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ABSTRACT This paper investigates the secrecy performance of a multi-relay non-orthogonal multiple
access (NOMA) network. Considering the presence of eavesdroppers, an optimal relay selection scheme
and a jamming signal transmission scheme for both amplify-and-forward (AF) and decode-and-forward (DF)
strategies are proposed. However, the resource allocation problem aimed at maximizing the effective secure
throughput (EST) of the system is non-convex. It is difficult to directly solve this optimization problem
using conventional methods. As such, a Q-learning approach to solve the resource allocation problem in
this system is applied, and an innovative reward function that can maximize the communication quality of
edge users while ensuring secure communication of nearby users is designed. According to the analysis
of the simulation results, the convergence of the proposed scheme is verified. Under the same conditions,
DF relays achieve a higher signal-to-noise ratio (SINR) at the user terminal, and the EST is closely related
to the transmission power of the source node and the relays. The numerical results also show that compared
to conventional power allocation methods, the proposed method achieves a larger average EST and provides
better confidentiality performance.

INDEX TERMS NOMA, relay selection, power allocation, physical layer security, Q-learning, effective
secrecy throughput.

I. INTRODUCTION
With the rapid development of fifth generation (5G) mobile
communication technology, the scale of wireless commu-
nication networks has greatly increased. As the number of
communication devices continues to grow, there is a growing
demand from users for high throughput and high access
density. Non-orthogonal multiple access (NOMA) technol-
ogy allows multiple users to share the same orthogonal
resources, effectively improving user access and spectrum
efficiency. This has become a key technology for 5G
mobile communication systems [1], [2]. NOMA employs
superposition coding (SC) and successive interference can-
cellation (SIC). The transmitter overlays information for
multiple users via the SC, while the receiver utilizes SIC
to decode the signals for each user, thereby meeting the
requirements of massive access [3]. Although NOMA can
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enhance the spectral efficiency, the distance of the signal
transmission is limited. Integrating NOMA with cooperative
communication offers an excellent solution for overcoming
the coverage limitation of NOMA [4]. The introduction
of relay cooperation technology not only enhances the
coverage capability of the communication network, but
also effectively addresses issues such as vulnerability to
eavesdropping during the communication process. Currently,
a wealth of literature combines these two techniques and
conducts research [5], [6], [7]. However, with a notable surge
of users that access in NOMA cooperative network, it has also
introduced some security issues that need to be addressed.

Considering the inherent broadcast nature of wireless
communication, it is challenging to achieve the secure
transmission of confidential information in the presence
of eavesdroppers. Therefore, physical layer security (PLS)
techniques in wireless communication systems are rapidly
developing and receiving widespread attention [8], [9].
Eavesdroppers typically conduct both active and passive
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types of attack, and the two types of attack have different
objectives. Active attack is aimed at interfering with the
reception of communications, while passive attack is aimed
at eavesdropping on information [10]. Most papers focus on
passive attack, which will be explained extensively in subse-
quent references. If an eavesdropper takes active measures,
it may expose channel information. Most studies focus on
improving the secrecy performance of systems by optimizing
power allocation or relay selection strategies. Nodes can
operate more efficiently with limited resources by optimizing
power allocation, thereby maximizing the duration of their
normal operation. The authors in [11] considered strong
users in the NOMA network as potential eavesdroppers and
investigated a scheme to achieve optimal power distribution.
Therefore, the security rate of the system is maximized
under the user data rate and total power constraints.
In addition, relay selection is also an effective method to
enhance communication security. Based on NOMA networks
containing multiple eavesdroppers, [12] proposed a secure
relay selection scheme andmeasured the system performance
with security outage probability (SOP). But most of the
previous studies relied on mathematical methods to solve
the problem, resulting in high computational complexity.
To overcome this problem, improving the computational
efficiency has become an important goal.

Over the past few years, a considerable number of
researchers have employed machine learning (ML) in
wireless communication systems to enhance the efficiency
of the system in dynamic scenarios [13], [14], [15], [16].
Reference [17] proposed a physical layer authentication
method to improve the authentication efficiency by training
neural networks. Also, using machine learning for resource
allocation can improve the performance of the communi-
cation system. Reference [18] adopted the NOMA scheme
in the mobile edge computing (MEC) system. To minimize
the delay of the system, the offloading strategy is optimized
and reinforcement learning (RL) is used to solve the power
allocation problem. However, the communication model
of [17] only considered the case of a single relay, while [18]
did not consider relay collaboration. Among these ML tech-
niques, Q-learning in RL has gained widespread application
owing to its model-free and distributed nature [19]. It is
suitable for massive machine type communication (mMTC)
devices [20], [21].

It is worth noting that previous studies mainly addressed
PLS problems by optimizing power allocation or relay
selection individually, and few have investigated the joint
optimization of relay selection and power allocation using
Q-learning. Therefore, for cooperative NOMA systems
with passive eavesdroppers, this study formulates optimized
strategies for relay selection and power allocation. To further
reduce computational complexity, a Q-learning algorithm is
also introduced to improve the performance of the system.
Both amplify-and-forward (AF) and decode-and-forward
(DF) relays are considered to ensure the integrity of the anal-
ysis. Since Q-learning stores the Q-values of all state-action

pairs through a Q-table, it is difficult for the Q-table to cover
the entire state space when dealing with multi-dimensional
states, so the convergence speed is often improved by the
deep Q-network (DQN) algorithm [22]. This paper compares
two RL algorithms and shows that the Q-learning algorithm is
more efficient when the state space is small. The contributions
of this study are summarized as follows.
• Based on the preceding context, the integration of
NOMA with cooperative communication yields sig-
nificant improvements in frequency efficiency and
coverage capacity. Moreover, the security of these
networks is important. In this study, a relay cooperative
network model with eavesdroppers, multiple relays
and two users is proposed. One relay is selected to
forward the message whereas another relay sends a
jamming signal to the eavesdropper, thus confusing the
eavesdropper and reducing the decoding ability of the
eavesdropper, further improving the communication and
confidentiality performance of the system. Furthermore,
all the relays use fixed gains, eliminating the need
for real-time gain adjustments and effectively reducing
system complexity, which is more in line with practical
communication scenarios.

