
Received 4 July 2024, accepted 16 July 2024, date of publication 29 July 2024, date of current version 7 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3434718

Improving the Efficiency of Software-Based Fault
Protection Mechanisms With HUSTLE
NICOLA FERRANTE 1,2, LUCA FANUCCI 1, (Fellow, IEEE), FRANCESCO ROSSI2,
FRANCESCO TERROSI 3, AND ANDREA BONDAVALLI 2,3, (Senior Member, IEEE)
1Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
2ResilTech S.r.l., 56025 Pontedera, Italy
3Department of Mathematics and Informatics, University of Florence, 50134 Florence, Italy

Corresponding author: Nicola Ferrante (nicola.ferrante@phd.unipi.it)

This work was supported in part by Programma Regionale Fondo Europeo di Sviluppo Regionale Toscana 2021–2027 (PR FESR
TOSCANA 2021-2027)-Project GENERIC (‘‘Agile Software Test Libraries Development and Hardware Mechanisms for their Efficient
Execution’’), and in part by Horizon 2020-Marie Skłodowska Curie Actions-Research and Innovation Staff Exchange
(H2020-MSCA-RISE-2018)–Project ADVANCE (‘‘Addressing Verification and Validation Challenges in Future Cyber-Physical
Systems’’). The work of Andrea Bondavalli was supported in part by Ministero Università e Ricerca-Progetti di Rilevante Interesse
Nazionale 2022 (MIUR PRIN 2022)-project S2: Safe and Secure Industrial Internet of Things.

ABSTRACT To achieve confidence in safety-critical systems, requires among others to meet high require-
ments on online testing of computer systems, as dictated by safety standards such as ISO26262, IEC61508,
and CENELEC EN 5012X. Online testing can be performed through the periodic execution of online
SW Test Libraries, which are widely used in safety-related applications as a valuable safety mechanism
to protect against random HW faults. SW Test Libraries introduce a non-negligible overhead on system
performance, exacerbated by the increasing complexity of HW devices. This contrasts with the efforts of
researchers and system designers for developing efficient systems. Reducing this overhead is an important
achievement. We propose here HUSTLE, a Hardware Unit for SW-Test Libraries Efficient execution, which
can be integrated into the chip design with minimummodification to the CPU’s design. HUSTLE contains an
Internal Memory, where the library code is stored, and sends instructions to the CPU, bypassing the Memory
Subsystem. To further improve efficiency, we also propose a scheduling mechanism that allows to exploit the
idle time of the CPU’s execution unit. To show the efficiency gain in supporting the test libraries execution,
we ran some experiments, where a considerable reduction of the overall CPU load was observed. Finally,
remarks regarding the limited impact on the area and power consumption are presented.

INDEX TERMS Error detection, functional testing, on-line testing, safety, SW-test libraries.

I. INTRODUCTION
Innovations in the field of Very Large-Scale Integration
(VLSI) technologies and the advent of novel computing
platforms have made the automation of complex tasks in
constrained domains a reality [1], [2], [3]. The great potential
of these innovations has led to an increasing interest in their
adoption in many safety-critical application domains, such as
the automotive, railway, and industry. These systems must
fulfill the integrity requirements [4] set forth by standards
developed by international committees, such as ISO [5],
CENELEC [6], and IEC [7], with the aim of minimizing the

The associate editor coordinating the review of this manuscript and

approving it for publication was Poki Chen .

risk of potentially catastrophic failures that damage human
life and health. One of the main challenges in enabling the
use of these technologies in safety-critical systems is the
coexistence of three main characteristics: integrity, perfor-
mance, and cost [8], [9], [10]. The lack of proper levels
for one of these properties may lead to drawbacks that may
prevent their adoption. Such challenges become more com-
plex in situations in which a reduction in engineering costs
and time-to-market is required. In such cases, valuable solu-
tions must offer appropriate fault protection and mitigation
mechanisms. Further, such mechanisms are required to be
flexible and do not require heavy modification of the original
design or excessively penalize its performance when applied
in different contexts.

104728

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-3490-0990
https://orcid.org/0000-0001-5426-4974
https://orcid.org/0000-0001-6024-4849
https://orcid.org/0000-0001-7366-6530
https://orcid.org/0000-0003-0749-4181


N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

It is a general requirement from functional safety standards
[5], [6], [7] to enrich the design of an embedded system with
mechanisms (HW or SW or HW/SW) aiming to detect faults
of the HW platform to improve its safe usage.

Fault-tolerance mechanisms can be based on both hard-
ware (HW) and software (SW), each providing different
levels of protection and targeting different failure modes [9],
[10], [11], [12], [13], [14], [15]. HW-based techniques are
faster but require either modifications to the original design or
higher cost due to replication [14], [15], whereas SW-based
techniques have no impact on HW cost but incur overheads
that significantly reduce performance [12], [13], [16], [17].
Many SW-based mechanisms and mitigations have been

proposed in the literature [8], [9], [10], [11], [12], [13], [16],
[17], such as defensive programming techniques, SW diver-
sity, and purposely designed test routines.

In this context, SW-Test Libraries (STLs) are widely con-
sidered an effective mechanism to protect against permanent
randomHWfaults [11], [16], [18], [19], [20], [21], [22]. STLs
are sets of test routines providing high fault coverage and
allowing compliance with well-established functional safety
standards [23], [24].

To achieve high fault coverage, as required by the safety
standards [5], [6], [7], STLs need to be scheduled with
high frequency and this can negatively impact the perfor-
mance of the embedded SW up to the extreme case to
violate its timing constraints, then leading to a critical safety
issue.

The solution proposed in this work is then introduced
to counterbalance this problem enabling the proper usage
of STLs on safety applications which require high com-
puting resources, and, therefore, have an higher number of
HW resources to be tested [17], [25]. This is the typical
case of many SoCs used in ML applications for automotive
where the embedded application cores (for example cluster
of superscalar processors) are required to provide very high
performance. This implies mainly two aspects: 1) the cores
are not configured in lock-step mode not to lose computing
resources and 2) an STL solution is then necessary to enable
fault detection on the processors, then leading to the above
challenge addressed in this paper.

Our proposal is called HUSTLE, a Hardware Unit for STL
Efficient execution. It allows to i) host STL code in its internal
memory and ii) provide STL instructions to the core without
accessing the Memory Subsystem (MS). This way HUSTLE
allows a reduction of the overhead imposed by the execu-
tion of the STL. Besides the basic mechanism, an additional
benefit is brought by a mechanism that exploits architectural
signals to detect the CPU execution unit’s (from now on CPU
for brevity) idle time and use this time to efficiently execute
STL instructions.

This study provides a detailed description of the
implementation of HUSTLE (extending preliminary con-
cepts [26]) and offers an extended experimental campaign
that accounts for the impact on the device area and its power
consumption.

The remainder of this paper is organized as follows.
Section II provides the background, Section III describes
the implementation of HUSTLE, Section IV presents the
details of the experimental campaign, Section V discusses
the results, Section VI provides a post-synthesis evaluation
of the impact on device area and power consumption, and
Section VII reviews the related works found in the literature.
Finally, Section VIII concludes this paper.

II. BACKGROUND
Safety-critical systems must achieve stringent dependabil-
ity and integrity requirements, imposing constraints on their
design from both hardware and software viewpoints.

To maintain the target integrity level, it is necessary to
implement protection techniques such as STLs, which must
run periodically to monitor the integrity of the system. The
execution of STL must interleave with the execution of the
functional code (payload).

