IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 4 July 2024, accepted 16 July 2024, date of publication 29 July 2024, date of current version 7 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3434718

== RESEARCH ARTICLE

Improving the Efficiency of Software-Based Fault
Protection Mechanisms With HUSTLE

NICOLA FERRANTE -2, LUCA FANUCCI, (Fellow, IEEE), FRANCESCO ROSSI?,
FRANCESCO TERROSI“3, AND ANDREA BONDAVALLI“23, (Senior Member, IEEE)

! Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
2ResilTech S.r.1., 56025 Pontedera, Italy
3Department of Mathematics and Informatics, University of Florence, 50134 Florence, Italy

Corresponding author: Nicola Ferrante (nicola.ferrante @ phd.unipi.it)

This work was supported in part by Programma Regionale Fondo Europeo di Sviluppo Regionale Toscana 2021-2027 (PR FESR
TOSCANA 2021-2027)-Project GENERIC (“Agile Software Test Libraries Development and Hardware Mechanisms for their Efficient
Execution™), and in part by Horizon 2020-Marie Sktodowska Curie Actions-Research and Innovation Staff Exchange
(H2020-MSCA-RISE-2018)-Project ADVANCE (‘‘Addressing Verification and Validation Challenges in Future Cyber-Physical
Systems””). The work of Andrea Bondavalli was supported in part by Ministero Universita e Ricerca-Progetti di Rilevante Interesse
Nazionale 2022 (MIUR PRIN 2022)-project S2: Safe and Secure Industrial Internet of Things.

ABSTRACT To achieve confidence in safety-critical systems, requires among others to meet high require-
ments on online testing of computer systems, as dictated by safety standards such as 1SO26262, IEC61508,
and CENELEC EN 5012X. Online testing can be performed through the periodic execution of online
SW Test Libraries, which are widely used in safety-related applications as a valuable safety mechanism
to protect against random HW faults. SW Test Libraries introduce a non-negligible overhead on system
performance, exacerbated by the increasing complexity of HW devices. This contrasts with the efforts of
researchers and system designers for developing efficient systems. Reducing this overhead is an important
achievement. We propose here HUSTLE, a Hardware Unit for SW-Test Libraries Efficient execution, which
can be integrated into the chip design with minimum modification to the CPU’s design. HUSTLE contains an
Internal Memory, where the library code is stored, and sends instructions to the CPU, bypassing the Memory
Subsystem. To further improve efficiency, we also propose a scheduling mechanism that allows to exploit the
idle time of the CPU’s execution unit. To show the efficiency gain in supporting the test libraries execution,
we ran some experiments, where a considerable reduction of the overall CPU load was observed. Finally,
remarks regarding the limited impact on the area and power consumption are presented.

INDEX TERMS Error detection, functional testing, on-line testing, safety, SW-test libraries.

I. INTRODUCTION

Innovations in the field of Very Large-Scale Integration
(VLSI) technologies and the advent of novel computing
platforms have made the automation of complex tasks in
constrained domains a reality [1], [2], [3]. The great potential
of these innovations has led to an increasing interest in their
adoption in many safety-critical application domains, such as
the automotive, railway, and industry. These systems must
fulfill the integrity requirements [4] set forth by standards
developed by international committees, such as ISO [5],
CENELEC [6], and IEC [7], with the aim of minimizing the

The associate editor coordinating the review of this manuscript and

approving it for publication was Poki Chen

risk of potentially catastrophic failures that damage human
life and health. One of the main challenges in enabling the
use of these technologies in safety-critical systems is the
coexistence of three main characteristics: integrity, perfor-
mance, and cost [8], [9], [10]. The lack of proper levels
for one of these properties may lead to drawbacks that may
prevent their adoption. Such challenges become more com-
plex in situations in which a reduction in engineering costs
and time-to-market is required. In such cases, valuable solu-
tions must offer appropriate fault protection and mitigation
mechanisms. Further, such mechanisms are required to be
flexible and do not require heavy modification of the original
design or excessively penalize its performance when applied
in different contexts.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

104728

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-3490-0990
https://orcid.org/0000-0001-5426-4974
https://orcid.org/0000-0001-6024-4849
https://orcid.org/0000-0001-7366-6530
https://orcid.org/0000-0003-0749-4181

N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

IEEE Access

Itis a general requirement from functional safety standards
[5], [6], [7] to enrich the design of an embedded system with
mechanisms (HW or SW or HW/SW) aiming to detect faults
of the HW platform to improve its safe usage.

