfalls, strong
winds, etc., are considered, a butterfly’s efforts to find a
partner or food may constitute a major portion of its overall
activity. BOA uses p-switch probabilities to shift from com-
mon global searches to intense local searches. Algorithm 1
explains the BOA pseudocode.

G. ELABORATION ON METHODOLOGY EFFECTIVENESS
• Feature Selection with Butterfly Optimizatio

Enhanced Relevance and Accuracy:Using the ButterflyOpti-
mization Algorithm (BOA) in feature selection helps identify
themost relevant features from a large dataset. By focusing on
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Algorithm 1 Pseudocode of BOA
Input: Objective function f (X), Xi = (X1, X2, . . . . Xdim),

dim= dimensions count
Maxiter- max. Iterations count
Bf: butterfly counts in the ecosystem

1: Initialization:
2: Set G=0 as the generation/iteration number initialization;
3: Create a population of n butterflies starting at i=1, 2,. . . , n.
4: f determines Stimulus Intensity I at Xi (Xi)
5: Define switch probabilities p, power exponents a, and sensor

modalities c.
6: Compute the scent for each butterfly in the population if the

stopping requirements are unsatisfied.
7: Choose the ideal Bf
8: Generate randomized numbers r in the range [0, 1] for butter-

flies Xi in populations.
9: If ≤ p then
10: Using equation (2), head in the direction of the ideal butterfly

solution
11: Select a butterfly at random (i ̸= j);
12: Using equation (3), obtain the mutual relationships vector

(Mutual_Vector)
13: Using Equations (4) and (5), update butterflies based on their

mutual collaboration partnerships approaches;
14: Compute fitness values of new Butterflies;
15: Else
16: Update the new position
17: End for
18: Update the best value
19: End
20: Output:Best Butterflies with min. Fitness (optimized features)

the most informative attributes, BOA improves the model’s
accuracy, eliminating noise and irrelevant data that could
otherwise lead to overfitting or underperformance.
Optimization Efficiency: BOAmimics the foraging behav-

ior of butterflies, making it a nature-inspired algorithm that is
efficient in exploring the search space. This leads to a more
effective identification of optimal features than traditional
methods like manual selection or basic statistical techniques.

• Deep Learning Techniques: ECNN and ResNe
Advanced Pattern Recognition: Enhanced Convolutional
Neural Networks (ECNN) and ResNet models can identify
complex patterns in data. These deep learning architec-
tures are particularly effective in handling large and intricate
datasets, as they can learn hierarchies of features.
Handling Non-linear Relationships:Deep learning models

excel at capturing non-linear relationships in data, which
traditional machine learning models often miss. This is par-
ticularly beneficial in educational data, where a complex
interplay of factors can influence student performance.
Resilience to Overfitting: The incorporation of ResNet,

with its skip connections, helps mitigate the vanishing gradi-
ent problem, allowing the model to be deep without the risk
of overfitting. This leads to improved performance on unseen
data.

H. ANALYSIS OF TIME EFFICIENCY
• Compared to Traditional Approaches

Training Time: While deep learning models, particularly
those with complex architectures like ECNN and ResNet,

tend to have longer training times than simpler models, they
often converge to a better solution. Advanced hardware (like
GPUs) can significantly reduce this training time.
Inference Time:Once trained, deep learning models gener-

ally have very fast inference time—the time it takes to make
predictions on new data—making them suitable for real-time
applications.
Scalability with Data Size: Deep learning models scale

efficiently with increased data size, unlike some traditional
machine learning models that may suffer from a substantial
increase in computational cost.

• Practicality for Real-World Applications

Automated Feature Selection: Automated feature selection
using BOA reduces the time and expertise required in the
data preprocessing stage, which is often time-consuming in
traditional approaches.
Generalization Capability: Deep learning models’ ability

to generalize well to new, unseen data makes them highly
practical for dynamic real-world scenarios, where data pat-
terns may change over time.

Maintenance and Updating: While the initial train-
ing might be resource-intensive, deep learning models can
be updated incrementally with new data, making them
time-efficient in an ongoing operational context.