• To reduce the computational complexity and improve
the system efficiency, this study employs Q-learning
to address the power allocation issue. In addition,
a novel reward function that enhances the sum rate while
satisfying power conditions is designed. This reward
function can maximize the communication quality of
edge users while ensuring secure communication of
nearby users which is one of innovations of this study.

• This study conducts a comprehensive comparative
analysis of the use of AF relays and DF relays in
terms of effective secure throughput (EST) and runtime.
The effects of different parameters on EST of the two
protocols are examined. These parameters include the
number of relays, transmit power of the source and relay
nodes, and the interference power. Furthermore, the
proposed method is compared with the deep Q-learning
based power allocation method and common used
methods, demonstrating its significant advantages in
terms of confidentiality.

The remainder of this paper is organized as follows.
Section II introduces the research background and related
work. In Section III, a relay-assisted NOMA system model is
proposed and the relay selection and power allocation prob-
lems are described. Section IV presents a Q-learning based
power allocation scheme. In Section V, a comprehensive
comparison of the system performance obtained using the DF
and AF protocols is presented. Finally, Section VI concludes
the paper.

II. RELATED WORK
For improving the security of the communication process,
many studies have investigated optimization problems such
as power allocation and relay selection. Reference [23]
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investigated the secrecy performance of reconfigurable
intelligent surface (IRS)-assisted millimeter wave system
by optimizing parameters such as power and phase shifts
of the RIS elements. For single-input single-output (SISO)
NOMA system in the presence of passive eavesdroppers,
[24] investigated maximizing the rate of confidentiality of
the system while meeting the quality of QoS requirements
of the users. However, the models proposed in the above
papers do not consider the introduction of relays for
collaboration, which is an effective technique to improve
the secrecy performance of the system. For an untrusted
NOMA system with DF relay cooperation, [25] proposed
an optimized power allocation scheme to maximize the
secrecy rate of the nearby user while satisfying the quality
of service (QoS) requirement of the distant user. However,
that study only investigated the use of DF relay. Therefore,
[26] considered an AF relay cooperation NOMA system
with untrusted users, and obtained a closed-form expression
for optimal power distribution between the source and relay
nodes.

To further enhance the confidentiality of the system,
[27] introduced a friendly jammer. Attacks during com-
munication are reduced by sending jamming signals to
the eavesdropper, but relay collaboration techniques are
not considered. The optimal power allocation for the AF
relay cooperative NOMA network was obtained by [28]
using a cooperative jamming (CJ) scheme. CJ achieves a
higher secrecy rate by jamming the eavesdropping link.
However, it should be noted that this study considered only
the case of single relay cooperative communication. When
multiple relays are present in the network, in addition to
optimizing the power allocation, relay selection strategies
can be used to enhance the confidentiality of the system.
Reference [29] proposed and compared three relay selection
schemes, showing that the proposed optimal relay selection
scheme achieved a higher SOP. For relay cooperative
networks containing passive eavesdroppers, [30] proposed
a new relay selection scheme that combined Wyner coding
with linear network coding to improve the security of the
communication.

To improve the computational efficiency, many studies
have introduced RL algorithms to improve the communi-
cation performance in various scenarios. For satellite relay
networks, [31] proposed a Q-learning based NOMA random
access protocol to optimize access slots and achieve an
optimal throughput. Reference [32] focused on MTC and
investigated a Q-learning and NOMA based approach to
dynamically allocate random access slots to MTC devices.
Reference [33] investigated the selection of underwater
relays through DQN in a collaborative Internet of Under-
water Things (IoUT) system, which effectively improves
the transmission performance of the system. In a non-
orthogonal amplify-and-forward (NAF) cooperative NOMA
network, [34] presented a Q-learning based power allocation
algorithm to maximize the system throughput. They further
introduced a neighboring strategy searching based power

FIGURE 1. Relay cooperative system model based on NOMA networks.

allocation algorithm, striking a balance between throughput
and computational complexity.

In recent years, RL algorithms have also been widely
applied to address the PLS problems. For multi-user net-
works, [35] considered a model of passive eavesdropping in
which the receiving nodes act as both jammers and receivers
to disrupt eavesdropping. They proposed a Q-learning based
jamming user selection scheme that significantly enhanced
the confidentiality performance of the network. Furthermore,
[36] investigated the performance of secure communication
between unmanned aerial vehicles (UAVs) and ground users
in the presence of passive eavesdroppers. The study utilized
the Q-learning algorithm to maximize the average secrecy
rate (ASR). However, these studies did not consider the
effects of the relays on system confidentiality. In [37],
a deep learning algorithm (DL) was used to optimize the
power management to improve the secrecy rate of AF relay
collaborative network. This study improves EST performance
by optimizing power allocation and relay selection which
achieves a trade-off between throughput and security. How-
ever, only one relay is considered in [37] and the relay uses
the AF forwarding protocol, while our proposed method
considers two forwarding protocols and two reinforcement
learningmethods withmulti-relay simultaneously. Therefore,
our approach is more comprehensive. In [38], the use of
Q-learning for relay selection in a DF relay cooperation
network was studied. Compared with other common relay
selection methods, Q-learning was shown to achieve a higher
EST. In collaborative communication, [39] used the DQN
algorithm to optimize the relay selection scheme. However,
they did not consider the optimization of power allocation.