Fault-tolerance mechanisms can be based on both hard-
ware (HW) and software (SW), each providing different
levels of protection and targeting different failure modes [9],
[10], [11], [12], [13], [14], [15]. HW-based techniques are
faster but require either modifications to the original design or
higher cost due to replication [14], [15], whereas SW-based
techniques have no impact on HW cost but incur overheads
that significantly reduce performance [12], [13], [16], [17].

Many SW-based mechanisms and mitigations have been
proposed in the literature [8], [9], [10], [11], [12], [13], [16],
[17], such as defensive programming techniques, SW diver-
sity, and purposely designed test routines.

In this context, SW-Test Libraries (STLs) are widely con-
sidered an effective mechanism to protect against permanent
random HW faults [11], [16], [18], [19], [20], [21], [22]. STLs
are sets of test routines providing high fault coverage and
allowing compliance with well-established functional safety
standards [23], [24].

To achieve high fault coverage, as required by the safety
standards [5], [6], [7], STLs need to be scheduled with
high frequency and this can negatively impact the perfor-
mance of the embedded SW up to the extreme case to
violate its timing constraints, then leading to a critical safety
issue.

The solution proposed in this work is then introduced
to counterbalance this problem enabling the proper usage
of STLs on safety applications which require high com-
puting resources, and, therefore, have an higher number of
HW resources to be tested [17], [25]. This is the typical
case of many SoCs used in ML applications for automotive
where the embedded application cores (for example cluster
of superscalar processors) are required to provide very high
performance. This implies mainly two aspects: 1) the cores
are not configured in lock-step mode not to lose computing
resources and 2) an STL solution is then necessary to enable
fault detection on the processors, then leading to the above
challenge addressed in this paper.

Our proposal is called HUSTLE, a Hardware Unit for STL
Efficient execution. It allows to i) host STL code in its internal
memory and ii) provide STL instructions to the core without
accessing the Memory Subsystem (MS). This way HUSTLE
allows a reduction of the overhead imposed by the execu-
tion of the STL. Besides the basic mechanism, an additional
benefit is brought by a mechanism that exploits architectural
signals to detect the CPU execution unit’s (from now on CPU
for brevity) idle time and use this time to efficiently execute
STL instructions.

This study provides a detailed description of the
implementation of HUSTLE (extending preliminary con-
cepts [26]) and offers an extended experimental campaign
that accounts for the impact on the device area and its power
consumption.

VOLUME 12, 2024

The remainder of this paper is organized as follows.
Section II provides the background, Section III describes
the implementation of HUSTLE, Section IV presents the
details of the experimental campaign, Section V discusses
the results, Section VI provides a post-synthesis evaluation
of the impact on device area and power consumption, and
Section VII reviews the related works found in the literature.
Finally, Section VIII concludes this paper.

Il. BACKGROUND

Safety-critical systems must achieve stringent dependabil-
ity and integrity requirements, imposing constraints on their
design from both hardware and software viewpoints.

To maintain the target integrity level, it is necessary to
implement protection techniques such as STLs, which must
run periodically to monitor the integrity of the system. The
execution of STL must interleave with the execution of the
functional code (payload).

To determine the execution period of an STL the system
designer has to know the required Fault Tolerant Time Inter-
val (FTTI) defined as the “minimum time span from the
occurrence of a fault in an item to a possible occurrence of a
hazardous event, if the safety mechanisms are not activated”
[5]. Knowing the FTTI, the system designer must define the
STL execution period such that faults are detected and han-
dled in a time interval lower than the FTTI. This time interval
is also called the Fault Handling Time Interval (FHTI), and is
composed of two parts: the time necessary to detect a fault,
that is, the Fault Detection Time Interval (FDTI), and the
time necessary to react to the occurrence of a fault, that is,
the Fault Reaction Time Interval (FRTI). In Fig. 1 illustrates
a schematic view of these quantities in relation to the STL
scheduling period.

