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ABSTRACT In the area of machine learning (ML) training data optimization through the construction of
compact data, the focus of this paper is presented. The concept of compact data design, aimed at creating
an optimized dataset that maximizes benefits without the need to manage a vast amount of complex data,
is introduced. Improvements in the methods for optimizing ML training have been incorporated into the
development of artificial intelligence (AI) systems. The introduction of understanding ML training datasets
as a facet of Explainable Al (XAI), comprehensible to humans, has been made. Among the methods of
XALI, the evaluation of input feature importance stands out as a way to enhance the accuracy of complex
ML models. The innovative method of compact data design for optimizing ML training through dataset
reduction is proposed. The performance of an ML-based malware detection system, along with its variant
utilizing compact data, has been assessed, demonstrating the maintenance of 99% accuracy. By applying a
76% reduced input dataset, the speed of ML training with the novel compact data design could be maximized,
suggesting that an ML system trained in this manner could achieve statistically equivalent accuracy with only
57% of the original data sample size.

INDEX TERMS Compact data, data reduction, machine learning, malware, security, data complexity,
artificial intelligence, supervised learning, robust classification.

I. INTRODUCTION data, which comprises a collection of training examples [5].

Artificial Intelligence (AI) or machine learning (ML) have
been utilized in various pattern recognition tasks, ranging
from image processing to natural language processing.
However, contemporary Al and ML models play a crucial
role across a broad spectrum of applications [1], [2], [3].
Supervised learning which is a pivotal machine learning task
involves learning a function that associates an input with
an output, guided by example input-output pairs [4]. This
process entails inferring a function from labeled training
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Among ML training methodologies, supervised learning is
the most widely adopted, finding application in the vast
majority of Al systems. As a result, over the past few years,
the demand for the adaption of additional techniques by
these machine learning (ML) models has increased [6]. The
Convolutional Neural Network (CNN) is recognized as one
of the popular ML models for a variety of computer vision
applications. Meanwhile, compact data design represents
a conceptual approach aimed at designing an optimized
dataset that delivers optimal benefits without the complexities
associated with handling large volumes of data [7]. Hence,
the compact data should contain the maximum knowledge
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patterns at fine-grained level for effective and personalized
utilization of bigdata systems [8], [9], [10]. Design of
proper compact dataset is especially vital for developing
the AI and the ML. Compact data learning is constructing
the optimized training dataset which gives the statistically
same ML accuracy but with the reduced data size. It has
been emphasized that applications initially classified as
malware ought to maintain their classification, given that
solely features characteristic of benign applications are elim-
inated [11]. Detection systems for malware applications have
been studied extensively, especially after the proliferation
of smartphones [12], [13], [14], [15], [16]. The widespread
adoption of Android operating system across numerous [oT
devices has transformed Android-based IoT devices into sig-
nificant targets for malware [17]. It has been recognized that
traditional malware detection methods which depended on
maintaining a database of malicious applications identified
through the computation of application signatures exhibit
limited efficacy in identifying new, previously unknown
malware [16]. Consequently, a range of malware detection
strategies, including the enhancement of ML algorithms, has
been put forward [18], [19], [20], [21]. Research has been
conducted on new static algorithms for malware detection
on the Android platform [18], [19]. Permissions, component
deployment, intent passing, API calls, and the heterogeneous
information network (HIN) are utilized as significant features
for characterizing Android applications [19], [20], [22]. The
majority of ML-based techniques for detecting malware
predominantly depend on features derived from both static
and dynamic analysis of applications. While these ML-based
approaches are effective, they have been identified as vulner-
able to adversarial attacks [23]. Furthermore, some existing
static detection methods employing artificial intelligence
algorithms for malware focus exclusively on the Java code
layer for extracting API features, neglecting the significant
amount of malicious behavior that involves native layer
code [17].