To determine the execution period of an STL the system
designer has to know the required Fault Tolerant Time Inter-
val (FTTI) defined as the ‘‘minimum time span from the
occurrence of a fault in an item to a possible occurrence of a
hazardous event, if the safety mechanisms are not activated’’
[5]. Knowing the FTTI, the system designer must define the
STL execution period such that faults are detected and han-
dled in a time interval lower than the FTTI. This time interval
is also called the Fault Handling Time Interval (FHTI), and is
composed of two parts: the time necessary to detect a fault,
that is, the Fault Detection Time Interval (FDTI), and the
time necessary to react to the occurrence of a fault, that is,
the Fault Reaction Time Interval (FRTI). In Fig. 1 illustrates
a schematic view of these quantities in relation to the STL
scheduling period.

FIGURE 1. Schematic representation of the FTTI on the upper, and of the
FHTI, decomposed in FDTI and FRTI in the lower part of the figure.

This continuous interleaving between the payload SW and
STL causes a non-negligible overhead, thereby reducing the
system performance. To offer a simple example, suppose
that there are two tasks: payload taskA, which requires tA
time units to complete, and STL taskSTL , which requires tSTL
time units to complete. To guarantee the correctness of the
system, taskSTL must be run before each execution of taskA.
To precisely define and characterize the overhead incurred
in this execution, we assume that interrupts to be disabled
as serving an interruption cannot be classified as overheads.
Under this assumption, the total time required for one com-
plete execution of the task set is te = tA + tSTL + to, where

VOLUME 12, 2024 104729



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

FIGURE 2. Scheduling of the two tasks. The white area represents the
execution of taskA, dotted area represents taskSTL, while the black area
the overhead due to hardware-specific events.

FIGURE 3. Block Diagram representing a generic system composed by N
CPUs, with private instruction and data L1 caches. A shared L2 Cache,
a main memory and DMA devices.

to is the time spent by the hardware to handle asynchronous
events such as cache misses and mispredictions.

In the computation of to we consider the effects of many
HW events, such as mispredictions, pipeline stalls, and cache
misses, which can impact the execution time of the task set.
The overhead introduced by the system scheduler to handle
the execution of multiple tasks is not included in to but is
considered part of tA and tSTL .
Fig. 2 shows an example of a typical system run. In the

ideal case, to = 0 as shown in the upper part of Fig. 2.
However, in a real execution, owing to asynchronous events
such as cachemisses or branchmispredictions, there are times
in which the CPU is idle, as can be seen from the lower part
of Fig. 2.

In reality to > 0. In fact, CPUs are likely to be idle,
waiting for instructions from the memory subsystem, for
example, because of instruction cache misses. The amount
of overhead introduced by each cache miss is variable and
depends on the location of the instructions in the memory
hierarchy.

Taking as a reference system the one depicted in Fig. 3,
the instruction may be located in the L1 instruction cache,
L2 cache, or main memory. The higher the level of the
hierarchy that needs to be traversed, the larger the amount

of time required to retrieve the instruction. Moreover, some
resources are shared between the components of the system;
for example, when two cores need to access the L2 cache at
the same instant, they must compete to communicate with
the L2 cache. Consequently, the overhead for retrieving the
instruction increases.

The problem of retrieving instructions from lower levels of
the memory hierarchy arises both for payload and STL execu-
tion. In this study, we attempted to eliminate or reduce to. This
was performed in two steps. First, we provide a solution to
ensure that no overhead is incurred while executing the STL.
Then, we attempt to reduce the portion of overhead incurred
during payload execution.

III. HUSTLE
In this Section, we provide a detailed description of how
the problem of the overhead on execution due to retrieving
instructions from the memory hierarchy has been addressed
by leveraging HUSTLE. In Section III-A, we address the
problem of reducing the overhead incurred during the execu-
tion of STL code. In Section III-B, we provide a description
of an enhancement that enables HUSTLE to automati-
cally handle the scheduling of STL tests. In Section III-C,
we describe how, by exploiting an efficient scheduling
mechanism and architectural enhancements to the basic
architecture, we can also reduce the overhead experienced
during payload execution.

We followed two design principles for HUSTLE, which
can be summarized by the following requirements:

1) The solution provided shall not modify the internal
structure of the CPU

2) The solution provided shall not impose constraints on
the STL implementation.

These two design principles allowed us to have the minimum
possible impact on the device area with a low effort for the
integration of HUSTLE in different HW architectures, while
allowing it to be used with different STL implementations.

A. HUSTLE BASIC ARCHITECTURE
To avoid cache misses during STL execution, we propose the
architecture described in Fig. 4.

HUSTLE was placed between the CPU and the Mem-
ory Subsystem (MS). Internally, it has an Internal Memory
(IM) and a ByPass Logic (BPL). The IM is used to store
STL instructions, whereas the BPL orchestrates the commu-
nication between three elements: the CPU, which requests
instructions from the memory; the MS, which handles
requests from the CPU for functional code; and HUSTLE’s
IM, which handles requests related to STL code. The BPL is
completely transparent to the core because it acts as a simple
switch that does not introduce any delay in communication
between the CPU and MS.

This implementation provides a fast and independent chan-
nel to send STL code to the core as it relieves the Memory
Subsystem (MS) from handling STL instructions, as depicted

104730 VOLUME 12, 2024



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

FIGURE 4. HUSTLE’s Block schema.

in Fig. 5, and fulfills our requirements because it is placed
outside the core and does not impose any constraint on the
design of the STL code.

Indeed, since the proposed architecture is intended to be
used in Safety Critical systems, it is fundamental to consider
potential hazards impacting on systems’ security introduced
by HUSTLE. Surely, if an attacker were able to access the
IM, and manipulate its content arbitrarily, this would cause
severe security threats. Fortunately, traditional solutions for
tackling this kind of issue are applicable to HUSTLE, since
it is not different from any other memory area of the sys-
tem. Thus, one option to secure the IM could be leveraging
the CPU memory protection unit, marking this area as non-
writeable. Moreover, in high-criticality applications, another
solution is to implement the IM as a ROM memory, which
cannot be programmed at runtime. Finally considering also
the possibility that an attacker can gain physical access to the
system, and compromise the IM by breaking the boot process
and ROM programming procedure, additional mechanisms
to authenticate the content of the IM, based for instance
on Hashed Message Authentication Codes (HMAC) can be
implemented in the HUSTLE logic, hardcoding a secure key
within it, making unfeasible for an attacker to arbitrarily
modify the content of HUSTLE IM.

FIGURE 5. Comparison of two executions: one without HUSTLE in the
upper and one with HUSTLE in the lower part of the figure.

To describe the behavior of HUSTLE during system oper-
ation, a Finite State Machine (FSM), represented in Fig. 6
is provided. It can be observed that it is composed of three
states:

OFF: In this state, HUSTLE is disabled, and the BPL
is completely transparent: the request and response sig-
nals between the CPU and MS pass unmodified through
HUSTLE.
IDLE: In this state, HUSTLE forwards requests and

responses related to the functional code from the CPU to the
MS and vice versa. (this state corresponds to the execution of
the payload code)
OPERATIONAL: In this state, the BPL handles requests

and responses related to non-functional code from the CPU to
the IM and vice versa. (this state corresponds to the execution
of the STL code)

FIGURE 6. Finite State Machine showing the states and the transitions of
HUSTLE module. The arrows are labeled with signals that enable the
firing the state transitions.