NO STL SL

WITH STL EDTL ERTI |

£ FAULT
t X HAZARD
/ SAFE STATE

Q FAULT DETECTED

STLTEST

T STL EXECUTION !
PERIOD

FIGURE 1. Schematic representation of the FTTI on the upper, and of the
FHTI, decomposed in FDTI and FRTI in the lower part of the figure.

This continuous interleaving between the payload SW and
STL causes a non-negligible overhead, thereby reducing the
system performance. To offer a simple example, suppose
that there are two tasks: payload tasks, which requires 4
time units to complete, and STL fasksr;,, which requires sz,
time units to complete. To guarantee the correctness of the
system, tasksy;, must be run before each execution of task,.
To precisely define and characterize the overhead incurred
in this execution, we assume that interrupts to be disabled
as serving an interruption cannot be classified as overheads.
Under this assumption, the total time required for one com-
plete execution of the task set is ¢, = t4 + ts71 + t,, where

104729

IEEE Access

N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

OPTIMAL EXECUTION

REAL EXECUTION

I’

FIGURE 2. Scheduling of the two tasks. The white area represents the
execution of taskA, dotted area represents taskSTL, while the black area
the overhead due to hardware-specific events.

tsTL

-to

t,R t

CPUp CPUN

L1 ICache |L1 DCache L1 ICache |L1 DCache

< D
SystemBus I

L2 Cache
‘ : >
MemoryBus I I I
Main Memory DMAq . DMAy

FIGURE 3. Block Diagram representing a generic system composed by N
CPUs, with private instruction and data L1 caches. A shared L2 Cache,
a main memory and DMA devices.

t, is the time spent by the hardware to handle asynchronous
events such as cache misses and mispredictions.

In the computation of z, we consider the effects of many
HW events, such as mispredictions, pipeline stalls, and cache
misses, which can impact the execution time of the task set.
The overhead introduced by the system scheduler to handle
the execution of multiple tasks is not included in t, but is
considered part of 74 and tg7y .

Fig. 2 shows an example of a typical system run. In the
ideal case, t, = 0 as shown in the upper part of Fig. 2.
However, in a real execution, owing to asynchronous events
such as cache misses or branch mispredictions, there are times
in which the CPU is idle, as can be seen from the lower part
of Fig. 2.

In reality #, > 0. In fact, CPUs are likely to be idle,
waiting for instructions from the memory subsystem, for
example, because of instruction cache misses. The amount
of overhead introduced by each cache miss is variable and
depends on the location of the instructions in the memory
hierarchy.

Taking as a reference system the one depicted in Fig. 3,
the instruction may be located in the L1 instruction cache,
L2 cache, or main memory. The higher the level of the
hierarchy that needs to be traversed, the larger the amount

104730

of time required to retrieve the instruction. Moreover, some
resources are shared between the components of the system;
for example, when two cores need to access the L2 cache at
the same instant, they must compete to communicate with
the L2 cache. Consequently, the overhead for retrieving the
instruction increases.

The problem of retrieving instructions from lower levels of
the memory hierarchy arises both for payload and STL execu-
tion. In this study, we attempted to eliminate or reduce 7,,. This
was performed in two steps. First, we provide a solution to
ensure that no overhead is incurred while executing the STL.
Then, we attempt to reduce the portion of overhead incurred
during payload execution.

Ill. HUSTLE
In this Section, we provide a detailed description of how
the problem of the overhead on execution due to retrieving
instructions from the memory hierarchy has been addressed
by leveraging HUSTLE. In Section III-A, we address the
problem of reducing the overhead incurred during the execu-
tion of STL code. In Section III-B, we provide a description
of an enhancement that enables HUSTLE to automati-
cally handle the scheduling of STL tests. In Section III-C,
we describe how, by exploiting an efficient scheduling
mechanism and architectural enhancements to the basic
architecture, we can also reduce the overhead experienced
during payload execution.

We followed two design principles for HUSTLE, which
can be summarized by the following requirements:

1) The solution provided shall not modify the internal
structure of the CPU

2) The solution provided shall not impose constraints on
the STL implementation.

These two design principles allowed us to have the minimum
possible impact on the device area with a low effort for the
integration of HUSTLE in different HW architectures, while
allowing it to be used with different STL implementations.

A. HUSTLE BASIC ARCHITECTURE
To avoid cache misses during STL execution, we propose the
architecture described in Fig. 4.