Explainable AI (XAI) is a machine learning technique in
which the results of the solution could be understandable
by humans [24]. It aims to create a suite of techniques
that produce more explainable models whilst maintaining
high performance levels [24], [25]. Evaluating the input
feature importance is one of XAI methods to improve the
accuracy of a complex ML model [25]. The XAI could
be adapted to construct the compact data for ML training.
Recent studies have propose various techniques for analyzing
feature importance including Model Class Reliance [26],
Shapely feature importance [27] and Leave-One-Covariate-
Out [28]. Explainable Al techniques are capable to analyze
the importance of input features during ML training and the
values are calculated after completing the training phase [29].
Some of them require high level of accountability and thus
transparency, for example, the medical sector. Explanations
for machine decisions and predictions are thus needed to
justify their reliability [24]. Although XAI has been widely
studied for analyzing input features of ML training, The
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analysis of XAI is only completed after at least one ML
training process. In the other hands, additional redundant
training sessions are required for analyzing the input feature
importance even before starting a ML training. Compact
data learning (CDL) introduces a novel and applicable
structure for enhancing a classification system by reducing
the machine learning training data size [30]. It is aimed
at enhancing model training efficiency which seeks to
optimize runtime speed by diminishing the sample size
and minimizing data features. Through the use of reduced
sampling to decrease the dataset size and the implementation
of a robust comparison and selection procedure for feature
reduction methods, we have effectively tackled the difficul-
ties associated with training models on expansive datasets.
This approach entails the development of an optimized
training dataset that maintains comparable Machine Learning
accuracy while minimizing data volume [7]. Additionally,
our methodology not only boosts runtime efficiency but
also ensures negligible impact on the original accuracy
performance. The outcomes of this study offer insightful
understanding and pragmatic techniques for augmenting
model training efficiency, particularly in situations involving
data volume reduction and feature selection. This research
provides innovative and unique ways to design compact
data. CDL is not only included in down-sizing data but
also in a whole process to handle compact ML training
dataset. Unlike atypical XAlI, this innovative method could
dramatically reduce input data size for ML training even
before executing ML training. The actual implementation
of this innovative methodology has been adapted into the
real ML training case. The ML training and evaluation for
the malware detection show the efficiency of this innovative
optimizing ML training.

The paper is organized as follows: Section II provides
the mathematical background for constructing the compact
data for machine learning training. This section deals with
theoretical background for reducing both input features
(Section II-B) and sample sizes (Section II-C). The actual
application of this novel compact data design are provided
on Section III. The ML training for the malware detection
is considered as an adaptation of this innovative compact
data design. In this section, The ML training setup and the
reference ML algorithm for evaluation are described. Overall
performance comparisons within optimizations with CDL
feature and/or sample reductions are also explained in this
section. Finally, the conclusion is included in Section I'V.

Il. PRELIMINARIES

Malign samples were initially extracted from 50 malware
instances which were validated by VirusTotal and collected
from the Androzoo database [31]. Only default factory
applications in both idle and active states were used for
the collection of benign data. Conversely, malign data were
collected from 24 live malware instances from the Androzoo
dataset, which were run in a Sandbox Environment. Each
of the 50 malware instances was observed in action on

115297



IEEE Access

S.-K. Kim et al.: Advanced Machine Learning Based Malware Detection Systems

TABLE 1. Malware datasets.

Dataset / class 0 class 1
Classification (Benign) (Malign)

Training 18507 12904

Testing 4627 3226

an Android-based smartphone for the collection of malign
samples. To mitigate biases associated with data originating
from different sources, 60 trusted applications from the
Google Play store and the system were selected as the source
for both benign and malign samples [32]. This environment
for generating and collecting both benign and malign samples
has been extensively employed in diverse studies [32], [33].
In our conducted experiments, a total of 31,411 samples,
comprising 1,942 input features, were collected, with the
sample outputs being categorized into a binary classification
(0-Benign, 1-Malign). Another set of samples was utilized
as the training dataset to facilitate the comparison among
various ML system variants. The testing dataset, comprising
7,953 samples, does not overlap with the training dataset, yet
it shares the same 1,942 input features and the identical single
binary output {0, 1} as the training dataset (see Table 1).