III. SYSTEM MODEL
As shown in Figure 1, a relay cooperative network based
on downlink NOMA is considered. The network comprises
a source node (S), N relays Ri(i ∈ {1, 2, · · · ,N }), two
legitimate users (m, n), and an eavesdropper (E). All the
relays are randomly distributed within a certain range
between the source node and destination nodes and all operate
in the half-duplexmode (HD). The distribution of these relays
has a certain geometric range both horizontally and vertically,
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forming a rectangular area. Point a in the figure is the centre
of this rectangular area. The distance between a user and
the relays refers to the distance from the user to the center
of this rectangular region. Denote the distances of the two
users to the relay set as dm, dn respectively, where dm ≫ dn.
The user m is located far from the relay set, referred to as
the weak user, whereas the user n is closer to the relay set,
known as the strong user, and the two users are not on the
same line. The distance of the two users from the set of
relay nodes is much larger than the vertical or horizontal
range of the relay set. Assume that strong user n carries out
communication in small packets of a few bits, while weak
user m carries out communication in large packets of cache
class, such as movies or short videos. User m is at the edge of
the coverage and the propagation experiences occlusion such
as buildings or woods. Since all the relays are close to user n,
no matter how the forwarding relay is selected it has little
effect on user n, and that user gets a better user experience.
The relay selection method proposed in this paper allows the
edge user to get the best user experience and does its best to
achieve the consistency of the system user experience which
will be presented in the following.

The channels between all nodes are assumed to be
independent Rayleigh fading channels, and each node is
equipped with a single antenna. Additionally, the noise
of all channels is modelled as additive white Gaussian
noise (AWGN) with zero mean and variance N0. Assuming
that there is no direct connection between S and users, E can
eavesdrop on the information transmitted by S and the relays.
To reduce the decoding capability of E , one relay transmits
interference signals to the eavesdropper.

This study adopts the well-known Wyner eavesdropping
code to ensure reliable transmission, encoding xm and xn as
(τm,t , τm,s) and (τn,t , τn,s). τm,t and τn,t denote the codeword
rates ofm and n, respectively, τm,s and τn,s denote the secrecy
rates of m and n, respectively. When the channel capacity of
the user channel is greater than the codeword rate, the user can
successfully decode confidential information, which ensures
the reliability of the information. Similarly, when the channel
capacity of the eavesdropping channel is less than the secrecy
rate, E cannot correctly decode confidential information,
thereby ensuring information security. In the following, the
communication processes of the DF relay system and the AF
relay system will be described separately.

A. DF PROTOCOL
Each communication time slot consisted of two phases. In the
first phase, S adopts SC technique to broadcast the signal

xs =
√
amPSxm +

√
anPSxn, (1)

with power PS , where xm and xn represent the signals sent
to m and n. And E

[
x2m

]
= 1, E

[
x2n

]
= 1, where E[•]

is the expectation of the random variable. am, an represent
the power distribution factors of m and n, respectively,
satisfying am + an = 1 and am > an. The received signals

of Ri(1 ≤ i ≤ N ) and E are denoted as

ySRi = hSRixS + nSRi , (2)

ySE = hSExS + nSE , (3)

where hSRi is the channel coefficient from S to Ri, hSE is the
channel coefficient from S to E . nSRi and nSE are AWGNs.
Every relay attempts to decode the signal sent by S.

According to the decoding principle of NOMA technology,
all relays employ the SIC technique, which first decodes
the signal xm, regards the signal xn as interference, and
eliminates the interference of the signal xm after successful
decoding. Thus, the signal-to-noise ratios (SINRs) of the
decoded signals xm and xn at relay Ri are expressed as

γSRi→m =
am|hSRi |

2PS
an|hSRi |2PS + N0

, (4)

γSRi→n =
an|hSRi |

2PS
N0

, (5)

where |hSRi |
2 represents the channel gain from S to Ri.

The relay selection strategy is designed to achieve two
purposes simultaneously. One is to ensure that the codeword
rate of user n is achieved and the other is to maximize
the communication rate of user m. Specifically, the relay
selection strategy is divided into the two stages which can be
represented as follows. In the first stage, the relays that can
successfully decode both xm and xn are placed in decoding
set U which can be expressed as

U = {i : 1 ≤ i ≤ N ,
1
2
log(1+ γSRi→m) ≥ τm,t ,

1
2
log(1+ γSRi→n) ≥ τn,t }. (6)

Then in the second stage the eligible relays are selected from
the set U to form a new relay set �:

� = {
1
2
log(1+ γRin→m) ≥ τm,t ,

1
2
log(1+ γRin→n) ≥ τn,t , i ∈ U}, (7)

where γRin→m, γRin→n denote the SINRswhen user n decodes
user m’s signal and when user n decodes its own signal,
respectively.

Then, in set �, the relay that enables user m to have the
largest signal-to-noise ratio (SINR) when decoding its own
signal is selected, which can be expressed as

k = argmax
k∈U
k∈�

{
γRkm→m,DF

}
, (8)

where γRkm→m,DF denotes the SINR when user n decodes its
own signal. If U is an empty set, it means that no relay is
able to successfully decode the received signals, and thus the
optimal relay cannot be selected and communication will not
proceed in this time slot. On the contrary, if U is not an empty
set, the next step is to select the optimal relay Rk (1 ≤ k ≤ N )
as the forwarding relay from U, based on the relay selection
rules set above. The proposed relay selection strategy ensures
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that the strong user n can communicate correctly, while
maximizing the SINR for decoding by the weak user m.
In addition, this method only requires comparing the relays in
the decoding set U, instead of comparing all the relays
in the system which effectively reduces the computational
complexity. After relay selection is completed, the selected
relay Rk re-encodes the received information and forwards it
to m and n with power PR.
Considering the worst eavesdropping scenario, the eaves-

dropper possesses excellent demodulation capabilities and
can successfully employ SIC in each demodulation process.
In other words, during the demodulation of xn, E is always
able to eliminate the interference of xm. Assuming that the
jamming relay only transmits interference signals in the
second stage, the SINRs for eavesdropping on m and n using
the SIC technique in the first stage are represented as