HUSTLE was placed between the CPU and the Mem-
ory Subsystem (MS). Internally, it has an Internal Memory
(IM) and a ByPass Logic (BPL). The IM is used to store
STL instructions, whereas the BPL orchestrates the commu-
nication between three elements: the CPU, which requests
instructions from the memory; the MS, which handles
requests from the CPU for functional code; and HUSTLE’s
IM, which handles requests related to STL code. The BPL is
completely transparent to the core because it acts as a simple
switch that does not introduce any delay in communication
between the CPU and MS.

This implementation provides a fast and independent chan-
nel to send STL code to the core as it relieves the Memory
Subsystem (MS) from handling STL instructions, as depicted

VOLUME 12, 2024

N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

IEEE Access

HUSTLE
MS :‘: 4L CPU

BPL

¢

M

enable———

FIGURE 4. HUSTLE's Block schema.

in Fig. 5, and fulfills our requirements because it is placed
outside the core and does not impose any constraint on the
design of the STL code.

Indeed, since the proposed architecture is intended to be
used in Safety Critical systems, it is fundamental to consider
potential hazards impacting on systems’ security introduced
by HUSTLE. Surely, if an attacker were able to access the
IM, and manipulate its content arbitrarily, this would cause
severe security threats. Fortunately, traditional solutions for
tackling this kind of issue are applicable to HUSTLE, since
it is not different from any other memory area of the sys-
tem. Thus, one option to secure the IM could be leveraging
the CPU memory protection unit, marking this area as non-
writeable. Moreover, in high-criticality applications, another
solution is to implement the IM as a ROM memory, which
cannot be programmed at runtime. Finally considering also
the possibility that an attacker can gain physical access to the
system, and compromise the IM by breaking the boot process
and ROM programming procedure, additional mechanisms
to authenticate the content of the IM, based for instance
on Hashed Message Authentication Codes (HMAC) can be
implemented in the HUSTLE logic, hardcoding a secure key
within it, making unfeasible for an attacker to arbitrarily
modify the content of HUSTLE IM.

REAL EXECUTION (WITHOUT HUSTLE)

|

HUSTLE BASIC

|

FIGURE 5. Comparison of two executions: one without HUSTLE in the
upper and one with HUSTLE in the lower part of the figure.

tsTL

teHB t

To describe the behavior of HUSTLE during system oper-
ation, a Finite State Machine (FSM), represented in Fig. 6
is provided. It can be observed that it is composed of three
states:

VOLUME 12, 2024

OFF: In this state, HUSTLE is disabled, and the BPL
is completely transparent: the request and response sig-
nals between the CPU and MS pass unmodified through
HUSTLE.

IDLE: In this state, HUSTLE forwards requests and
responses related to the functional code from the CPU to the
MS and vice versa. (this state corresponds to the execution of
the payload code)

OPERATIONAL: In this state, the BPL handles requests
and responses related to non-functional code from the CPU to
the IM and vice versa. (this state corresponds to the execution
of the STL code)

FF ‘

lenable, -

enable, lis_stl_code

enable, lis_stl_code -
@ OPERATlo@
enable, is_stl_code

-, is_stl_code

lenable, -

enable, -

FIGURE 6. Finite State Machine showing the states and the transitions of
HUSTLE module. The arrows are labeled with signals that enable the
firing the state transitions.

This automaton has 2 input signals to drive transitions:

enable: If enable is asserted HUSTLE goes into the IDLE
state becoming active.

is_stl_code: If the is_stl_code signal is asserted when
HUSTLE is in the IDLE state, HUSTLE transitions into
the OPERATIONAL state. The BPL generates this signal by
checking the address of the instructions requested by the core
during the execution. In this basic architecture, in order to
be able to periodically execute the STL, the system designer
must allocate an HW timer or rely on the system scheduler.
Very often, in order to meet the system scheduling constraints
(on the payload SW), the STL cannot be executed all at
once, but the execution needs to be split into several parts.
Moreover, some of the tests included in an STL cannot be
interrupted, therefore careful scheduling of the STL ‘pieces’
has to be defined. Having defined such system-level schedul-
ing, HUSTLE’s role is to respond to CPU requests for the STL
code whenever the scheduler decides to execute parts of the
STL. We refer to this method of using HUSTLE as Passive
mode.