A. VARIOUS MACHINE LEARNING MODELS FOR
MALWARE DETECTION

In this section, we provide an overview of our research
methodology in this study. Various machine learning algo-
rithms have been tested for selecting the best model for the
credit card fraud detection. Among these models, we have
chosen ensemble-based learning models and traditional
machine learning models for our analysis [34], [35], [36],
[37]. There are five ML algorithms which have applied
into the same datasets. These ML models with the balanced
datasets are considered for this research:

+ Random Forest (RF) [34] constructs a stronger clas-
sifier through training Random Forest which is an
ensemble learning model consist of multiple decision
trees based on random feature selection and boot
program [38]. This combined model adjusts the weights
of samples based on the performance of the previous
round’s classifier and strengthens the training of mis-
classified samples in the next round. The pairing of
AdaBoost with RF enhances its robustness and improves
the quality of classification for imbalanced credit card
data.

o Gradient Boosted Decision Tree (GBDT) [35] is an
ensemble learning algorithm which iteratively training
a series of decision trees to build a powerful predictive
model. GBDT has also been used in previous papers as
a base learner for fixed-size decision trees to overcome
the problem of decision trees limiting their depth due to
exponential growth.

o K-Nearest Neighbor (KNN) [36] is a model through
voting its local neighbouring data points to build the
classifier function [37], [39], [40]. User set the number
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of k and the ‘neighbors’ value is initially chosen
randomly, but it can be fine-tuned through iterative
evaluation.

o Convolutional Neural Network (CNN) [36] is a
deep learning method that is widely used in images,
text, audio and time series data, etc. There are six
different layers in the CNN model including input
layer, convolutional layer, pooling layer, fully connected
layer, SoftMax/Logic layer and output layer, of which
hidden layers with the same structure can have different
numbers of channels per layer.

o Support Vector Machine (SVM) [37] utilizes both
classification and regression tasks. SVM is known for
its capability to derive optimal decision boundaries
between classes. However, it is not well-suited for
datasets exhibiting imbalanced class distribution, noise,
and overlapping class samples.

o Decision Tree (DT) [41] use actual data attributes to
create decision rules in a tree-like structure. They visu-
ally present information in an easily understandable tree
pattern. The decision tree algorithm has the advantage of
not requiring feature scaling, being resilient to outliers,
and automatically handling missing values.

It is noted that the performance results for the above ML
models are not the same as the results from the original
research because all above researches are completed based
on the unbalanced dataset.

B. VARIOUS FEATURE REDUCTION METHODS

Feature selection methods have gained widespread adop-
tion in addressing high-dimensional problems due to their
simplicity and efficiency [42]. Feature selection aids in
data understanding, reduces computational demands, miti-
gates the curse of dimensionality, and enhances predictor
performance [43]. The essence of feature selection lies in
selecting a subset of variables from the input and effectively
captures the input data while minimizing the influence of
noise or irrelevant variables to generate robust predictive
outcomes [43], [44].

« Analysis of Variance (ANOVA) is a statistical method
used to compare means across different groups by
analyzing data variance. It is commonly used in feature
selection to aid in inference and decision-making pro-
cesses. This method has reused in previous paper [45].

o Feature importance method is a technique used
to evaluate and quantify the importance of features
in a machine learning model, which helping user
understanding the critical role of specific features in the
predictive performance of a model.

« Correlation heatmap is a graphical representation that
visualizes pairwise correlations between variables in a
data set and is generated based on linear correlation
coefficients. In the correlation heatmap, darker blue
indicates a stronger negative correlation, while darker
red indicates a stronger positive correlation.
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FIGURE 1. Experiments for the Z-values based on correlation changes.
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FIGURE 2. Set diagram for statistical sampling.

« Linear correlation coefficient is employed to quantify
the strength and direction of the linear relationship
between two variables [46].

« Compact data learning (CDL) (feature reduction only)
is the enhanced feature reduction method which is
based on the correlation, a correlation heapmap is
directly applied to calculate the pair-wise comparison
between the input features of the dataset [30]. CDL
serves as a specific framework intended to accelerate
the machine learning training phase without sacrificing
system precision.