γSE→m =
a1|hSE |2PS

a2|hSE |2PS + N0
, (9)

γSE→n =
a2|hSE |2PS

N0
, (10)

where |hSE |2 represents the channel gain from S to E .
Due to the concealment of the eavesdropper, the position

and channel information of the eavesdropper are unknown,
it is impossible to accurately select an interference relay
based on conditions such as the SINR. Therefore, another
relay Rj(1 ≤ j ≤ N , j ̸= k) is randomly selected as
the jamming relay and the jamming signal is sent with
power PJ to E in the second stage, reducing the SINR for
decoding at E and thereby lowering the risk of information
being eavesdropped by E . We assume that m and n possess
knowledge of the transmitted interference signals and have
the capability to eliminate their impacts. The signals received
at m and n in the second stage are

ym,DF = hRkm(
√
amPRk xm +

√
anPRk xn)+ nRkm, (11)

yn,DF = hRkn(
√
amPRk xm +

√
anPRk xn)+ nRkn, (12)

where hRkm and hRkn are the channel gains fromRk tom and n,
respectively. nRkm and nRkn are AWGNs.

Similar to the first stage, when the weak user m performs
decoding, it considers the signal of n as an interference. The
strong user n decodes the signal of m before decoding its
own signal. The SINRs when m and n demodulate the signal
of m and n demodulates its own signal are expressed as

γRkm→m,DF =
a1|hRkm|

2PRk
a2|hRkm|2PRk + N0

, (13)

γRkn→m,DF =
a1|hRkn|

2PRk
a2|hRkn|2PRk + N0

, (14)

γRkn→n,DF =
a2|hRkn|

2PRk
N0

, (15)

where |hRkm|
2 and |hRkn|

2 represent the channel gains from
Rk to m and n respectively. The observation at E at this stage

can be expressed as

yRE = hRkE (
√
amPRxm +

√
anPRxn)+ hRjE

√
PJx0 + nRE ,

(16)

where hRkE and hRjE are the channel gains from Rk and
Rj to E , respectively. x0 represents the interference signal
transmitted by Rj, and E

[
x20

]
= 1. nRE is the AWGN.

Based on the above analysis, when E is eavesdropping,
it first decodes the signal of m and then decodes the signal
of n. Therefore, the SINRs during the decoding stage of E in
the second phase can be written as

γRE→m,DF =
a1|hRkE |

2PRk
a2|hRkE |2PRk + PRj |hRjE |2 + N0

, (17)

γRE→n,DF =
a2|hRkE |

2PRk
PRj |hRjE |2 + N0

, (18)

where |hRkE |
2 and |hRjE |

2 represent the channel gains from
Rk to E and Rj to E , respectively.
In the existing literature, the security performance of a

system is often measured using the secrecy capacity, defined
as CS = [CB − CE ]+, where [x]+ = max {0, x}, CB repre-
sents the communication capacity of the main channel, and
CE represents the channel capacity of the eavesdropper
channel. Because it is difficult for the network to obtain
the channel state information (CSI) of the eavesdropper,
it may not obtainCE . Therefore, instead of using the common
secrecy capacity tomeasure system performance, EST is used
as a measure of the system performance in this study to
achieve a trade-off between the communication performance
and secrecy performance. EST represents the average rate
at which confidential information is transmitted from the
transmitter to the receiver without being intercepted. The EST
of m and n can be expressed as

EST_mDF = τm,s Pr(γSRi→m > 22τm,t − 1,

γRkm→m,DF > 22τm,t − 1, γSE→m < 22(τm,t−τm,s)

− 1, γRE→m,DF < 22(τm,t−τm,s) − 1), (19)

EST_nDF = τn,s Pr(γSRi→m > 22τm,t − 1,

γSRi→n > 22τn,t − 1, γRkn→m,DF > 22τm,t − 1,

γRkn→n,DF >22τn,t−1, γSE→n<22(τn,t−τn,s)−1,

γRE→n,DF < 22(τn,t−τn,s) − 1). (20)

where Pr(•) represents a probability operation.

B. AF PROTOCOL
For the AF protocol, the communication process is similar
to that described above. In the first stage, similar to the DF
protocol, S broadcasts the signal to all relays and E attempts
to decode the message. The signals received by Rk and E are
given by (2) and (3) respectively.

In the second stage, traverse all relays and similarly place
the relays that can ensure that user n correctly decode its own
information in the set �. Then Rk in � that enables user m to
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decode its own signal with the largest SINR is selected, which
can be expressed as

k = argmax
k∈{1,2,···K }

k∈�

{
γRkm→m,AF

}
. (21)

The signals received at m and n can be written as

ym,AF = GhRkmySRk + nRkm, (22)

yn,AF = GhRknySRk + nRkn, (23)

where G =

√
PRk

PSE(|hSRi |
2)+N0

is the AF relay ampli-

fication factor. Owing to the unknown CSI, the gain
cannot be adjusted in real time, and a variable-gain relay
cannot be used. Therefore, the system uses fixed-gain
relaying, which effectively reduces the complexity of the
system. The SINR when m decodes the signal xm can be
expressed as

γRkm→m,AF =
a1PS |hSRk |

2
|hRkm|

2G2

a2PS |hSRk |2|hRkm|2G2 + N0|hRkm|2G2 + N0
.