B. HUSTLE'S ENHANCED ARCHITECTURE

HUSTLE allows also a completely different system organiza-
tion: while in Passive mode the system and the scheduler have
visibility of Payload tasks and of the STL task (which resides
in the HUSTLE memory) a new ‘Active mode’ is possible
whereby the entire management and scheduling of the STL is
performed within HUSTLE and the system becomes unaware
of the existence of an STL. In this mode, HUSTLE manages
the scheduling of STL pieces by issuing interrupt requests to
the CPU. This is achieved, as shown in Fig. 7, by adding two
further elements: Interrupt Generation Logic (IGL) and Test
Scheduling Logic (TSL).

104731

IEEE Access

N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

HUSTLE
MS CPU
BPL
=L |

enable—' | IGL |__IRa

FIGURE 7. Enhanced HUSTLE Architecture, the Test Selection Logic (TSL)
is connected to the BPL. The IGL generates interrupt requests to the CPU
with an IRQ signal.

The Interrupt Generation Logic (IGL), which features an
internal timer, needs to be configured by the system designer
in accordance with the required execution period of the STL.
The Test Scheduling Logic (TSL) is designed and imple-
mented to automatically handle the selection of the next
STL fragment to execute. In particular, when the IGL timer
expires, the IGL generates an interrupt request asserting a
dedicated signal that is routed to the CPU interrupt controller
(IRQ). When the core handles the interrupt request and jumps
to the STL code, HUSTLE provides instructions to the CPU
and the BPL asks the TSL the address of the next portion
of the STL to run. When using this execution mode, the
system designer only needs to provide an Interrupt Service
Routine (ISR) to handle the interrupt generated by HUSTLE
and jump to the entry point of the STL, then HUSTLE will
then automatically handle the execution, providing the core
with the appropriate instructions.

Thus, with this enhanced architecture, we have made the
execution of STL almost transparent to the rest of the sys-
tem, providing a mechanism that autonomously handles its
execution.

We want to highlight that when using the Active configu-
ration, it is important to carefully handle interrupt generation
and prioritization to maintain the schedulability of the task
set. In the presence of such interrupts, tasks can be considered
aperiodic by the scheduler. However, consolidated solutions
exist in the state-of-the-art for the scheduling of aperiodic
tasks [27], [28], [29] hence, we argue that it is feasible to
schedule a payload task set given that a proper analysis is
performed. In this study, we did not elaborate on such aspects
further.

C. HUSTLE EFFICIENT SCHEDULING

The HUSTLE’s enhanced architecture allows to alleviate the
overhead due to cache misses or memory access during the
execution of the payload SW by keeping the CPU busy
executing some carefully selected fragments of the STL code
during the time the CPU would otherwise wait for payload
instructions to be retrieved from the MS. If we can provide
STL instructions to the CPU sufficiently fast, without inter-
fering with the MS, while retrieving the payload instructions,

104732

we can optimize the usage of the CPU. Consider the situation
represented in Fig. 8, where a cache miss occurs during the
execution of task,. The CPU handles the cache miss, leaving
the core idle for some time and incrementing the overall
execution time. By exploiting this time executing a portion
of the STL, we can avoid this overhead.

HUSTLE BASIC

|

HUSTLE EFFICIENT SCHEDULING

w
. tsTL

-to

teHE

FIGURE 8. Comparison of the execution with the HUSTLE enhanced
architecture, upper, and HUSTLE efficient scheduling, lower part of the
figure.

To enable this mechanism, we routed the cache miss signal
to HUSTLE’s IGL, slightly modifying the IGL to generate an
interrupt request when a cache miss occurs.

This improved HUSTLE architecture generates interrupts
according to two different modes:

Periodic: The interrupt is generated periodically by using
the internal timer.

Cache Miss Driven: The interrupt is generated in corre-
spondence of a cache miss.

It is important to note that a possible issue that may arise
when using this mechanism is the unpredictable length of the
cache miss resolution time. Indeed, cache misses require a
different amount of time to be resolved depending on the
miss occurring in the L1 or L2 cache. This may impact
the benefits provided by this scheduling mechanism. STL
fragments longer than the cache miss resolution time would
allow the processor to be kept busy all the time, whereas STL
fragments that are shorter than the cache miss resolution time
imply some idle cycle for the processor, but would leave the
execution time of the payload untouched.