This automaton has 2 input signals to drive transitions:
enable: If enable is asserted HUSTLE goes into the IDLE

state becoming active.
is_stl_code: If the is_stl_code signal is asserted when

HUSTLE is in the IDLE state, HUSTLE transitions into
the OPERATIONAL state. The BPL generates this signal by
checking the address of the instructions requested by the core
during the execution. In this basic architecture, in order to
be able to periodically execute the STL, the system designer
must allocate an HW timer or rely on the system scheduler.
Very often, in order to meet the system scheduling constraints
(on the payload SW), the STL cannot be executed all at
once, but the execution needs to be split into several parts.
Moreover, some of the tests included in an STL cannot be
interrupted, therefore careful scheduling of the STL ‘pieces’
has to be defined. Having defined such system-level schedul-
ing, HUSTLE’s role is to respond to CPU requests for the STL
code whenever the scheduler decides to execute parts of the
STL. We refer to this method of using HUSTLE as Passive
mode.

B. HUSTLE’S ENHANCED ARCHITECTURE
HUSTLE allows also a completely different system organiza-
tion: while in Passive mode the system and the scheduler have
visibility of Payload tasks and of the STL task (which resides
in the HUSTLE memory) a new ‘Active mode’ is possible
whereby the entire management and scheduling of the STL is
performed within HUSTLE and the system becomes unaware
of the existence of an STL. In this mode, HUSTLE manages
the scheduling of STL pieces by issuing interrupt requests to
the CPU. This is achieved, as shown in Fig. 7, by adding two
further elements: Interrupt Generation Logic (IGL) and Test
Scheduling Logic (TSL).

VOLUME 12, 2024 104731



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

FIGURE 7. Enhanced HUSTLE Architecture, the Test Selection Logic (TSL)
is connected to the BPL. The IGL generates interrupt requests to the CPU
with an IRQ signal.

The Interrupt Generation Logic (IGL), which features an
internal timer, needs to be configured by the system designer
in accordance with the required execution period of the STL.
The Test Scheduling Logic (TSL) is designed and imple-
mented to automatically handle the selection of the next
STL fragment to execute. In particular, when the IGL timer
expires, the IGL generates an interrupt request asserting a
dedicated signal that is routed to the CPU interrupt controller
(IRQ).When the core handles the interrupt request and jumps
to the STL code, HUSTLE provides instructions to the CPU
and the BPL asks the TSL the address of the next portion
of the STL to run. When using this execution mode, the
system designer only needs to provide an Interrupt Service
Routine (ISR) to handle the interrupt generated by HUSTLE
and jump to the entry point of the STL, then HUSTLE will
then automatically handle the execution, providing the core
with the appropriate instructions.

Thus, with this enhanced architecture, we have made the
execution of STL almost transparent to the rest of the sys-
tem, providing a mechanism that autonomously handles its
execution.

We want to highlight that when using the Active configu-
ration, it is important to carefully handle interrupt generation
and prioritization to maintain the schedulability of the task
set. In the presence of such interrupts, tasks can be considered
aperiodic by the scheduler. However, consolidated solutions
exist in the state-of-the-art for the scheduling of aperiodic
tasks [27], [28], [29] hence, we argue that it is feasible to
schedule a payload task set given that a proper analysis is
performed. In this study, we did not elaborate on such aspects
further.

C. HUSTLE EFFICIENT SCHEDULING
The HUSTLE’s enhanced architecture allows to alleviate the
overhead due to cache misses or memory access during the
execution of the payload SW by keeping the CPU busy
executing some carefully selected fragments of the STL code
during the time the CPU would otherwise wait for payload
instructions to be retrieved from the MS. If we can provide
STL instructions to the CPU sufficiently fast, without inter-
fering with the MS, while retrieving the payload instructions,

we can optimize the usage of the CPU. Consider the situation
represented in Fig. 8, where a cache miss occurs during the
execution of taskA. The CPU handles the cache miss, leaving
the core idle for some time and incrementing the overall
execution time. By exploiting this time executing a portion
of the STL, we can avoid this overhead.

FIGURE 8. Comparison of the execution with the HUSTLE enhanced
architecture, upper, and HUSTLE efficient scheduling, lower part of the
figure.

To enable this mechanism, we routed the cache miss signal
to HUSTLE’s IGL, slightly modifying the IGL to generate an
interrupt request when a cache miss occurs.

This improved HUSTLE architecture generates interrupts
according to two different modes:
Periodic: The interrupt is generated periodically by using

the internal timer.
Cache Miss Driven: The interrupt is generated in corre-

spondence of a cache miss.
It is important to note that a possible issue that may arise

when using this mechanism is the unpredictable length of the
cache miss resolution time. Indeed, cache misses require a
different amount of time to be resolved depending on the
miss occurring in the L1 or L2 cache. This may impact
the benefits provided by this scheduling mechanism. STL
fragments longer than the cache miss resolution time would
allow the processor to be kept busy all the time, whereas STL
fragments that are shorter than the cache miss resolution time
imply some idle cycle for the processor, but would leave the
execution time of the payload untouched.

Indeed, in an application when most cache misses happen
in the high-level cache our mechanism offers partial bene-
fits, However, considering complex payload SW that cannot
entirely fit into the cache memory, it is not rare that the
code needs to be retrieved directly from the DRAM, causing
relatively long idle times due to misses in the last level of
cache.

In the experimental campaign described in Section IV,
we demonstrated that it is possible to execute relevant por-
tions of the STL code without impairing the payload response
time.

D. HUSTLE INTEGRATION
To validate HUSTLE, its enhanced architecture, and its mech-
anism to efficiently exploit the idle time of the CPU to execute

104732 VOLUME 12, 2024



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

FIGURE 9. Rocket Chip Architecture used in the experimental campaign.
The HUSTLE module is integrated between the BOOMCore and the L1
ICache. A system bus is used to connect the L2 Cache and the Core. The
L2 Cache is connected to the Main Memory using a Memory Bus.

TABLE 1. Boom Core Configuration.

STL instructions, we integrated our solution into a complete
System on Chip (SoC). We selected the Rocket Chip [30],
made available by the Chipyard framework [31]. The frame-
work provides facilities for building a customizable SoC,
including the possibility of choosing between different RISC-
V [32] CPUs architectures. In this work, we selected as the
target CPU architecture the Berkley Out-of-Order Machine
(BOOM) Core [33], [34], [35] a superscalar, highly config-
urable out-of-order application-level CPU.

HUSTLE was placed between the BoomCore and the L1
Instruction Cache, as shown in Fig. 9. The IM size was
configured to 32KB which was enough to host the STLs used
in our experimental campaign.

We selected the SmallBOOM implementation of Boom-
Core, a single pipelined core, TABLE 1 reports some of the
main parameters of this implementation.

To configure the behavior of HUSTLE at runtime, such
as enabling or disabling the module, selecting the execution
mode, and other functionalities described hereafter, we added
some Control and Status Registers (CSR) to the core:

1) HUSTLE_CTRL
Provides basic control functionalities, such as enable/disable,
execution mode selection, and interrupt generation configu-
ration selection.

2) HUSTLE_BASE_ADDRESS
Used to set the address of the entry point of the STL.

3) HUSTLE_TEST_PERIOD
Used to set the period in clock cycles for the execution of STL
fragments when HUSTLE is used in Active mode with the
Periodic interrupt generation configuration.

The addition of these CSRs slightly increased the size of
the register file. However, this simple solution is not the
only possible solution; other solutions exist, such as memory-
mapped registers, which are less intrusive in core design. The
rationale behind this design choice is dictated exclusively
by the simplicity of its implementation within the Chipyard
Framework.

IV. EXPERIMENTAL CAMPAIGN
In this section, we list the technical details of our experimen-
tal campaign. In our experimental campaign, the aim was
to assess the performance benefit obtained using HUSTLE
by comparing a solution without HUSTLE with one with
it (in both Periodic and Cache Miss-Driven Scheduling).
We performed such an evaluation on the target architectures
described in Section IV-A while executing the test suite
described in Section IV-B. Section IV-C describes the exper-
imental setup. Finally, the evaluation metrics are defined in
Section IV-D.