(24)

Subsequently, n first decodes the signal xm, and then decodes
its own signal. The two SINRs are as follows,

γRkn→m,AF =
a1PS |hSRk |

2
|hRkn|

2G2

a2PS |hSRk |2|hRkn|2G2 + N0|hRkn|2G2 + N0
,

(25)

γRkn→n,AF =
a2PS |hSRk |

2
|hRkn|

2G2

N0|hRkn|2G2 + N0
. (26)

The SINRs decoded by the eavesdropper at this stage are
expressed as

γRE→m,AF

=
a1PS |hSRk |

2
|hRkE |

2G2

a2PS |hSRk |2|hRkE |2G2+N0|hRkE |2G2+PJ |hRjE |2+N0
,

(27)

γRE→n,AF =
a2PS |hSRk |

2
|hRkE |

2G2

N0|hRkE |2G2 + PJ |hRjE |2 + N0
. (28)

When using the AF protocol, the EST for m and n can be
expressed as

EST_mAF = τm,s Pr(γRkm→m,AF > 22τm,t − 1,

γSE→m < 22(τm,t−τm,s) − 1,

γRE→m,AF < 22(τm,t−τm,s) − 1), (29)

EST_nAF = τn,s Pr(γRkn→m,AF > 22τm,t − 1,

γRkn→n,AF >22τn,t−1, γSE→n<22(τn,t−τn,s) − 1,

γRE→n,AF < 22(τn,t−τn,s) − 1). (30)

C. PROBLEM FORMULATION
To enhance the security of the relay cooperation network
further, the optimal power allocation problem for S and Rk

can be formulated as follows:
max EST_SUM

s.t. Pmax > PS > Pmin

Pmax > PR > Pmin, (31)
where EST_SUM represents the sum of the EST values of
m and n. Pmax and Pmin denote the maximum and minimum
values of power, respectively. In the formulated problem, the
parameters that need to be optimized are the power of the
source node and the relay node, which is explained in (31).
The purpose of optimizing the power is to extend the survival
time of the source node and the relay node. In practical
communication scenarios, the transmitting node may be
powered by solar or other energy harvesting methods and
the stored energy is very limited, so the transmission power
of these nodes needs to be optimized. This formula aims to
allocate the optimal transmit power to both nodes within a
given power range to maximize the sum of the EST of users,
which optimizes the average rate of message transmission
in the system under secrecy conditions. Considering (19),
(20), (29) and (30), it can be concluded that the formulated
optimization problem is non-convex. Subsequently, we will
propose a Q-learning based approach to solve this problem.

IV. PROPOSED POWER ALLOCATION ALGORITHMS
In this study, the optimal power allocation scheme of the
source node and the forwarding relay obtained through
Q-learning is investigated. The performance of the system is
measured using EST_SUM, considering both the communi-
cation rate and security performance of the system.

As reinforcement learning in machine learning is more
suitable for solving dynamic decision-making problems,
it is often used to study the resource allocation problem
in communication systems, thus effectively improving com-
putational efficiency. The principle is to update the action
selection strategy based on feedback from the environment
by continuously interacting with it.

The Q-learning algorithm, as a classic model-free
algorithm in reinforcement learning, has been widely applied
because of its ability to be implemented in distributed
environments. The working principle of this algorithm
is to continuously try and make mistakes to obtain the
optimal strategy for action selection. Q-learning is a type
of Markov Decision Process (MDP) in which the learning
model is typically composed of a combination of {S,A,R,P}.
During the learning process, the agent needs to create and
continuously update a Q-table that records the expected
rewards for different states and actions. In the current
state si within the state set S, the agent selects the optimal
action aj from the set of available actions A and executes
it, aiming to maximize the reward R(si, aj). The purpose
is to adjust the action selection strategy according to the
reward. If the reward for an action is large, the agent will
be more inclined to select this action; conversely, if the
reward is small or negative, the action will be avoided.
P represents the probability distribution of transitioning from
the current state si to the next state si′, denoted as p(si′|si, aj).

104838 VOLUME 12, 2024



W. Guo, X. Wang: Power Allocation for Secure NOMA Network Based on Q-Learning

During the learning process, Q-learning continuously updates
the Q-table based on the rewards received. After multiple
iterations, the Q-table converges and the agent can determine
the optimal strategy based on the magnitude of the Q-values.
The update rule for the Q-values is defined as follows
Q(si, aj)← (1− α)Q(si, aj)+α[R(si, aj)+ γ max

a′
Q(s′, a′)],

(32)
where Q(si, aj) represents the expected reward obtained by
taking action aj in the current state si. Based on this value, the
agent can determine how to choose actions in the current state
tomaximize the rewards. α ∈ (0, 1) is the learning rate, which
indicates the learning speed of an agent. When α is small,
according to (32), the first term of the expression occupies a
larger proportion, which means that the agent focuses more
on the previous learning outcomes. γ ∈ (0, 1) is a discount
factor that reflects the importance of future rewards. A higher
value of γ indicates greater importance of future rewards.
In the system model proposed in this paper, the network

serves as the agent for the Q-learning algorithm, and the
state-action pairs (S,A) are represented by the pair of source
node transmit power and relay node transmit power (PS ,PR).
To ensure a continuous update of the Q-table, it is necessary
to ensure that all state-action pairs have a probability of
being selected. This means that action selection needs to
consider the trade-off between exploration and exploitation.
The ε-greedy strategy [40] is employed to select actions and
update the Q-table to prevent the algorithm from becoming
stuck in local optima. The principle is to set a parameter ε,
then choose the power levels of source and selected relay
nodes with the maximum Q-value with probability ε, and
randomly select the power levels of the two nodes with
probability 1 - ε, where ε ∈ [0, 1]. This ensures that even
if the agent becomes trapped in a local optimum, there is an
opportunity to break out of such a situation and eventually
achieve the global optimum.