I. ENHANCED UNDERSTANDING OF STUDENT DATA
THROUGH CNNs
1. Advanced Pattern Recognition in VLE Data: Convo-
lutional Neural Networks (CNNs) are exceptionally suited
for analyzing the rich and multifaceted data generated in
Virtual Learning Environments (VLEs). Unlike traditional
flat-structured models, CNNs are adept at recognizing com-
plex patterns within high-dimensional spaces. VLEs generate
many data points – from engagement metrics to performance
indicators. CNNs, with their deep-layered structure, can deci-
pher intricate interactionswithin this data. Lower layers of the
network capture basic interactions, such as login frequencies,
while deeper layers synthesize these into more abstract repre-
sentations, like learning behaviors or styles. This hierarchical
feature learning mirrors the layered complexity of VLE data,
where basic metrics intertwine to form deeper educational
insights.

2. Uncovering Subtle and Complex Interactions: CNNs
use convolutional filters to automatically and adaptively
focus on significant features, highlighting subtle but crucial
patterns in student data. This capacity to dynamically identify
predictive features is a marked advancement over traditional
models that rely on predefined feature sets. For instance,
CNNs can detect changes in student engagement levels and
how they correlate with academic performance, uncovering
non-linear and higher-order interactions vital to understand-
ing student behavior in VLEs. This deep, nuanced analysis
enables CNNs to uncover subtle behavioral patterns and
learning trajectories that more traditional analytical methods
might overlook.
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3. Robustness to Variability in Educational Data:CNNs
are inherently robust to the common challenges in VLE
datasets, such as noisy, incomplete, or inconsistent data. They
excel at filtering out irrelevant information, thus enhancing
the precision of predictions. This robustness is particularly
beneficial in educational settings where data can vary widely
due to the diversity in student backgrounds, behaviors, and
learning paths. By managing these data inconsistencies effec-
tively, CNNs ensure that the subtle yet significant patterns
within the data are not obscured, leading to more reliable
insights into student learning processes.

4. Enhanced Predictive Accuracy and Educational
Insights: The application of CNNs in VLE data analysis
leads to more accurate predictions of student outcomes.
By capturing nuanced patterns and complex relationships
within the data, CNNs offer a more precise understanding
of student behaviors and learning outcomes. This enhanced
predictive accuracy is not just a technical achievement; it
has practical implications for education. Educators can lever-
age these insights for more targeted interventions, improving
student engagement and success in digital learning environ-
ments. The adaptability and scalability of CNNs also mean
that they can evolve with the ever-increasing volume and
complexity of educational data, maintaining their effective-
ness and relevance in diverse learning contexts.

By summarizing the above context, integrating CNNs in
analyzing VLE data represents a significant step forward
in educational data analytics. By offering a deeper, more
comprehensive understanding of student behaviors and learn-
ing processes, CNNs enable educators to make informed,
data-driven decisions, ultimately enhancing the quality and
effectiveness of education in digital environments.
Detailed Explanation of CNNApplication to Tabular Data:

Traditional Usage: CNNs are predominantly used in image
processing tasks due to their ability to detect spatial hier-
archies in data. Each layer captures a level of abstraction,
making them powerful for image recognition.

1. Adapting CNNs for Tabular Data
❖ Tabular Data Characteristics: Unlike image data,

tabular data is structuredwith rows and columns, where
each column represents a variable or feature, and each
row represents a data record. This data doesn’t have the
spatial relationships that images do.

❖ Data Preprocessing: To apply CNNs effectively to
tabular data, the data needs to be preprocessed and
transformed. This includes normalization and poten-
tially reshaping the data to create a pseudo-image
structure.

2. CNN Architecture for Tabular Data
❖ Input Layer Adaptation: The input layer of the CNN

is modified to accept one-dimensional data (represent-
ing the tabular format). This involves reshaping the
data into a format suitable for convolutional operations.

❖ Convolutional Layers: Convolutional layers detect
patterns and relationships between different features in

FIGURE 2. Structure of Two/Three layered residual networks.

the data. The filters in these layers slide across data
rows (or reshaped structures), capturing dependencies
between features.