A. TARGET SYSTEM ARCHITECTURE
The experimental campaign was executed using three dif-
ferent configurations of the system architecture. These three
architectures were chosen to allow us to observe the effect
that an increase in the cache miss resolution time may have
on the execution, and how this impacts the benefits provided
by HUSTLE. To this extent, we modified the configuration
of the rocket-chip to introduce interference at two different
points of the MS, the L2 Cache, and the Main Memory.

The first architecture was a single-core architecture, from
now on, SingleCore. In this architecture, the core is the only
device that sends requests to the MS.

The second architecture has two identical CPUs, we will
refer to this architecture in the next sections as DualCore.
Its purpose is to allow the investigation of the effect that the
contention may have in systems with an MS shared between
multiple users, such as, CPUs and DMA devices. This archi-
tecture allows observation of the effect of contention on the
L2 Cache caused by the simultaneous requests of the two
cores to the MS.

Finally, the third architecture has a slower Main Mem-
ory. To this extent, we reduced the MemoryBus frequency

VOLUME 12, 2024 104733



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

TABLE 2. Rocket-Chip Architectures.

from 1000 to 500 MHz. We refer to this architecture as the
SlowMem architecture.

TABLE 2 reports the details of the three configurations
used in the experimental campaign.

B. TARGET SOFTWARE
The SW stack used for the execution of the tests is composed
of:

• A payload SW, composed of three tasks, namely taskA,
taskB, and taskC, and an idle task. The idle task is
executed after the three tasks when the core waits for
the expiration of the scheduling period.

The three tasks execute the same code; however, the code
of each task was placed in a different memory region. The
SW executed by the three tasks is an enhanced version of the
fillCache SW used in [26], which was enhanced to fill the L2
Cache.

It executes a sequence of heterogeneous instructions, such
as arithmetic operations (integer and floating-point), and
memory accesses. These instructions are sequentially placed
in memory. The fillCache SW allows the MS to be stressed,
generating a large number of cache misses, both in the L1
Instruction Cache and L2 Cache. This was chosen to repro-
duce a worst-case execution scenario for application cores.

• A minimal OS, composed of a boot sequence that per-
forms startup operations and initialization of the rocket
chip, a set of routines used to configure HUSTLE
and handle interrupt requests, and a cyclic executive
scheduler that executes a fixed number of iterations.
The number of iterations is configurable at compilation
time.

• Three different STL implementations. Each STL is
composed of several STL fragments, implemented in
assembly code, that stimulate different modules of the
CPU. STL fragments are sets of test routines executed
sequentially. The STL is provided with a scheduling
API implemented in C to allow the user to select and
execute the desired STL fragment. The three STLs
contain the same test routines but differ in how they
are grouped within different STL fragments.

C. SETTING OF THE EXPERIMENTS
Hereafter, we provide a detailed description of the settings
used in the experimental campaign. The experiments were
performed first to understand how many STL instructions

can be executed while a cache miss is resolved and then
to compare the overhead reduction observed for the three
reference architectures.

To understand howmany STL instructions can be executed
while a cache miss is resolved, we use the HUSTLE configu-
ration driven by cache misses, as described in Section III-C.
We focus on a specific cache miss and then vary the size of
the executed STL fragment. This phase of the experimental
campaignwas performed only on the SingleCore architecture,
as the validity of the results can be easily extended to other
architectures.

We executed the three tasks by measuring the time nec-
essary to resolve each cache miss that occurred. The Cache
Miss Resolution time is computed as the difference between
the timewhen the cachemiss occurs and the timewhen the L1
cache makes the instruction available to the Instruction Fetch
Unit of the CPU. We then select a cache miss that requires
a sufficiently long time to be resolved. We then exploit
HUSTLE: when the selected cache miss occurs, we issue an
interrupt request to inject a sequence of instructions during
the cache miss resolution time.

In particular, we selected the 88th cache miss with a res-
olution time of 320 cycles and repeated the test with an
increasing number of instructions, from 50 to 300 in steps of
50, measuring 1) the number of additional instructions exe-
cuted and 2) the number of additional clock cycles necessary
to complete the execution. The parameter settings for these
experiments are reported in TABLE 3.

In the main experiment, we evaluated different combina-
tions of HUSTLE configurations by executing the test SW
suite described in Section IV-B on the different HW architec-
tures presented in Section IV-A. The test performed in this
phase aimed to evaluate the HUSTLE execution modes for
the STL described in Section III. Before entering into the
details of the setting of the experiments, we need to define
two fundamental parameters: the Safety Period and the STL
Scheduling Mode.
Safety Period (SP): SP denotes the STL scheduling period.

To evaluate the impact of this parameter, we selected two
SP: 10ms, and 1ms. Recall that SP is not a free parame-
ter that can be chosen arbitrarily but needs to be derived
through an accurate safety analysis and is strongly application
dependent. Here, the SP values were selected considering
the reasonable application requirements for state-of-the-art
automotive applications.

Note that SP is the time interval in which the STL
must be entirely executed to guarantee its nominal pro-
tection level. The fragments composing the STL can then
be executed all at once in a single invocation or split
into many parts whose execution is spread throughout
the SP.
STL Scheduling Mode (SM): To explore the different pos-

sibilities enabled by HUSTLE to schedule STL, we chose the
following scheduling modes:

• Standard (STD): the STL is executed periodically, with-
out using HUSTLE.

104734 VOLUME 12, 2024



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

TABLE 3. Parameters settings for the first Phase of Experimental
Campaign.

• HUSTLE_Periodic (HP): HUSTLE is in Active execu-
tion mode, in Periodic Configuration, and

• HUSTLE_Cache_Miss_Driven (HCM ): HUSTLE is in
Active execution mode in the Cache-Miss-Driven
configuration.

Note that in STD, the C API provided by the STL is
used for the selection of STL Tests to execute, whereas
in HP and HCM this is accomplished by HUSTLE’s
TSL.

TABLE 4 reports the parameter settings for this phase of
the experimental campaign. Note that in the DualCore con-
figuration, the first core executes the payload SW, whereas
the second one executes a workload composed of a single
task which perform continuously read operations, to ensure
that L2 cache interference between the two cores is properly
activated.

Finally, we provide a comparison of HUSTLE with an
alternative approach, that is using a larger instruction cache.
In this experiment we modified the SingleCore architecture,
by removing HUSTLE and increasing the IC size to 32KB
and 64KB.

The experiments were executed with an RTL simulator of
the Rocket Chip. Each simulation lasts for 10ms of simulated
time, after which a timeout expired and stopped the simula-
tion. The configuration of the SoC is the default configuration
provided in the Chipyard Framework. Synopsys VCS was
used to compile the RTL.

D. EVALUATION METRICS
HUSTLE was evaluated by executing a test suite and observ-
ing howCPU utilizationwas affected by the usage of different
execution modes in different execution scenarios. The results
obtained from these experiments were compared with an
execution with standard STL scheduling (without HUSTLE).

Hereafter, we report the definition of the metrics used
during our experimental campaign:
Response Time Increase (1RT): This metric is used in the

first phase of the experimental campaign and is computed as
the difference between the time t necessary to execute the
workload, and time spent to execute the same workload plus
the STL code (tSTL). Thus 1RT = tSTL -t.
CPU Load (U): This metric is used in the main experiment,

and it is computed as the time t spent by the CPU in executing
its workload, that is, the task set, OS, and STL, divided by the
total execution time tTOT . Thus U = t/tTOT.

TABLE 4. Main experiment Parameters Settings.