Because the goal of Q-learning is to learn an action
selection strategy that maximizes the cumulative reward, this
paper defines the reward of the DF(AF) relay system as
the difference between the current and previous iterations
of γRkm→m,DF(γRkm→m,AF), while ensuring secure message
transmission and successful decoding. If the SINR for
weak user m increases, the instantaneous reward is positive;
otherwise, the instantaneous reward is negative. The reward
function defined in this manner achieves two objectives
simultaneously: ensuring that the weak user m achieves opti-
mal communication performance while ensuring successful
decoding for the strong user n. Specifically, the reward
functions for the two scenarios are defined as follows:

RDF =



−1000, if min{γSRk→m, γRkn→m,DF } ≤ τm,t

or min{γSRk→n, γRkn→n,DF } ≤ τn,t

0, if max{γSE→m, γRE→m,DF } ≥ τm,t−τm,s

or max{γSE→n, γRE→n,DF } ≥ τn,t − τn,s

γRkm→m,DF,t+1 − γRkm→m,DF,t , else,

(33)

RAF =


−1000, if γRkn→m,AF ≤ τm,t or γRkn→n,AF ≤τn,t

0, if max{γSE→m, γRE→m,AF } ≥ τm,t−τm,s

or max{γSE→n, γRE→n,AF } ≥ τn,t − τn,s

γRkm→m,AF,t+1 − γRkm→m,AF,t , else,

(34)

where RDF and RAF represent the reward functions for
Q-learning when the system adopts DF and AF protocols,
respectively.

Throughout the entire communication process in the
system, if there is a communication interruption, the reward
is −1000, and the SINR for decoding by m is set to 0. If the
message is intercepted by E in a successful transmission
scenario, the reward is 0, and the SINR for decoding by m is
set to 0. Under the condition of successful and secure
transmission, the reward is the difference in the SINR for
decoding by m between two consecutive iterations. The
purpose of this setup is to optimize the communication
performance of the edge user as much as possible while
maintaining a secure transmission. After each iteration, the
Q-table is updated based on (32), and actions are selected
based on the updated Q-table for the next iteration, until the
loop ends.

Algorithm 1 Power Allocation Algorithm for Cooperative
Relay Networks Based on Q-Learning
Input: Q(S,A) = 0, α ∈ (0, 1), γ ∈ (0, 1), ε ∈ [0, 1]
Output: Optimum transmit power pair (PS∗,PR∗)
1: for i = 1 to max_episodes do
2: for j = 1 to iteration times do
3: Initialize a random number µ ∈ [0, 1]
4: if µ > ε then
5: Select the (PS ,PR) with the highest Q-value
6: else
7: Select the (PS ,PR) randomly
8: end if
9: Select the optimal forwarding relay
10: Obtain immediate reward via (29) and (30)
11: Update the Q-value for (PS ,PR) pair via (28)
12: end for
13: end for

Algorithm 1 describes a power allocation algorithm using
Q-learning. First, the Q-table is initialized to 0. Subsequently,
the transmit power of the source node and relay is selected
based on the ε-greedy strategy. When the Q-table has more
than one maximum value at the time of selecting, one of the
maximum values is randomly selected. Subsequently, the two
nodes transmit signals based on the selected power levels, and
the reward is calculated to update the Q-table. After multiple
iterations, the Q-table gradually stabilizes, resulting in an
optimal power allocation strategy.

V. SIMULATION AND NUMERICAL RESULTS
In this section, based on the proposed power allocation
scheme, the performance of DF relay and AF relay

VOLUME 12, 2024 104839



W. Guo, X. Wang: Power Allocation for Secure NOMA Network Based on Q-Learning

FIGURE 2. SINR versus number of iterations for m decoding.

FIGURE 3. EST_SUM of the system versus number of iterations.

is compared. The effects of various parameters such as the
number of relays N , transmit power of the source node PS ,
forwarding power of the relay node PR, and interference
power PJ of the relay Rj on the communication performance
are also investigated. This study considers a scenario that
includes a source node, an eavesdropper, 8 relays, and 2 users.
All relays are randomly distributed in a rectangular area with
a horizontal distance of 30 m and a vertical distance of 20 m.
One relay is responsible for forwarding the message, whereas
another relay interferes with the eavesdropper. The mean
of the Rayleigh fading channel is 0, and the variance is 1.
The other parameters are set as: dm = 800 m, dn = 400 m.
τm,t = τn,t = 1.2 bits/s/Hz, τm,s = τn,s = 0.4 bits/s/Hz,
Pmax = 60 dB, Pmin = −40 dB, PJ = 15 dB, N0 = −30 dB,
a1 = 0.9, a2 = 0.1, discount factor γ = 0.01 and greedy
factor ε = 0.4. Because the impact of changing the learning
rate on the results is not significant, the learning rate is set
to α = 0.01.

Figure 2 shows the SINR for decoding its own signal
by m versus the number of iterations using the DF and
the AF protocols. The figure shows the average results
of 1000 simulation runs, each with 500 iterations. It is
shown that the decoding SINR fluctuates for both protocols
owing to the introduction of the ε-greedy strategy to avoid
local optima [41]. However, the overall trend is gradually
increasing and both converge to the maximum value after
about 200 iterations. In addition, during the iteration process,
the decoding SINR obtained using the DF protocol for m is
higher than that obtained using the AF protocol. This is
because in the AF relay system, the amplification gain of
the relay node is fixed and cannot be adaptively adjusted
based on the signal strength. Amplifying the signal at the

FIGURE 4. EST_SUM of the system versus codeword rate and secrecy rate.

relay node also amplifies the noise in the signal, which
may cause signal distortion. On the other hand, the DF
relay system improves signal reliability through decoding
and re-encoding. Therefore, the DF protocol has a significant
advantage in terms of improving the communication quality
of edge users.

Figure 3 shows the EST_SUM of the system versus the
number of iterations for the same scenario. This represents
the average results obtained from 1000 runs. We can
observe that the EST_SUM of both protocols gradually
increases and converges with an increase in the number of
iterations, reaching their maximum values at approximately
200 iterations. In addition, during the Q-learning process, the
EST_SUMobtained by the DF protocol is always greater than
that obtained by the AF protocol. Therefore, the DF protocol
can achieve better security performance through Q-learning.