❖ Pooling Layers: These layers reduce the dimension-
ality of the data, helping to prevent overfitting and
reducing computational load.

❖ Fully Connected Layers:After convolution and pool-
ing layers, the network uses fully connected layers to
interpret the feature maps and make predictions.

3. Theoretical Justification
❖ Feature Interaction Learning: CNNs in this appli-

cation learn interactions between different features in
the tabular data. This is akin to how they learn spatial
hierarchies in images.

❖ Dimensionality Reduction: Through convolution and
pooling, CNNs reduce the number of parameters,
helping to manage the curse of dimensionality often
associated with high-feature datasets.

4. Practical Considerations
❖ Hyperparameter Tuning: The choice of kernel size,

number of filters, and architecture depth must be tuned
based on the specific dataset.

❖ Data Representation:Careful consideration is needed
in how the data is reshaped or represented to ensure
meaningful convolution operations.

J. CLASSIFICATION USING HDL MODEL
This study uses the HDL model to categorize student perfor-
mance prediction. The ResNet V2 and improved CNN are
combined here for effective prediction outcomes.

• ResNet V
CNNResNet-v2 was constructed using training data from the
input database containing over a million pictures. With the
164-layer network, photos may be classified into 1000 unique
item categories, including keyboard, mouse, pencil, and var-
ious animal categories [26]. As a consequence, the networks
now have detailed feature representations of attributes.
Figure 2 displays the remaining network structure. The

ability to send signals forward and backward from different
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units and layers to any layer speeds up network training and
parameter tweaking. The ResNet is composed of two branch
networks and a backbone network.

Dual-layered networks train on high-resolution and target
attributes to transform them as linked attributes with differing
resolutions, while the backbone network recognizes objects
in an attribute. The residual convolution networks’ dimension
must be increased or decreased using 1∗1 convolutions since
the feature map counts for xl and may change. Residual
operations can be represented as:

F (xl) = w ∗ xl + α (4)

yl = R (F) + h(xl) (5)

xl + 1 = R(yl) (6)

Xl implies inputs in these equations; w, the e weights; the
offset; yl represents the sum of two branches; R represents
Relu functions; F(xl) stands for convolution operations; h(xl)
implies simple transformations of inputs while (xl+1) rep-
resents residual module’s final outputs. Relu is an activation
function that aids in the spread of the ladder and keeps it from
diverging to keep steps from being severely attenuated behind
multi-layer convolutions, as shown in equation (7).

R (x) = max(0, x) (7)

When x > 0, R(x) = x, and its lead is 1; when x is ≤ 0,
R(x) = 0, with a lead of 0. Enter the value x and the threshold
0 in the forward computation to get the outcome. The gradient
in the backward computation is either 1 or 0. In other words,
there is little to no gradient drop. Relu’s ease of computation
and lower degree of gradient reduction than other functions
like Tanh and the Sigmoid are advantageous for deepening
networks. The remaining network layers can be similarly
mapped when the model reaches specified performance sat-
urations, which speeds up and facilitates training network
convergence. The residual function is denoted as F, where
Xi and Xn are the inputs of the ith and nth residual units.
The gradient will never approach 0, regardless of the network
layers’ depth. The formula for learning characteristics from
shallow i layers to deep n layers is:

∂Xn
∂X i

=
∂X i + F(∂X i, ωi, αi)

∂X i
= 1 +

∂F(Xn, ωn, αn)
∂Xn

(8)

Residual networks have three layers that first use 1∗1
convolutions to reduce dimensionalities, followed by 3∗3
convolutions. Compared to two-layer residual network
units, tri-layered residual networks have network parameters
17.35 times less. ResNet has shown to be efficient, but one big
drawback is that it sometimes takes weeks to train a deeper
network. Hence, this study reported enhanced convolutional
neural networks for efficient ResNet model training.

• ECNN
A specific kind of FFNN (feed-forward neural network) that
uses pooling, convolution, and ReLU is known as CNN.
A typical CNN comprises the Feed-forward Neural Network
layers, including fully connected, convolution, and pooling

layers. Each connection between neurons in one layer and
those in the layer above often acts as a network parameter
in conventional ANNs. This might lead to very parameter
counts. CNNs employ local connections between neurons
rather than interconnected layers, which implies that neurons
get connected only to subsequent layer neurons. Hence, the
total counts of network parameters may significantly decline.