V. RESULTS
In this section, we discuss the results of our experimental
campaign.

A. STL EXECUTION DURING A CACHE MISS
The results obtained are reported in Fig. 10 and highlight that
if a cache miss takes enough time to be resolved, a consider-
able number of instructions can be executed while the core is
waiting for instruction retrieval from the main memory. The
figure shows that, in a cachemiss resolution time of 320 clock
cycles, a stream of up to 200 instructions can be injected and
executed without any increase in the response time.

Consider that 20 instructions are needed by the ISR to
handle the interrupt request, and additional clock cycles are
wasted because of the pipeline flush that occurs when an
interrupt request is served and after the return from the ISR.
However, a large part of the cache miss resolution time can
be profitably used for the STL code. This is a remarkable
result showing that exploiting HUSTLE cache miss-driven
configuration allows the execution of significant fragments
of the STL code without any increase in the response time of
the payload SW.

B. MAIN EXPERIMENT
The main experimental campaign has the objective of observ-
ing the impact on the CPULoad of using different Scheduling
Modes provided by HUSTLE in combination with different
Safety Periods, comparing the results with an execution with-
out HUSTLE.

1) SingleCore
The results of the simulation campaign for the SingleCore
architecture are reported in TABLE 5. We can see that the
CPU Load (U) always decreases when HUSTLE is used,
this is expected since, when using HUSTLE, the overhead
of the C API is removed and the STL Test scheduling does
not require additional instructions, since it is accomplished
automatically by HUSTLE. Moreover, instruction retrieval
fromHUSTLE’s Internal Memory does not suffer from cache

VOLUME 12, 2024 104735



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

FIGURE 10. Results of the first phase of the experimental campaign, the
line represents the response time increase varying the number of STL
instructions injected.

misses. We can see that by changing the SP, the CPU Load
increases significantly when using the STD schedulingmode.
Additionally, increasing the FS may lead to the impossibility
of scheduling the task set together with the STL. Conversely,
this problem never arises when HUSTLE is enabled.

With a 1ms SP, the STD scheduling strategy can still be
used with the default configuration, but does not support a
reduced Fragment Size. HUSTLE allows to save more than
4% of the CPU Load in the default fragment size and allows
to run easily shorter fragments. The lowest values of CPU
load are concentrated in the row corresponding to the HCM
scheduling mode.

Note that when the Fragment Size decreases, the CPU load
increases in the STD and HP scheduling modes, whereas it
remains essentially constant in the HCM scheduling mode; in
particular, with a 1ms SP and a Fragment Size of 50 instruc-
tions, a decrease in CPU Load is observed. This is expected
because smaller Fragments of the STL are more likely to fit
the execution during the time span when payload instructions
are fetched from the MS.

Because we do not perform any selection of the cache
misses, some overhead is expected owing to some cache
misses with a fast resolution time (observed in the order of
20 clock cycles for L1 cache misses that hit L2 cache).

2) DualCore
The results of the simulation for the DualCore architecture
are presented in V-B3. We can notice that the contention on
the L2 Cache, caused by the addition of one core, brings
a substantial degradation of the system performance, which
can already be observed in the baseline execution, where
an increase in the CPU load of 5.69% is observed. Never-
theless, the results of the experiments were consistent with
those observed in the previous case. Only the contention on
the L2 Cache experienced in this architecture results in one
additional case in which the CPU is overloaded. VI

Moreover, focusing on the results for an SP of 10ms,
in the experiment with a Fragment Size of 850 instructions,
the HCM configuration showed slightly worse results than the
HP configuration. Analyzing the simulation results, we found

TABLE 5. CPU Load (U) on SingleCore Architecture.

TABLE 6. CPU Load (U) on DualCore Architecture.

that this fluctuation is due to the effects of L2 cache con-
tention, causing an increase in the execution time, mostly
concentrated on OS routines; however, the CPU load is still
lower than in the STD scheduling mode. With SP of 1ms the
HCM shows a decreasing CPU load for a smaller fragment
size.

3) SlowMem
The results of the simulation for the SlowMem architec-
ture are presented in TABLE 7. In this architecture, the
performance degradation was the most significant of the
experimental campaign. The number of cases where CPU
overload occurred increased to 7 out of 18. Here, we can
observe that when the SP is 1ms, standard scheduling always
fails, whereas when using HUSTLE, we are still able to
maintain some margin.

In this architecture, the HCM configuration shows a
decreasing CPU load at a lower fragment size for both the SP
cases. This may depend on the fact that, in this configuration,
cache misses take, on average, more time to be resolved. This
allows to fit in this time larger portions of the STL fragment
execution. In Fig. 11, the average cache miss resolution time
is reported for the three architectures. This was measured on
the baseline execution, that is, that with only the payload SW
in execution.

Consistently with the experiments performed when the
cache miss resolution time is higher, HUSTLE with cache

104736 VOLUME 12, 2024



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

TABLE 7. CPU Load (U) on SlowMem Architecture.

FIGURE 11. Average cache miss resolution time in the different
architectures.

miss-driven scheduling combinedwith a small STL Fragment
Size is more beneficial.

C. COMPARISON WITH LARGER CACHE SIZE
An additional study compares HUSTLE with different CPU
implementations with an increased L1 instruction cache size
(32KB and 64KB). This is done to consider the potential
benefit of using the resources of the HUSTLE internal mem-
ory to increase the L1 cache size instead of having it as
part of additional HW adopted for HUSTLE. In this context
we executed the STL with the STD scheduling mode. The
results of the experiments are reported in TABLE 8. As can be
noted. Increasing the IC size reduces the baseline execution
time. However, this HW configuration performs better than
HUSTLE just in one experiment, the one with largest cache
(64KB), and FS of 850 instructions. This happens because of
a reduction of the baseline execution time. However, when
reducing the FS or decreasing the SP, HUSTLE performs
better in every other experiment. This is expected since, dif-
ferently from cache memory, the IM provides an independent
channel, which hosts the STL code without replacing it.

VI. POST-SYNTHESYS ASSESSMENT
In addition to evaluating the performance benefits of HUS-
TLE through the experimental campaign described above,
we also evaluated its impact in terms of overhead on the chip
area and power consumption.

To assess the overhead onHWarea, we synthesized the two
variants of the Small CPU implementation, with and without
HUSTLE, on FPGA using Xilinx Vivado 2022.2. The tar-
get device selected is the UltraScale+ MPSoC, in particular
the xczu7ev device. The selected target clock frequency is
100MHz.

The overhead on power consumption was evaluated using
vector-less power analysis, by varying the input toggle rates.
The analysis was performed using the Power Report tool,
integrated into Xilinx Vivado 2022.2. The measurements of
power consumption are taken in four different situations:
1) when the CPU is not equipped with HUSTLE, 2) when the
CPU is equipped with HUSTLE and the module is in OFF
state, 3) when the CPU is equipped with HUSTLE and the
module is in IDLE state, and 4) when the CPU is equipped
with HUSTLE and the module is in OPERATIONAL state,
by setting the signals shown in Fig. 6 accordingly.
The metrics used for this post-synthesis evaluation are as

follows:
Resource Usage (RU): The Resource Usage (RU) is com-

puted as the percentage of HW resources available in the
FPGA that have been used to synthesize the chip.
Power Overhead (PO): The Power Overhead (PO) is com-

puted as the overhead due to the addition of HUSTLE on
the power consumption of the synthesized chip. We define
P as the power consumption of the chip without HUSTLE,
and Ph as the Power consumption of the chip implementation
integrating HUSTLE; thus, PO = 1 - (P / Ph).