Indeed, in an application when most cache misses happen
in the high-level cache our mechanism offers partial bene-
fits, However, considering complex payload SW that cannot
entirely fit into the cache memory, it is not rare that the
code needs to be retrieved directly from the DRAM, causing
relatively long idle times due to misses in the last level of
cache.

In the experimental campaign described in Section 1V,
we demonstrated that it is possible to execute relevant por-
tions of the STL code without impairing the payload response
time.

D. HUSTLE INTEGRATION
To validate HUSTLE, its enhanced architecture, and its mech-
anism to efficiently exploit the idle time of the CPU to execute

VOLUME 12, 2024

N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

IEEE Access

BOOMCore
HUSTLE
L1 ICache |L1 DCache

< >

SystemBus I

L2 Cache

< : >

MemoryBus I

Main Memory

FIGURE 9. Rocket Chip Architecture used in the experimental campaign.
The HUSTLE module is integrated between the BOOMCore and the L1
ICache. A system bus is used to connect the L2 Cache and the Core. The
L2 Cache is connected to the Main Memory using a Memory Bus.

TABLE 1. Boom Core Configuration.

Core width 1

Fetch width (Bytes) 8
ICache size (KB) 16
DCache size (KB) 16
L2 Cache size (KB) 128

Boom Core Configuration Parameters. In this table only a restricted
set of parameters is reported. The complete list of parameters can be
found in [35]

STL instructions, we integrated our solution into a complete
System on Chip (SoC). We selected the Rocket Chip [30],
made available by the Chipyard framework [31]. The frame-
work provides facilities for building a customizable SoC,
including the possibility of choosing between different RISC-
V [32] CPUs architectures. In this work, we selected as the
target CPU architecture the Berkley Out-of-Order Machine
(BOOM) Core [33], [34], [35] a superscalar, highly config-
urable out-of-order application-level CPU.

HUSTLE was placed between the BoomCore and the L1
Instruction Cache, as shown in Fig. 9. The IM size was
configured to 32KB which was enough to host the STLs used
in our experimental campaign.

We selected the SmallBOOM implementation of Boom-
Core, a single pipelined core, TABLE 1 reports some of the
main parameters of this implementation.

To configure the behavior of HUSTLE at runtime, such
as enabling or disabling the module, selecting the execution
mode, and other functionalities described hereafter, we added
some Control and Status Registers (CSR) to the core:

VOLUME 12, 2024

1) HUSTLE_CTRL

Provides basic control functionalities, such as enable/disable,
execution mode selection, and interrupt generation configu-
ration selection.

2) HUSTLE_BASE_ADDRESS
Used to set the address of the entry point of the STL.

3) HUSTLE_TEST_PERIOD

Used to set the period in clock cycles for the execution of STL
fragments when HUSTLE is used in Active mode with the
Periodic interrupt generation configuration.

The addition of these CSRs slightly increased the size of
the register file. However, this simple solution is not the
only possible solution; other solutions exist, such as memory-
mapped registers, which are less intrusive in core design. The
rationale behind this design choice is dictated exclusively
by the simplicity of its implementation within the Chipyard
Framework.

IV. EXPERIMENTAL CAMPAIGN

In this section, we list the technical details of our experimen-
tal campaign. In our experimental campaign, the aim was
to assess the performance benefit obtained using HUSTLE
by comparing a solution without HUSTLE with one with
it (in both Periodic and Cache Miss-Driven Scheduling).
We performed such an evaluation on the target architectures
described in Section IV-A while executing the test suite
described in Section IV-B. Section IV-C describes the exper-
imental setup. Finally, the evaluation metrics are defined in
Section IV-D.

A. TARGET SYSTEM ARCHITECTURE

The experimental campaign was executed using three dif-
ferent configurations of the system architecture. These three
architectures were chosen to allow us to observe the effect
that an increase in the cache miss resolution time may have
on the execution, and how this impacts the benefits provided
by HUSTLE. To this extent, we modified the configuration
of the rocket-chip to introduce interference at two different
points of the MS, the L2 Cache, and the Main Memory.