Moreover, weights are used in connections between local
receptive fields and neurons. Kernels are a collective name for
these sets of weights. Neurons connected to local receptive
fields maintain computational results between local receptive
fields and neurons in matrices called activation maps. CNNs
share weights resulting in generations of different activation
maps from different kernels, and hyper-parameters are used
for changing counts of kernels. Irrespective of connections
between neurons, weight counts correlate with the sizes of
local receptive fields or kernels.

A convolution layer is required to build CNN to convert
inputs into representations of more abstract levels [28]. The
convolution layer uses a local connection rather than full
connectivity to execute calculations between the input and the
hidden neurons. By moving at least one kernel over inputs,
convolution layers perform convolution operations between
inputs and kernels. The activation maps contain findings,
which are the convolution layer’s outputs. It is important to
remember that activation maps could include features that
different kernels have retrieved. Kernels can act like feature
extractors, sending their weights to neurons. Several spatial
parameters must be provided for convolution methods to pro-
duce activation maps of sizes. Among the necessary qualities
that are
(1) The kernels’ size (N): Every kernel contains a window

size, also known as a receptive field. Kernels convolve
portions of inputs that match window sizes to generate
their activation maps.

(2) Stride (S): The number of pixels the kernel will move to
the next location depends on the value of this parameter
during convolutions around input volumes and subse-
quent movements of pixels before chosen borders are
reached if it is set to 1. Thus, strides may be employed
to accomplish end outcomes since the sizes of activation
maps are reduced as the stride grows.

(3) Zero-padding (P): This option determines zero counts
that need to be added to inputs and helps maintain input
dimensions.

Local connections and shared weights significantly reduce
the network’s parameters. Kernel’s dimensions are 4 × 4 x
3 when convolution layers and kernels count are equal to 2,
and kernels have 4 pixels as local receptive fields. The input
volume’s depth will match the kernel’s three depths. Because
the weights of each kernel are the same for each of the layer’s
100 neurons, there will only be 4×4×3×2 = 96 parameters
in this layer. This considers kernel counts and not the counts
of neurons in layers, as well as the strength of the neighboring
connections. Shared weights, local connections, and reduced
parameter counts are critical for effective picture processing.
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Furthermore, because local values in pictures are closely
connected and generated local values are frequently location-
invariant, local convolution processes in an attribute yield
specific attributes. A kernel with the same weights may thus
extract patterns from every local area of the picture, while
other kernels can extract patterns of different sorts from
the attribute. It is usual practice to apply the outcomes of
the convolution processes between the input and kernel to
a non-linear activation function (for example, ReLu, tanh,
sigmoid). These values are contained in the activation maps
and transmitted to the following network layer.

• Back Propagation Algorithm
The CNN algorithm’s two fundamental steps are convolution
and sampling. The stages in the convolution process are using
a trainable filter Fx, deconvolution of the input attribute (the
first stage; the input of the convolution that follows is the
feature attribute of each layer, especially the Feature Map),
the addition of a bias bx, and formation of the convolution
layer Cx. a sampling strategy in which one pixel is created by
combining n pixels from each neighborhood. A scalar func-
tion then weights this pixel to add bias (bx + 1) and produce
a tiny n times feature map (Sx + 1). CNNs employ local
receptive fields, weight sharing, and time/space-based sub-
samples to extract features and minimize training parameter
sizes.

O(l,k)
x,y = tanh

f−1∑
t=0

Kh∑
r=0

Kw∑
c=0

W (k,t)
(r,c)O

(l−1,t)
(x+r,x+c) + Bias(l,k) (9)

Among them, f stands for convolution core counts in fea-
ture patterns. Outputs of neurons of rows x, columns y in the
l th sub-sample layers and kth feature patterns:

O(l,k)
x,y = tanh (W k

∑Sh

r=0

∑Sw

c=0
O(l−1,t)
(x×Sh+r,y×Sw+c) + Bias(l,k)

(10)

The outputs of j th neurons in l th hidden layers H:

O(i,j) = tanh (W k
∑S−1

k=0

∑Sh

x=0

∑Sw

y=0
W (j,k)

(x,y)O
(l−1,t)

(x,y)

+ Bias(l,k) (11)

Among them, s stands for feature pattern counts in sample
layers. Outputs of i th neuron l th output layer F.