The above five feature reduction methods have been
employed to select the features for training the machine
learning models. The outputs of these methods are compared
to determine the optimal feature reduction approach for fur-
ther training. Resampling techniques are utilized to eliminate
redundant data instances from the dataset. According to
various trials of machine learning training, r > 0.7 under
o = 0.1 gives enough the resemblance which compare to an
original input feature set. Hence, a default value of r* shall
be 0.7 (i.e., r* = 0.7). Although this value is not the best
solution but it provides faster training time than the original
training because the number of input features is reduced.

C. SAMPLE REDUCTION BY USING CDL

The core concept revolves around determining the quantity of
samples for which the probability distributions of subsets A
and B mirror the probability distribution of the parent set €2,
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despite the subsets’ sample sizes being smaller than that of
the mother set (see Fig. 2).

Let X be an input data which is the random variable based
on the samples in a subset and the probability of a hypothesis
test is defined as follows:

P“X;M
=

and the cumulative distribution function (CDF) @ (x) is the
standard normal distribution as follows:

<6}>/3, D (e) =B, (1)

1 z .
¢(Z)=P{ZSZ}=E/ Td. @

where € is a small number which is a tolerance of samples
and B is the target probability for a resemblance between a
mother sample mean and a sample mean. From (1) and (2),
the minimum number of samples is as follows:

* 2
ni = (_Z—“" ) L =071 (),

X — i
where z* >~ 2.57 when 8 = 0.99 and
- 2
m=EX], of =E[®-m)’]. O

which could be calculated from the mother set with n° sam-
ples. A typical value of g is 0.90 (i.e., 90% of resemblance),
0.95 (95% of resemblance) or 0.99 (99% of resemblance).
LetQ e {1, 2,..., ,,0} be the set of the output classifications
(i.e., types of an output). Each original sample (or trial) is
maped with one of these classification within {1,2, ..., %}
and 0 is the number of classification outputs. Let Y, be
the (mother) set of the required sample sizes for the output
classification / as follows from (4):

Y,:{nll,nlz,...,nfn},l=1,...lo, (4)
and
1 . I Z Ok
m =min | ng,\ =——— | -1 ) 5
(Xi_l/«k) {X”&W‘}
1 1 !
sz(n—l)Exi,xiex,{,ngzn(x,ﬁ), 6)
0/ i=1

where X, ,ﬁ is the samples of the input feature k given the output
classification / and né is the number of samples which are
labeled with the output classification /:

* 1 u
(DM S

and 8 (g) = ®~' (¢ + 0.5). It is noted that § is a tolerance
rage which indicates how far from the mean in the standard
normal distribution [30]. The function § gives the z-value
which indicates by adding probability g after passing the
mean in the standard Normal distribution (i.e., ® (0) = 0.5).
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TABLE 2. Performance results of various machine learning algorithms.

TABLE 4. Accuracy comparisons of CDL feature reduction method.

Algorithm AC(C(;Or ;i <y Pr?f;:)i on R{i%” Fl-score l;{::?;gf)
RF [34] 99.53 99.54 99.49 0.995 11.98
CNN [36] 99.10 99.15 98.91 0.991 2800.42
DT [41] 98.90 98.86 98.88 0.9887 4.59
KNN [36] 97.75 97.67 97.67 0.977 20.82
GBDT [35] 97.10 97.38 96.66 0.970 83.56
SVM [37] 95.17 96.13 94.17 0.949 691.98

TABLE 3. Accuracy comparisons of various feature reduction methods.