The effects of codeword rate and secrecy rate on the system
performance are shown in Figure 4. The figure shows the
EST that the system can achieve after the Q-learning process
with different parameter settings. In Figure 4(a), the secrecy
rate is set to τm,s = τn,s = 0.4 bits/s/Hz for both users,
and the codeword rate is varied in the range of 0.5 bits/s/Hz
to 1.7 bits/s/Hz. In Figure 4(b), the codeword rate is set to
τm,t = τn,t = 1.2 bits/s/Hz for both users, and the secrecy rate
is varied in the range of 0bits/s/Hz to 1.1bits/s/Hz. It can be
seen that the EST of the system increases and then decreases
as both the codeword rate and the secrecy rate increase. And
the EST reaches the maximum value at about τm,t = τn,t =

1.5 bits/s/Hz, τm,s = τn,s = 0.4 bits/s/Hz. Therefore, setting
the values of the parameters codeword rate and secrecy rate
reasonably can effectively enhance the security performance
of the system.
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FIGURE 5. Secrecy capacity of the system versus number of iterations.

As Q-learning proceeds, the change in the secrecy capacity
is shown in Figure 5. The sum of the secrecy capacities of
the two users can be expressed as CSUM = Cm + Cn, where
the secrecy capacities of m and n are Cm = [Cm_t − Cm_e]+,
Cn = [Cn_t − Cn_e]+ respectively. Cm_t and Cn_t refer
to the communication channel capacity of the two users,
Cm_e and Cn_e refer to the capacity of the eavesdropping
channel. From the figure, it can be observed that as
the number of iterations increases, the secrecy capacities
obtained by both protocols show an initial increase, followed
by convergence at approximately 200 iterations. Compared
with the results obtained in [38], the communication system
proposed in this paper can achieve better secrecy capacity.
Moreover, a larger secrecy capacity can be obtained with the
help of the DF protocol compared to the AF protocol, which
indicates that the DF relaying system has higher security.

Figure 6 shows the EST_SUM of the system for different
numbers of relays versus the transmit power of the source
node. The number of relays is considered to be 4, 12
and 20. In scenarios with different numbers of relays, it is
clear that using DF relays can lead to a larger EST_SUM
and achieve better performance. EST_SUM of the system
first increases and then decreases with increasing PS . This
indicates that increasing PS is not always beneficial for
improving the EST_SUM of the system. When PS is small,
transmission interruption is prone to occur, and when PS is
large, E decodes with a large SINR. This is prone to message
leakage, which leads to the disruption of confidentiality.
Therefore, there exists the optimal value ofPS that maximizes
the EST of the system. Furthermore, PS within the range
of −20 dB to 0 dB can achieve a non-zero EST_SUM, and
within this range, increasing the number of relays improves
the performance for both approaches.

The relationship between EST_SUM of the system and
the transmit power of the forwarding relay PR with different
numbers of relays is shown in Figure 7. The case where the
number of relays is 4, 12 and 20 is also considered. Similarly,
the EST of the system increases and then decreases with
an increase in PR, indicating that the transmission power of
both nodes affects the security performance. It is clear that
changing the number of relays has no significant impact on
the two protocols when PS is fixed and 4 relays are sufficient.
When PR>−20 dB, the EST of the AF relay system gradually
decreases and is significantly smaller than that of the DF relay

FIGURE 6. EST_SUM of the system for different number of relays
versus PS . (PR = −8dB).

FIGURE 7. EST_SUM of the system for different number of relays
versus PR . (PS = −8dB).

FIGURE 8. EST_SUM of the system for different interference powers
versus PS . (PR = −8dB).

FIGURE 9. EST_SUM of the system for different interference powers
versus PR . (PS = −8dB).

system. And at PR>10dB, EST_SUM of the AF relay system
is zero, whereas the DF relay system can obtain a non-zero
EST_SUM. Therefore, compared with the AF protocol, the
DF protocol can achieve better performance when PR is large.
Figure 8 and Figure 9 show the EST_SUM of the system

versus the transmit power of the source node and relay node
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FIGURE 10. EST_SUM of the system versus PJ .

for different interference powers. In Figure 8, EST_SUM of
the system increases and then decreases with increasing PS .
The EST_SUM curves for the two protocols overlap at
PS = 10dB, at which point the change in interference power
has no effect on the EST of the system. This is because
the transmit power is too high and the decoding SNR
of E is also large, and increasing the interference power at
this point does not significantly help reduce the decoding
capability of E . The EST_SUM of both systems peaks
at approximately PS = −17 dB. Moreover, the influence
of the interference power on the performance of the AF
relay system is more obvious. In Figure 9, When PR is
small, the two systems have similar performance, which is
due to the fact that the lower forwarding power is prone
to communication interruptions, and at this time, changing
the decoding SINR of E will not significantly improve
the communication performance. When PR is large, for
both systems, increasing the interference power yields a
larger EST_SUM and effectively improves the security of
communication.

In addition, the effect of interference power PJ on EST is
shown in Figure 10. The EST of the system first increases
with the increase ofPJ . However, Continuously increasingPJ
does not improve the EST significantly and 20 dB is enough.
According to (17), (18), (27) and (28), when the interference
power PJ to E is increased, the decoded SINR during
eavesdropping decreases, thus improving the security of the
system by interfering with eavesdropping. However, when PJ
increases to a certain value, the decoded SINR of E decreases
to a critical value and is unable to meet the requirements
for successful eavesdropping, thus failing to satisfy the
eavesdropping condition. Therefore, when PJ increases to a
certain value, continuing to increase PJ will not significantly
improve the security performance of the system. As a result,
reasonable adjustment of the settings of parameters such
as codeword rate, secrecy rate, and interference power can
effectively enhance the communication performance of the
system.