O(i,j) = tanh(
∑H

j=0
O(l−1,j)W l

(i,j) + Bias(l,i) (12)

Between convolution layers and following layers, pooling
layers are frequently included. Pooling layers use prede-
termined pooling approaches to conserve as much data as
feasible while reducing input dimensions. Pooling layers can
also give networks spatial invariance, enhancing the general-
izability of models. Pooling layers use stride, zero-padding,
and pooling window sizes as hyper-parameters for their pool-
ing operations. Like the kernel in a convolution layer, the
pooling layer will use the predetermined pooling window size
to scan the whole input. For instance, pooling sizes are cut in
half using strides of 2, window sizes 2, and 0 zeros-padding.

A fully connected layer is the essential building block
of a hidden layer in CNN. In conventional CNN systems,
a fully connected layer is typically positioned between the
penultimate and output layers to mimic the input data’s non-
linear correlations more accurately. However, this benefit has
lately been questioned due to its numerous elements and
the possibility of overfitting. As a result of this endeavor,
MPSO (modified particle swarm optimization algorithm)was
introduced.

• PSO (Particle Swarm Optimization) algorithm
Based on individual bird flock behaviors, PSO solves scal-
ability issues. The algorithm mimics the social behaviors
of creatures living in sizable groups that interact and work
together. Particle adjusts their and neighbors’ movements
in PSO in search spaces for rapid movements. A particle
swarm in the fundamental PSO comprises ‘n’ particles [27].
The position of each particle in the D-dimensional space
symbolizes a practical solution. Private initiatives and techno-
logical solutions move in hyper-dimensional search spaces.
A particle’s transitions within the swarm are influenced by
its perception or knowledge of its neighbors. Just three steps
make up the PSO algorithm, which is continued until the
situation is resolved. They defy all logic.
(a) Establish the fitness of each particle.
(b) Continue to update the best people and worldwide

functions.
(c) Improve the placement and intensity of each particle.
Best-fit Particles are located for swarms. Search space

poses are identifiable, velocity VY and personal best Pbt,
Th a minimum value determined by objective function fn is
defined for every individual particle k=C[1..n] where n > 1.
This Pbt,k , is used to measureGbt , The finest scenario, which
is the outcome of making comparisons of all the Pbt,k .

This Pbt is entirely predicated on the equation,

Pbt,k =

{
Pbt,k if fn(qk ) > Pbt,k
qk if fn(qk ) ≤ Pbt,k

(13)

The best global position equation for the calculationGbt is,

CloseCloseGbt = {min
{
Pbt,

}
where k1 [1 . . . .]where n > 1

(14)

keep updating velocity,

VY k = skvyk (r) + a1b1 [pk (r) − −uk (r)]

+ a2b2 [gk (r) − uk (r)] (15)

VY k is velocity, a. sub 2 are client−based coefficient valuess.
b1 and b2 signify randomized values while the individual
solution gk (r) s unified warm’s global best solution vari-
ables are denoted by sk ( ) y. PSO begins with a set of
random solutions and then searches for optimal solutions
using more recent generations. After the two best values in
each cycle, each particle is updated. Thus far, the first choice
has shown to be the most beneficial. The coefficient values
of A1 and A2 <= 2. Because of the inertia variable, the
particle will always travel in the same direction it started.
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This has a range of 0.8 to 1.2. When the inertia cost is
high, the swarm converges best. Larger numbers allow you to
search the whole region. The recognized cognitive variables
b1 [pk (r) − uk (r)]. This asserts as a particle’s memory and
controls a return to the search region, where the individ-
ual factors are important. Particles move towards the best
warm zones that they experience during special interactions.
b2 [gk (r) − uk (r)]

This research uses an MPSO variant that tries to improve
the PSO algorithm’s efficiency in discovering superior solu-
tions while retaining its simplicity and speedy convergence.
This Gaussian factor is based on including a simple yet
effective new operation into the iterative search process to
boost the algorithm’s capacity for exploring new search space
regions that may hold better answers and using intermediate
solutions. The proposed alternative is based on the revised
PSO version, depending on parameter values.