The first architecture was a single-core architecture, from
now on, SingleCore. In this architecture, the core is the only
device that sends requests to the MS.

The second architecture has two identical CPUs, we will
refer to this architecture in the next sections as DualCore.
Its purpose is to allow the investigation of the effect that the
contention may have in systems with an MS shared between
multiple users, such as, CPUs and DMA devices. This archi-
tecture allows observation of the effect of contention on the
L2 Cache caused by the simultaneous requests of the two
cores to the MS.

Finally, the third architecture has a slower Main Mem-
ory. To this extent, we reduced the MemoryBus frequency

104733

IEEE Access

N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

TABLE 2. Rocket-Chip Architectures.

Architecture
SingleCore | DualCore | SlowMem
CPU Frequency 1.6 GHz 1.6 GHz 1.6 GHz
Number of CPUs 1 2 /
MemoryBus Frequency | 1000MHz 1000MHz | 500MHz

from 1000 to 500 MHz. We refer to this architecture as the
SlowMem architecture.

TABLE 2 reports the details of the three configurations
used in the experimental campaign.

B. TARGET SOFTWARE
The SW stack used for the execution of the tests is composed
of:

o A payload SW, composed of three tasks, namely faskA,
taskB, and taskC, and an idle task. The idle task is
executed after the three tasks when the core waits for
the expiration of the scheduling period.

The three tasks execute the same code; however, the code
of each task was placed in a different memory region. The
SW executed by the three tasks is an enhanced version of the
fillCache SW used in [26], which was enhanced to fill the L2
Cache.

It executes a sequence of heterogeneous instructions, such
as arithmetic operations (integer and floating-point), and
memory accesses. These instructions are sequentially placed
in memory. The fillCache SW allows the MS to be stressed,
generating a large number of cache misses, both in the L1
Instruction Cache and L2 Cache. This was chosen to repro-
duce a worst-case execution scenario for application cores.

e A minimal OS, composed of a boot sequence that per-
forms startup operations and initialization of the rocket
chip, a set of routines used to configure HUSTLE
and handle interrupt requests, and a cyclic executive
scheduler that executes a fixed number of iterations.
The number of iterations is configurable at compilation
time.

e Three different STL implementations. Each STL is
composed of several STL fragments, implemented in
assembly code, that stimulate different modules of the
CPU. STL fragments are sets of test routines executed
sequentially. The STL is provided with a scheduling
API implemented in C to allow the user to select and
execute the desired STL fragment. The three STLs
contain the same test routines but differ in how they
are grouped within different STL fragments.

C. SETTING OF THE EXPERIMENTS

Hereafter, we provide a detailed description of the settings
used in the experimental campaign. The experiments were
performed first to understand how many STL instructions

104734

can be executed while a cache miss is resolved and then
to compare the overhead reduction observed for the three
reference architectures.

To understand how many STL instructions can be executed
while a cache miss is resolved, we use the HUSTLE configu-
ration driven by cache misses, as described in Section III-C.
We focus on a specific cache miss and then vary the size of
the executed STL fragment. This phase of the experimental
campaign was performed only on the SingleCore architecture,
as the validity of the results can be easily extended to other
architectures.

We executed the three tasks by measuring the time nec-
essary to resolve each cache miss that occurred. The Cache
Miss Resolution time is computed as the difference between
the time when the cache miss occurs and the time when the L1
cache makes the instruction available to the Instruction Fetch
Unit of the CPU. We then select a cache miss that requires
a sufficiently long time to be resolved. We then exploit
HUSTLE: when the selected cache miss occurs, we issue an
interrupt request to inject a sequence of instructions during
the cache miss resolution time.

In particular, we selected the 88™ cache miss with a res-
olution time of 320 cycles and repeated the test with an
increasing number of instructions, from 50 to 300 in steps of
50, measuring 1) the number of additional instructions exe-
cuted and 2) the number of additional clock cycles necessary
to complete the execution. The parameter settings for these
experiments are reported in TABLE 3.

In the main experiment, we evaluated different combina-
tions of HUSTLE configurations by executing the test SW
suite described in Section I'V-B on the different HW architec-
tures presented in Section IV-A. The test performed in this
phase aimed to evaluate the HUSTLE execution modes