A. HW RESOURCE USAGE
By analyzing the synthesis results, we found that the rel-
ative increase in BoomTile’s resource usage owing to the
integration of the HUSTLE mechanism was relatively low,
as shown in Fig. 12. Indeed, the HUSTLE module increases
the number of LUTs and FF by less than 1%, whereas DSP
and LUTRAM have not increased. The highest increase is of
2.5% in the BRAMs usage, which rises from 3.53% to 6%.
This is expected since the HUSTLE module is equipped with
an internal memory of 32KB, and the L1 instruction and data
cache have both 16KB size.

B. POWER CONSUMPTION
The results of the overhead of HUSTLE on the CPU power
consumption are shown in Fig. 13. It can be noted that the
overhead on power consumption incurred due to the addition
of HUSTLE is around 2% when it is OFF or IDLE. Indeed,
the two corresponding lines in the chart are overlapped, from
a deeper investigation we found that the most of the power
consumption in the these two states is accountable to the
IM, since no clock gating techniques have been applied, it is
always turned on, and consume some power even when the
HUSTLE module is turned OFF. Instead, when the module
is in the OPERATIONAL state, the overhead increases to
around 12%. As it is shown, increasing the Toggle Rate of
the BoomTile input signals does not seems to have signif-
icant impact on the power consumption neither on the PO.

VOLUME 12, 2024 104737



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

TABLE 8. CPU Load (U) Comparison of HUSTLE with a solution with increasing IC Size on SingleCore Architecture.

TABLE 9. Comparison of Hustle with other state of the art techniques.

FIGURE 12. Measured FPGA resource usage. The blue columns are used
for values measured in a CPU implementation without HUSTLE and the
orange column for one with HUSTLE.

Note that, the portion of time in which HUSTLE is in the
OPERATIONAL state depends on the Safety Period of the
STL, and on the time needed to execute it. Hence the overall
increase in power consumption it is likely to be lower than
the one measured in the OPERATIONAL state.

VII. RELATED WORKS
Permanent HW fault protection techniques for modern CPUs
can be resumed into three main categories: Built-in Self-Tests

FIGURE 13. Results for Power consumption and PO. The left axis refers to
the column chart whereas the right axis refers to the superimposed line
chart.

(BIST) [11], Lock-Step [14], and STLs [16]. The high impact
on area and power consumption of the former two, and their
higher design effort, have led to the spreading of STLs. This
widespread use of STLs [16], [23], calls for provisions to
diminish the overhead induced by their execution. A common
approach is to reduce the test execution time by exploiting test
compaction procedures [36]. However, this does not reduce
the overhead caused by the interleaving of payload SW, and
STL. We found only one study [37] that attempted to achieve
this using scheduling mechanisms. The solution proposed
in [37] assumes that spare CPUs are available and leverages

104738 VOLUME 12, 2024



N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

the OS to perform task migration, while one CPU executes
STL test routines.We did not find anywork that exploited idle
times in the CPU by executing fragments of STL code. Using
dedicated HW support to accelerate software operations is
a common approach [38]. On this basis, however, we found
only two works [39], [40] that adopted dedicated HW support
for self-testing by storing STL instructions in dedicatedmem-
ory. In these studies, the authors focused on implementing
hardware support that can store test codes and data. In both
studies, the tested CPU transitioned to a test mode that made it
unavailable to the system for the entire duration of the tests.
In [39] the STL was encoded with specific test generation
procedures, and the test mode was entered by means of an
ISR. In [40] the test mode required a core to implement check-
pointing. Differently from [39] and [40] we did not limit to
providing a HW support with dedicated memory, but also the
logic to implement specific scheduling strategies (periodic
and cache miss-driven), without the need for a dedicated test
mode, nor requiring specific HW features to be available, and
without imposing constraints on the STL implementation.
In TABLE 9 a comparison of HUSTLE with state-of-the-art
techniques is reported.

VIII. CONCLUSION
In this work, we presented HUSTLE, an HW module that
allows efficient execution of STL code. We explained and
detailed the architecture and behavior of HUSTLE and made
experiments to assess to which extent HUSTLE can be used
to execute STL instructions without increasing the response
time of tasks in payload SW. We also evaluated its benefits in
terms of CPU load reduction in three different chip architec-
tures using the different STL execution modes provided by
HUSTLE.

From the experiments performed, we observed that the use
of HUSTLE to execute STL always reduced the CPU Load.
The benefits provided by the proposed solution increase when
the scheduling frequency of the STL and average cache miss
resolution time increase.

The experiments also confirmed that, in most cases, the
reduction in CPU utilization can be further improved by
using the proposed cache miss-driven interrupt generation
mechanism to execute STL instruction, instead of periodic
STL scheduling. The benefits of this STL execution mode
are strongly dependent on the choice of cache misses and
their resolution time. Finally, we considered the impact on the
device area and power consumption, showing that HUSTLE
has a low impact on the area (most of which is due to the
IM for storing the STL Test instructions), and a very limited
increase in power consumption, making this solution appli-
cable to systems with a limited budget for power and area.

HUSTLE represents an improvement in the state of the art
because it reduces the overhead caused by the interleaving
of STL code and payload SW and provides a way to execute
STL SW without increasing the task response time. This is
achieved with no constraints on the implementation of the

STL fragments and with minimal modification to the CPU
design.

The proposed solution is flexible, since it is not tied to any
specific ISA or CPU architecture.We exploited resources that
are generally available in most of the modern CPU cores,
hence, we argue that HUSTLE is applicable to many others
CPU architectures, which can be used in a large variety of
Safety Critical Systems. Moreover, since the STL size is
tightly coupled to the amount of logic to stimulate, the size
of the IM can be adjusted to fit the needs of the target CPU,
allowing our solution to be scaled according to the system
complexity.

Additionally, even if HUSTLE has been tailored for STLs,
we argue that this kind of mechanism can be applicable to any
other non-functional code, e.g., interrupt handlers, pieces of
drivers and snippets of hypervisor and trusted firmware code.
In general, this mechanism is designed to reduce the overhead
caused by the interleaving of functional and non-functional
code, and to reduce the inactive processor time. This is done
by transforming a periodic task into an aperiodic one and
breaking it down into many smaller pieces. Indeed, the choice
of applying this execution method to STLs has two main
reasons: The first one is that they are an enabling technology
used in many safety-critical applications, the second one is
that they are conceived to be executed periodically within a
well-defined time interval.

Moreover, some features exist that, if available in the
CPU design, can enable further improvements of HUSTLE
performance benefits. Among these features, we include fast
interrupts, to reduce the time for the context switch, and
dedicated interrupt channels, as in vectored interrupt-capable
CPUs, to allow the use of a separate, optimized ISR for
the interrupt requests issued by HUSTLE. Investigating the
details of the application of HUSTLE in such scenarios is one
of our future directions.

Another direction for improvement is to predict the cache
miss resolution time to schedule the execution of STL frag-
ments that can perfectly fit the available resolution time.
We conjecture that, if the selection of those cache misses in
which to generate interrupts and thus execute STL fragments
is carefully performed, it may be possible to execute the entire
STL without any increase in task response time.

ACKNOWLEDGMENT
The authors would like to thank LucaMaruccio for the invalu-
able contributions and support provided during the early
stages of the design and prototyping activities.

REFERENCES
[1] F. Rehm, J. Seitter, J.-P. Larsson, S. Saidi, G. Stea, R. Zippo, D. Ziegenbein,

M. Andreozzi, and A. Hamann, ‘‘The road towards predictable auto-
motive high-performance platforms,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Grenoble, France, Feb. 2021, pp. 1915–1924, doi:
10.23919/DATE51398.2021.9473996.

[2] R. Singh and S. S. Gill, ‘‘Edge AI: A survey,’’ Internet Things Cyber-
Phys. Syst., vol. 3, pp. 71–92, Jan. 2023, doi: 10.1016/j.iotcps.2023.
02.004.