Figure 11 shows the average EST_SUM for 1000 simula-
tion runs with different numbers of relays using the DF pro-
tocol. The values of PS and PR range from −20dB to 10dB,
assuming PT = −5dB as the total power constraint, that is,
PS + PR ≤ PT . Five scenarios for the number of relays
are considered: 4, 12, 20, 28 and 36. And the proposed

FIGURE 11. Average EST of the system versus the number of relays in
different methods when using DF protocols.

FIGURE 12. Average EST of the system versus the number of relays in
different methods when using AF protocols.

FIGURE 13. Computation time of the algorithm versus number of relays
for both protocols.

Q-learning based power allocation method is compared with
two common power allocation schemes: the equal power
allocation (EPA) and the random power allocation (RPA)
algorithms. For the EPA algorithm, both nodes have the
same transmit power, that is, PS = PR = PT /2. For the
RPA algorithm, the transmission power of both nodes is
randomly chosen from a range of −20dB to 10dB. It can
be observed that, compared to the other two approaches,
the power allocation algorithm using Q-learning achieves a
larger average EST_SUM for different numbers of relays,
and EST increases as the number of relays increases. The
system performance obtained by the EPA algorithm does not
change significantly with an increase in the number of relays.
Moreover, as the number of relays increases, the EST_SUM
obtained by the RPA algorithm becomes correspondingly
larger, but the increase is slower than that of the Q-learning
algorithm. Therefore, the Q-learning algorithm can improve
the communication performance better, especially when the
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FIGURE 14. EST_SUM of the system obtained using the DQN method
versus number of iterations.

FIGURE 15. Comparison of DQN and Q-learning methods with and
without relay selection.

system contains a large number of relays. This is because
of the high probability of selecting the best relay when the
number of relays is high, and the Q-learning method is more
likely to obtain the best power pair and achieve a better safety
performance.

Figure 12 shows an image of the AF protocol under the
same conditions. Similarly, for different numbers of relays,
the EPA scheme obtains the worst system performance,
whereas the proposed Q-learning based algorithm shows a
significant advantage compared to the other two schemes.
Similar to Figure 12, the EPA algorithm obtains a similar
average EST_SUM for different numbers of relays, whereas
the RPAmethod obtains an increasing ESTwith an increasing
number of relays. Overall, Q-learning approach offers
significant advantages in terms of improved confidentiality.

Figure 13 shows the time performance of the two protocols
for different numbers of relays. The performance of finding
the optimal power allocation pair using Q-learning and
traversal methods is compared. From the graph, it can be
observed that the running time of both methods increases
linearly with the number of relays under both protocols.

This is due to the fact that the higher the number of relays,
the longer it takes to traverse the relays. For both methods,
the running time of the DF protocol is slightly shorter than
that of the AF protocol. Therefore, a better time performance
can be obtained using the DF protocol. In addition, it is clear
that the time required to use the traversal method is much
greater than that of the Q-learning algorithm, particularly
when the number of relays is high. This shows that the use of
the Q-learning algorithm significantly reduces computational
complexity and improves communication efficiency.

In this paper, the DQN algorithm from [22] is also
considered to solve the power allocation problem. A simple
neural network model is constructed in this paper, which
consists of two fully connected (FC) layers. The size of
the experience buffer is 30, the batch size is 20, and the
weights of the target network are updated every 20 time
slots. Other than that, the other learning parameters are kept
consistent with the Q-learning method. The convergence of
the DQN algorithm is shown in Figure 14, which illustrates
the results of running 1000 times and calculating the average.
Each run consisted of 2000 iterations. Compared to Figure 3,
the DQN algorithm converges slower and the final optimal
EST obtained is slightly smaller than that obtained by the
Q-learning algorithm. This is due to the smaller state action
space, where the same state may be sampled multiple times,
resulting in lower utilization of the samples and slowing
down the convergence of the algorithm. At the same time, the
complexity of the neural network approximation also affects
the performance of the system.

In addition, this paper also considers the case with no
optimal relay selection under both RL methods. Figure 15
compares the system performance obtained by selecting the
optimal relay and randomly selecting a relay when using the
two RLmethods. It is clear that the EST obtained by selecting
the optimal relay is significantly higher than the EST obtained
by randomly selecting a relay in both Q-learning and DQN
methods. Therefore optimizing the relay selection strategy is
also an effective way to improve security.

TABLE 1. Computation overhead of the two methods.

The computational efficiency of the two algorithms is
shown in Table 1. Due to the introduction of a deep neural
network and an experience replay buffer, the DQN algorithm
requires larger parameter storage. Additionally, during each
iteration, the DQN algorithm needs to perform forward
and backward propagation of the neural network, while
the Q-learning algorithm only requires updating a Q-table.
Therefore, when the number of states is small, the Q-learning
algorithm has lower computational overhead and converges
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faster and for a relatively small state space like this paper, it is
simpler and more efficient to use the Q-learning algorithm.

VI. CONCLUSION
In this study, we investigated a Q-learning based power
allocation scheme for relay collaboration networks. The
scheme utilizes relay cooperation techniques to reduce the
decoding SINR of the eavesdropper and selects a forwarding
relay based on certain rules. It then optimizes the transmit
power of the source node and the forwarding relay using
Q-learning. The goal is to maximize the decoding SINR
for a weak user while ensuring successful decoding for
a strong user. We comprehensively compared the security
performance of the system using the DF and AF relays.
Our experimental results indicate that the number of relays,
transmit power of the two nodes, and interference power all
affect the performance of the system. Furthermore, compared
with other commonly used power allocation methods, our
proposed algorithm achieves a larger EST_SUM for the
system and improves the security performance of system
effectively.
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