Algorithms Or(i%il;al AIEI%;/A Fea(t(.%f?p. He(z:%)rr)lap
RF [34] 99.53 99.52 99.41 96.99
CNN [36] 99.10 98.96 97.67 95.28
DT [41] 98.90 98.62 98.74 96.40
KNN [36] 97.75 98.03 98.57 95.92
GBDT [35] 97.10 97.11 98.97 93.26
SVM [37] 95.17 95.10 94.59 89.79

Ill. EXPERIMENT RESULT

The upcoming discussion presents the optimization results of
the five machine learning algorithms detailed in Section 2.5.
Section III-A illustrates the performance metrics, including
accuracy, precision, recall, f1-score, as well as the execution
time of algorithms, when deployed on a balanced dataset
using the testing dataset. Advancing to Section III-B, three
feature reduction methods, specifically ANOVA, Feature
Importance, and Correlation Heatmap, are implemented to
generate accuracy results and determine the most effective
feature reduction method. Conclusively, in Section III-C,
we apply the feature reduction method chosen from
Section III-B to conduct feature filtering during training,
aiming to confirm the acceptability of the accuracy results.
Simultaneously, we also record the execution time perfor-
mance of the ML algorithms.

A. RESULT COMPARISONS FOR ML ALGORITHMS

The subsequent discussion features the performance results
of the test dataset, which are also analyzed. Displayed in
Table 9 are the original performance results for the five
machine learning models. Notably, all models achieved
performance scores ranging from 95.17% to 99.53% across
the evaluation metrics. It is noted that the RF model achieved
the highest performance across all accuracy related indicators
but the random forest (RF) provides highest performance
in terms of the training time. Among all, the CNN model
exhibited the longest running time, requiring 47 minutes to
complete.

B. RESULT COMPARISONS FOR FEATURE REDUCTION
Based on the accuracy results shown in Table 3, the ANOVA,
feature importance and correlation heatmap methods have
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. Original CDL (r* = 0.7, « = 0.1)
Algorithm (%) Accuracy Hop Training
° (%) Accepted? | Time (sec)

RF [34] 99.53 99.58 Yes 10.74
CNN [36] 99.10 98.97 Yes 2667.23

DT [41] 98.90 98.79 Yes 3.82
KNN [36] 97.75 97.68 Yes 15.32
GBDT [35] 97.10 96.78 Yes 63.53
SVM [37] 95.17 94.93 Yes 579.03

been utilized to reduce the number of features in the dataset,
the training results of the models are presented in Table 3.
In ANOVA, a significance level @ of 0.05, representing a 95%
confidence level has been selected. Subsequently, features
with p-values lower than the established significance level
have been selected for model training. In feature importance
analysis, features with a score of zero have been removed as
they have no predictive capability for the target variable.

Similarly, the features with a score of zero are not selected
because they show no significant correlation with the target
variable in the correlation heatmap. The accuracy scores of
the correlation heatmap group have been consistently higher
or equal to those of the original group. In contrast, while
the ANOVA group and Feature Importance group have one
or two accuracy scores that decreased. Consequently, the
Correlation heatmap approach might be adapted for further
model training. The accuracy results obtained using CDL for
feature selection in machine model training are showcased in
Table 4.

In this study, the null hypothesis assumes no significant
accuracy difference between the two samples, at a signif-
icance level of 0.1. The findings indicate that when the
correlation threshold r* is 0.7, the GBDT model showed a
slight accuracy improvement, while the other four models
experienced a decrease in accuracy. By applying the Z-test
method, it was found that only the KNN model had a Z-score
exceeding the critical value, leading to the rejection of the null
hypothesis, implying that the accuracy of the KNN model is
not acceptable. By using the Z-test method, it was determined
that there is no significant accuracy difference among all
models, leading to the acceptance of the null hypothesis,
suggesting that the accuracy of all models is acceptable. The
running times for all models are shorter than their original
running times, indicating a decrease in running time achieved
after feature reduction. From Table 3, the RF model showed
an improvement in accuracy, while the GBDT, SVM, CNN,
and KNN models experienced a decrease in accuracy but still
acceptable (i.e., no differences). In the other The performance
of the KNN model is unacceptable, as indicated by the
rejection of the null hypothesis. The training times of all
models were less than their original times. According to our
experiments, the CDL based feature reduction is theoretically
based on the absolute correlation and easily transformed
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TABLE 5. Hyper-parameters for the malware detection datasets.