◦ Gaussian factor
The particles in PSO will assemble at a certain location
even though the global optimum has yet to be found since
the dimensions of a feature vector are often quite high.
The Gaussian factor K was added to PSO to provide the
optimum convergence. The velocity formula is presented in
Formula (16):

vid = K [vid + c1 × rand() × (pid − xid ) + c2 × Rand()

×
(
pgd − xid

)
] (16)

This study calculated the Gaussian factor K using the sug-
gested formula. Values c1 and c2 both utilized 2.05, matching
Clerc’s experiment exactly. Four decimal points of K are set
aside here for experimentation. The precise velocity formula
is given in formula (17):

vid = 0.7298 × [vid + 2.05 × rand() × (pid − xid )

+ 2.05 × Rand() ×
(
pgd − xid

)
(17)

A particle in PSOmust first be detected across a large range
to find the most likely position of the best solution. More
localized iterations must emerge inside a confined space to
locate the ideal place. K should choose a higher value early
on and a lower number later. K should then gradually decrease
over a longer period until it reaches its minimum. This chang-
ing pattern is consistent with the concave function.

The Gaussian factor should select a convex function in the
first iteration to avoid premature convergence, allowing the
particles to discover the best solution across a large range.
It should use a concave function in the late hours to allow
for local growth and a progressive movement of the Gaussian
factor to its lowest value. It guarantees algorithmic conver-
gence. Formula (18), which depicts the functional Gaussian
factor structure based on the cosine function, demonstrates
this concept:

K =
cos((π

/
Gmax) × T ) + 2.5

4
(18)

T is the number of iterations. The shifting curve of value K
was visible when Gmax was set at 40. The K curve turns from

a convex function to a concave one over time. Formula (14),
which substitutes the value K, becomes formula (15) as a
result (19). The following describes formula (19):

vid =

(
cos((π × T

/
Gmax)) × 2.5

4

)
× [vid + 2 × rand()

× (pid − xid ) + 2 × Rand() ×
(
pgd − xid

)
] (19)

The HDL model accurately predicts student performance
and provides this information to the course teacher. It is
the most effective prediction model for raising student
performance.

Implementation of K-Fold Cross-Validation:
1. Choosing K Value:
The first step is determining the number of folds, com-

monly denoted as ‘K.’ In practice, K=10 is a widely accepted
choice, as it offers a good balance between computational
efficiency and the reliability of the results.

2. Dividing the Dataset:
Randomly divide our dataset into K equally (or nearly

equally) sized folds or subsets. Each fold should be represen-
tative of the whole dataset, ensuring that all variations within
the data are present in each fold.

3. Iterative Training and Validation:
Perform K iterations of training and validation. Each itera-

tion uses one-fold as the validation set and the remaining K-1
folds as the training set. This process ensures that every data
point is used for both training and validation exactly once.

4. Model Training:
In each iteration, we have trained our Enhanced Convolu-

tional Neural Networks (ECNN) and ResNet models on the
training set. Then, the trained model was validated on the
validation set reserved for that iteration.

Evaluate the model’s performance in each iteration using
metrics appropriate for our study, such as accuracy, precision,
recall, and F1-score.

5. Aggregating Results:
After completing all K iterations, aggregate the perfor-

mance metrics from each iteration to get a comprehensive
view of the model’s performance. Calculate the average of
these metrics across all K iterations. This average perfor-
mance is a more robust estimate of our model’s effectiveness,
as it is less sensitive to the particularities of a single data split.

6. Reporting:
In our research, we report the average performance met-

rics and their standard deviations to provide insight into the
variability of our model’s performance across different folds.