VOLUME 12, 2024 104739

http://dx.doi.org/10.23919/DATE51398.2021.9473996
http://dx.doi.org/10.1016/j.iotcps.2023.02.004
http://dx.doi.org/10.1016/j.iotcps.2023.02.004


N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

[3] A. Lavin, C. M. Gilligan-Lee, A. Visnjic, S. Ganju, D. Newman,
S. Ganguly, D. Lange, A. G. Baydin, A. Sharma, A. Gibson, S. Zheng,
E. P. Xing, C. Mattmann, J. Parr, and Y. Gal, ‘‘Technology readiness levels
for machine learning systems,’’ Nature Commun., vol. 13, no. 1, pp. 1–19,
Oct. 2022, doi: 10.1038/s41467-022-33128-9.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic con-
cepts and taxonomy of dependable and secure computing,’’ IEEE Trans.
Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004, doi:
10.1109/TDSC.2004.2.

[5] Road Vehicles—Functional Safety, ISO Standard 26262, 2nd ed., 2018.
[6] Railway Applications—The Specification and Demonstration of Reliabil-

ity, Availability, Maintainability and Safety (RAMS), document CENELEC
EN:50129, 2018.

[7] Electronic Functional Safety Package, IEC Standard EN 61508, 2010.
[8] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf, ‘‘Spe-

cial session: Future automotive systems design: Research challenges and
opportunities,’’ in Proc. Int. Conf. Hardw./Softw. Codesign Syst. Synth.
(CODES+ISSS), Turin, Italy, Sep. 2018, pp. 1–7, doi: 10.1109/CODE-
SISSS.2018.8525873.

[9] D. P. Siewiorek and R. S. Swarz, Reliable Computer System Design
and Evaluation, 3rd ed., Boca Raton, FL, USA: CRC Press, 1998, doi:
10.1201/9781439863961.

[10] B. Littlewood and L. Strigini, ‘‘Software reliability and dependability: A
roadmap,’’ in Proc. Conf. Future Softw. Eng., May 2000, pp. 177–188.

[11] E. McCluskey, ‘‘Built-in self-test techniques,’’ IEEE Design Test Comput.,
vol. TC-2, no. 2, pp. 21–28, Apr. 1985, doi: 10.1109/MDT.1985.294856.

[12] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
‘‘SWIFT: Software implemented fault tolerance,’’ in Proc. Int. Symp.
Code Gener. Optim., San Jose, CA, USA, 2005, pp. 243–254, doi:
10.1109/cgo.2005.34.

[13] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt,
P. M. Melliar-Smith, R. E. Shostak, and C. B. Weinstock, ‘‘SIFT:
Design and analysis of a fault-tolerant computer for aircraft con-
trol,’’ Proc. IEEE, vol. 66, no. 10, pp. 1240–1255, Oct. 1978, doi:
10.1109/PROC.1978.11114.

[14] X. Iturbe, B. Venu, E. Ozer, J.-L. Poupat, G. Gimenez, and H.-U. Zurek,
‘‘The arm triple core lock-step (TCLS) processor,’’ ACM Trans. Comput.
Syst., vol. 36, no. 3, pp. 1–30, Aug. 2018, doi: 10.1145/3323917.

[15] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer, ‘‘HAFT:
Hardware-assisted fault tolerance,’’ in Proc. 11th Eur. Conf. Comput. Syst.,
Apr. 2016, pp. 1–17, doi: 10.1145/2901318.2901339.

[16] M. Psarakis, D. Gizopoulos, E. Sanchez, andM. S. Reorda, ‘‘Microproces-
sor software-based self-testing,’’ IEEE Design Test Comput., vol. 27, no. 3,
pp. 4–19, May 2010, doi: 10.1109/MDT.2010.5.

[17] N. Hage, R. Gulve, M. Fujita, and V. Singh, ‘‘On testing of superscalar
processors in functional mode for delay faults,’’ in Proc. 30th Int. Conf.
VLSI Design 16th Int. Conf. Embedded Syst. (VLSID), Hyderabad, India,
Jan. 2017, pp. 397–402, doi: 10.1109/VLSID.2017.58.

[18] Software Test Library NXP. Accessed: Jun. 27, 2024. [Online]. Available:
https://www.nxp.com/design/design-center/software/functional-safety-
software/structural-core-self-test-scst-library

[19] Software Test Library STMicroelectronics. Accessed: Jun. 27, 2024.
[Online]. Available: https://www.st.com/en/embedded-software/x-cube-
classb.html

[20] Software Test Library Renesas. Accessed: Jun. 27, 2024.
[Online]. Available: https://www.renesas.com/en-eu/products/
synergy/software/add-ons.html

[21] Software Test Library Microchip. Accessed: Jun. 27, 2024. [Online].
Available: https://www.microchip.com/en-us/products/microcontrollers-
and-microprocessors/32-bit-mcus/32-bit-functional-safety/industrial-
safety-self-test-library

[22] Software Test Library ARM. Accessed: Jun. 27, 2024. [Online].
Available: https://www.arm.com/products/development-tools/embedded-
and-software/software-test-libraries

[23] F. Pratas, T. Dedes, A. Webber, M. Bemanian, and I. Yarom, ‘‘Measuring
the effectiveness of ISO26262 compliant self test library,’’ in Proc. 19th
Int. Symp. Quality Electron. Design (ISQED), Santa Clara, CA, USA,
Mar. 2018, pp. 156–161, doi: 10.1109/ISQED.2018.8357281.

[24] Y. K. Malaiya, N. Li, J. Bieman, R. Karcich, and B. Skibbe, ‘‘The
relationship between test coverage and reliability,’’ in Proc. IEEE Int.
Symp. Softw. Rel. Eng., Monterey, CA, USA, Nov. 1994, pp. 186–195, doi:
10.1109/ISSRE.1994.341373.

[25] E. F. Weglarz, K. K. Saluja, and T. M. Mak, ‘‘Testing of hard faults
in simultaneous multi-threaded processors,’’ in Proc. 10th IEEE Int.
On-Line Test. Symp., Funchal, Portugal, Jul. 2004, pp. 95–100, doi:
10.1109/OLT.2004.1319665.

[26] N. Ferrante, F. Terrosi, L. Maruccio, F. Rossi, L. Fanucci, and
A. Bondavalli, ‘‘HUSTLE: A hardware unit for self-test-libraries effi-
cient execution,’’ in Applications in Electronics Pervading Industry,
Environment and Society, 2024, pp. 392–398, doi: 10.1007/978-3-031-
48121-5_56.

[27] B. Sprunt, L. Sha, and J. Lehoczky, ‘‘Aperiodic task scheduling for hard-
real-time systems,’’ Real-Time Syst., vol. 1, no. 1, pp. 27–60, Jun. 1989.

[28] T.-H. Lin and W. Tarng, ‘‘Scheduling periodic and aperiodic tasks in hard
real-time computing systems,’’ in Proc. ACM SIGMETRICS Conf. Meas.
Modelling Comput. Syst., CA San Diego, CA, USA, Apr. 1991, pp. 31–38.

[29] M. Spuri and G. Buttazzo, ‘‘Scheduling aperiodic tasks in dynamic priority
systems,’’ Real-Time Syst., vol. 10, no. 2, pp. 179–210, Mar. 1996.

[30] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, and
C. Celio, ‘‘The rocket chip generator,’’ Dept. EECS, Univ. California,
Berkeley, CA, USA, Tech. Tech. Rep. UCB/EECS-2016-17, 2016.