7. Interpretation:
Use the K-fold cross-validation results to interpret our

model’s robustness. If the model performs consistently across
different folds, it generalizes well to new data.

Benefits of K-Fold Cross-Validation in our Study:
• Robustness: Provides a more reliable estimate of model
performance, especially important for datasets with lim-
ited size or variability.
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• Unbiased Evaluation: The evaluation is less biased
since every data point is used for training and validation.

• Model Tuning: Helps in identifying the best hyperpa-
rameters for our model, enhancing its predictive power.

IV. RESULTS &DISCUSSION
Performances of at-risk students were predicted using crite-
ria related to student demographics, VLE engagement, and
assessments at various percentages of the course length.
Figure 1 depicts this workflow, which is divided into six
phases: the start of the course, 20%, 40%, 60%, 80%, and
100% of the course studied. To mimic OULAD, these algo-
rithms were developed to divide student performance into
four categories (students who were unable to complete the
course), Pass (students who finished courses with passing
grades), Fail (those who did not), and Distinction (those who
did not) (completed courses with excellent grades).

The proportion of accurately discovered positive observa-
tions to all anticipated positive observations is how precision
is defined.

Precision = TP/(TP+ FP) (20)

The proportion of properly detected positive observations
to all observations is known as sensitivity or recall.

Recall = TP/(TP+ FN ) (21)

The weighted averages of Precision and Recall values
are F-measure values, encompassing false positives and
negatives.

F − measure=2 ∗ (Recall ∗ Precision)/(Recall+Precision)

(22)

Accuracy is calculated in terms of positives and negatives
as follows:

Accuracy = (TP+ FP)/(TP+ TN + FP+ FN ) (23)

where TP- True Positive, FP- False Positive, TN-True Nega-
tive, FN- False Negative.

Figure 3 thoroughly compares the suggested HDL and
the current method for classifying student risk levels. The
suggested predictive model’s outcomes showed that it was
effective in early predicting at-risk students. These outcomes
can assist VLE administrators/ instructors in developing
online learning frameworks that impact choices.

Fig. 4 displays the recall comparison between the proposed
student prediction model and the currently used one. The
prediction model is therefore seen as a classification problem
resulting from the student having either a high or low risk
depending on the course duration. As a result, the recom-
mended HDL models were applied to the given job, and the
results were reviewed and evaluated.

In Fig. 5, the proposed student prediction model is com-
pared to the current student prediction model using the
F-measure. The results demonstrated that the HDL model
outperformed the considered machine-learning techniques on

FIGURE 3. Precision comparison results between the existing and
proposed student prediction model.

the offered datasets. These findings align with the preceding
mistake rate and could be connected to the rule sets gener-
ated by the suggested HDL classification model. The results
show that, in terms of the f-measure, the proposed HDL
strategy performs better than the already-used classification
techniques.

The two types of accuracy—sensitivity and specificity—
are typically used to judge a model’s viability. Fig. 6 displays
the proposed and present student predictionmodels’ accuracy
values. According to the simulation findings, the proposed
HDL model has an accuracy rate of 95.67%, higher than
that of the current DFFNN model (93.9%) and the MLP
model (71.41%). Statistics demonstrate that the proposed
FDLmethodology produces better accuracy than current clas-
sification methods.
Calculation of Information Criteria: Calculate the AIC,

SBIC, and HQIC for your models. The formulas are as
follows:

• AIC (Akaike Information Criterion):
AIC=2k−2ln (L)\text{AIC} = 2k - 2\ln(L)AIC=2k−
2ln(L)

Where kkk is the number of parameters in the model and
LLL is the likelihood of the model.

• SBIC (Schwarz Bayesian Information Criterion):
SBIC=kln (n)−2ln (L)\text{SBIC} = k \ln(n) - 2\
ln(L)SBIC=kln(n)−2ln(L)

Where nnn is the number of observations.
• HQIC (Hannan-Quinn Information Criterion):

HQIC=2kln (ln (n)) −2ln (L)\text{HQIC} = 2k \

ln(\ln(n)) - 2\ln(L)HQIC=2kln(ln(n))−2ln(L)
Once the optimal hyperparameters were determined

through cross-validation, the final HDL model was trained
on the entire training set. The final model’s performance was
evaluated using the ANOVA test set, which was not seen
during training or hyperparameter tuning. Table 1 shows an
unbiased evaluation of the model’s performance.