[31] Chipyard’s Documentation. Accessed: Jun. 27, 2024. [Online]. Available:
https://chipyard.readthedocs.io/en/stable/

[32] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, ‘‘The RISC-V
instruction set manual: Volume I: User-level ISA,’’ Dept. EECS, Univ.
California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2016-118, 2014.

[33] BOOM Core. Accessed: Jun. 27, 2024. [Online]. Available: https://boom-
core.org/

[34] C. Celio, D. A. Patterson, and K. Asanović, ‘‘The Berkeley out-of-order
machine (BOOM): An industry-competitive, synthesizable, parameterized
RISC-V processor,’’ Dept. EECS, Univ. California, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2015-167, 2015.

[35] RISCV-BOOM’sDocumentation. Accessed: Jun. 27, 2024. [Online]. Avail-
able: https://docs.boom-core.org/en/latest/

[36] M. Gaudesi, I. Pomeranz, M. S. Reorda, and G. Squillero, ‘‘New
techniques to reduce the execution time of functional test programs,’’
IEEE Trans. Comput., vol. 66, no. 7, pp. 1268–1273, Jul. 2017, doi:
10.1109/TC.2016.2643663.

[37] Y. Li, O. Mutlu, and S. Mitra, ‘‘Operating system scheduling for efficient
online self-test in robust systems,’’ in Proc. Int. Conf. Comput.-Aided
Design, San Jose, CA, USA, 2009, pp. 201–208.

[38] W. J. Dally, Y. Turakhia, and S. Han, ‘‘Domain-specific hardware acceler-
ators,’’ Commun. ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020.

[39] P. Bernardi, L. M. Ciganda, E. Sanchez, and M. S. Reorda, ‘‘MIHST: A
hardware technique for embedded microprocessor functional on-line self-
test,’’ IEEE Trans. Comput., vol. 63, no. 11, pp. 2760–2771, Nov. 2014,
doi: 10.1109/TC.2013.165.

[40] Y. Li, S. Makar, and S. Mitra, ‘‘CASP: Concurrent autonomous
chip self-test using stored test patterns,’’ in Proc. Conf. Design,
Autom. Test Eur., Munich, Germany, Mar. 2008, pp. 885–890, doi:
10.1145/1403375.1403590.

NICOLA FERRANTE received the B.S. and M.S.
degrees in computer engineering from the Uni-
versity of Pisa, in 2019 and 2021, respectively,
where he is currently pursuing the Ph.D. degree in
information engineering.

Since 2021, he has been Researcher with Resil-
tech S.r.l. His research interests include the devel-
opment of efficient SW-based fault protection
mechanisms, fault models for aging-related faults
in critical systems, and fault detection systems that

exploit artificial intelligence algorithms.
Mr. Ferrante is a member of ISO/TC 22/SC 32/WG 8 and WG13 and has

participated in the development of the ISO PAS 8926–Functional Safety-
Reuse of Pre-Existing Software.

104740 VOLUME 12, 2024

http://dx.doi.org/10.1038/s41467-022-33128-9
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/CODESISSS.2018.8525873
http://dx.doi.org/10.1109/CODESISSS.2018.8525873
http://dx.doi.org/10.1201/9781439863961
http://dx.doi.org/10.1109/MDT.1985.294856
http://dx.doi.org/10.1109/cgo.2005.34
http://dx.doi.org/10.1109/PROC.1978.11114
http://dx.doi.org/10.1145/3323917
http://dx.doi.org/10.1145/2901318.2901339
http://dx.doi.org/10.1109/MDT.2010.5
http://dx.doi.org/10.1109/VLSID.2017.58
http://dx.doi.org/10.1109/ISQED.2018.8357281
http://dx.doi.org/10.1109/ISSRE.1994.341373
http://dx.doi.org/10.1109/OLT.2004.1319665
http://dx.doi.org/10.1007/978-3-031-48121-5_56
http://dx.doi.org/10.1007/978-3-031-48121-5_56
http://dx.doi.org/10.1109/TC.2016.2643663
http://dx.doi.org/10.1109/TC.2013.165
http://dx.doi.org/10.1145/1403375.1403590


N. Ferrante et al.: Improving the Efficiency of Software-Based Fault Protection Mechanisms

LUCA FANUCCI (Fellow, IEEE) received
the Laurea and Ph.D. degrees in electronic
engineering from the University of Pisa, in
1992 and 1996, respectively. From 1992 to 1996,
he was with European Space Agency—ESTEC,
Noordwijk, The Netherlands, as a Research Fel-
low. From 1996 to 2004, he was a Senior
Researcher with Italian National Research Coun-
cil, Pisa. He is currently a Professor of micro-
electronics with the University of Pisa. He is the

co-author of more than 500 journal articles and conference papers and a
co-inventor of more than 40 patents. His research interests include several
aspects of design technologies for integrated circuits and electronic systems,
with particular emphasis on system-level design, hardware/software co-
design, and sensor conditioning and data fusion. His main applications areas
are in the field of wireless communications, low-power multimedia, automo-
tive, healthcare, ambient assisted living, and technical aids for independent
living. He is a member of the Editorial Board of Technology and Disability
(IOS Press). He is a fellow of DATE. He served on several technical program
committees for international conferences. He was the Program Chair of DSD
2008 and DATE 2014 and the General Chair of DATE 2016 and HIPEAC
2020.

FRANCESCO ROSSI received the master’s
degree (cum laude) in electronic engineering
from the University of Pisa, Pisa, Italy, in 2002,
and the Ph.D. degree in information engineering
from the Department of Information Engineer-
ing, University of Pisa, in 2007, with curriculum
‘‘micro and nanoelectronic technologies, devices
and systems.’’ From 2007 to 2010, he was with
Renesas Electronics, as a Senior LSI Designer
of automotive microcontrollers for safety-relevant

applications. Since 2011, he has been the Automotive Safety Solution
Manager of Resiltech S.r.l., and in these years, he acted as the SafetyManager
in projects for Tier1 companies and supported OEM, Tier2 and component
provider in implementing a number of project compliant with ISO26262.
As a safety expert, he is joining ISOWG8 andWG13 activities. From 2004 to
2007, he has published 16 papers in international journals and conference
proceedings mainly focusing on algorithms and VLSI architectures for
telecom applications.

FRANCESCO TERROSI received the master’s
degree in computer science from the University of
Florence, Italy, in 2020, with curriculum ‘‘resilient
and secure cyber-physical systems,’’ where he is
currently pursuing the Ph.D. degree. His research
interests include safety-critical systems, with a
focus on their properties, such as safety, fault tol-
erance, and more in general, dependability of such
systems and their hardware components. His other
research interests include machine learning, from

the theoretical aspects to their application in safety-critical systems, and
hence all the aspects related to safety assurance of such components.

ANDREA BONDAVALLI (Senior Member, IEEE)
is currently a Full Professor of computer science
with the University of Florence. Previously, he has
been a Researcher and a Senior Researcher with
Italian National Research Council, working at the
CNUCE Institute in Pisa. In particular, he has been
involved in safety, security, fault tolerance, and
evaluation of attributes, such as reliability, avail-
ability, and performability. His scientific activities
have originated more than 220 papers appeared in

international journals and conferences. He supports as an Expert of European
Commission in the selection and evaluation of project proposals and reg-
ularly consults companies in the application field. His research interests
include the dependability and resilience of critical systems and infrastruc-
tures. He participates to (and has been chairing) the program committee in
several international conferences, such as IEEE FTCS, IEEE SRDS, EDCC,
IEEE HASE, IEEE ISORC, IEEE ISADS, IEEE DSN, and SAFECOMP.

Open Access funding provided by ‘Università di Pisa’ within the CRUI CARE Agreement

VOLUME 12, 2024 104741