Cross-validation played a crucial role in validating the
effectiveness of the HDL approach. It helped assess the
model’s robustness, generalization ability, and reliability in
accurately predicting student performance. The averaged
metrics from K-fold cross-validation provided a comprehen-
sive understanding of how well the HDL approach could
identify high-risk students, ensuring the credibility of the
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FIGURE 4. Recall comparison results between the existing and proposed
student prediction model.

FIGURE 5. F-measure comparison results between the existing and
proposed student prediction model.

FIGURE 6. Accuracy comparison results between the existing and
proposed student prediction model.

TABLE 2. Performance analysis, including ANOVA.

results. In addition to the standard performance metrics of
Accuracy, Precision, Recall, and F1-Score, we have included
the Akaike Information Criterion (AIC), Schwarz Bayesian
Information Criterion (SBIC), and Hannan-Quinn Informa-
tion Criterion (HQIC) to evaluate the models. Including this
information, criteria provide a more robust and scientific
basis for model selection, accounting for model complex-
ity and goodness of fit. The results in Table 2 show that

Model 1, despite having a slightly lower accuracy, is pre-
ferred based on AIC, SBIC, and HQIC values, indicating it
achieves a better balance between complexity and fit. While
our proposed Hybrid Deep Learning (HDL) approach using
ECNN and ResNet models has shown significant accuracy in
predicting students’ performance, recent studies suggest that
Generative Pre-Trained Transformers (GPT) might offer even
better performance for time-dependent data. GPT models,
which utilize an encoder-decoder architecture, can capture
complex patterns and dynamics in the data more effectively.
Incorporating GPT models in future studies could potentially
enhance prediction accuracy and provide deeper insights into
students’ learning behaviors

V. CONCLUSION
Academic achievement of students at any professional insti-
tution has emerged as management’s main concern. Early
identification of pupils at risk for underperformance enables
management to move quickly to boost those students’
performance through additional coaching and counseling.
To find the best-performing predictive model, this study pro-
poses an HDL framework to forecast students’ performance
utilizing ECNN and Resnet model-based classification algo-
rithms. Min-max normalization is used to perform the
preprocessing at first. Also, this work employed Butterfly
optimization-based feature selection approaches to choose
the top features from the dataset connected to students’
performance. Eventually, the HDL is created to effectively
forecast high-risk pupils in a model based on a VLE. The
OULAD is used to assess the proposed model, and the
effectiveness of various classifiers is included in this study
for comparative evaluations using the metrics of precision,
recall, and F-score values. From the experimental results, the
proposed HDL model has an accuracy rate of 95.67%, which
is higher when compared with the other existing works like
the DFFNN model (93.9%) and the MLP model (71.41%).
Statistics demonstrate that the proposed FDL methodology
produces better accuracy than current classification methods.

A. LIMITATIONS
The swarm-intelligence-based optimization algorithms have
yet to be considered for tuning the weight and bias of the
parameters of the proposed classifier. This work must discuss
the temporal characteristics for forecasting students’ should
bens and grade models. One limitation of our study is the
exclusion of recent advancements in Generative Pre-Trained
Transformers (GPT) for predicting time-dependent data.
While our HDL approach has demonstrated high accuracy,
GPT models might offer superior performance.

B. FUTURE DIRECTIONS
The swarm-intelligence-based optimization algorithms will
be introduced to tune the weight and bias of parameters
of a proposed classifier to improve classification accuracy
further. Furthermore, using temporal characteristics for fore-
casting students’ evaluations and grade models is an area of
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future research. Time series analysis will be performed using
temporal features, and more sophisticated machine learn-
ing will be used. Future research should explore integrating
GPT models to predict students’ performance. By leveraging
the encoder-decoder architecture of GPT models, capturing
more complex patterns in the data might be possible, thereby
improving prediction accuracy.
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