Parameter Setup Description

value
m 1,942 Total number of initial input features
no 31,411 Total number of initial training samples
0 2 Number of output classifications
0 0.7 Correlation threshold
0 (q) 0.025 Tolerance rage

20,000 18,507

18,000
16,000
14,000 12,904
12,000
10,009
10,000
8,000 6,329
6,000
4,000
2,000
0
Original (Benign)  Reduced (Benign)  Original (Malign)  Reduced (Malign)
FIGURE 3. Optimized number of samples of the benign and malign

training samples.

TABLE 6. Result comparison for various ML algorithms.

TABLE 7. The CDL based feature reduction performance comparisons.

Algorithm Ac(c;ar ; ey Pre(fyi:)i on R(e(%z;ll F1-score
RF [34] 99.58 99.58 99.55 0.996
CNN [36] 98.97 99.05 98.82 0.989
DT [41] 98.79 98.75 98.75 0.9875
KNN [36] 97.68 97.58 97.63 0.976
GBDT [35] 96.78 97.10 96.26 0.966
SVM [37] 94.93 95.95 93.88 0.947

TABLE 8. Performance comparisons of different correlation score limits.

. Accuracy (%)
Algorithm Original Sample Training
g Reduction Time (sec)
RF [34] 99.53 99.25 5.29
CNN [36] 99.10 98.90 1368.07
DT [41] 98.90 98.42 2.30
KNN [36] 97.75 97.06 7.56
GBDT [35] 97.10 96.93 43.01
SVM [37] 95.17 93.63 205.58

from the correlation heatmap but this simple method is more
practical and its efficiency is even better than the performance
from a correlation heatmap. The figure presents the quantity
and ratio of features prior to any feature removal, subsequent
to feature selection using heatmap, and following feature
selection using the CDL technique.

C. RESULT COMPARISONS FOR CDL SAMPLE REDUCTION
The theoretical methodology for reducing the sample size on
the previous section is applied into the malware detection ML
training. The samples are reduced to 16,338 from the original
sample size (i.e., ng = 31,411 in Table 5).

The parameters for the CDL based sample reduction (e.g.,
8(q), o*, r° in Table 5 are defined from the previous
research [30]. The number of benign data size is 10,009 and
6,329 samples for malign data. It is noted that the number of
the input features are not revised (i.e., m = 1,942 in Table 5).
According to Fig. 4, the sample size has been reduced by
52%.

The CDL sample reduction is a simple but powerful
method to optimize the training data size. The parameter for
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. Original CDL (r* = 0.7, « = 0.1)
Algorithm (%) Accuracy Ho Training
¢ (%) Accepted? | Time (sec)
RF [34] 99.53 99.39 Yes 5.10
GBDT [35] 97.10 96.79 Yes 33.19
CNN [36] 99.10 98.60 No 1240.16
DT [41] 98.90 98.22 No 1.65
KNN [36] 97.75 96.96 No 5.11
SVM [37] 95.17 93.80 No 171.89
120%
100%
100%
80% 76%
60% 52%
39%
40%
20%
0%
M Original mCDL — Features CDL—Samples Both

FIGURE 4. Performance comparison for the malware detection.

the sample reduction 8 could be arbitrary chosen as long
as the Z-test has satisfy the hypothesis test. In our case, the
proper value of the sample reduction parameter is 0.99 (i.e.,
B =0.99).

Besides of the accuracy measure, various performance
measures for adapting the CDL based feature reduction
have been evaluated (see Table 7). Our experiment indicates
that CDL based feature reduction provides the better results
of most performance measures including accuracy which
compare to the ANOVA based feature reduction which is one
of most widely feature reduction method (see Table 10 in
Appendix A).

Since this experiment has been executed separately as a
second round, each accuracy of the ML algorithms in Table 7
may not be the the same as the accuracy measures from the
previous experiment in Table 6.

115301



IEEE Access

S.-K. Kim et al.: Advanced Machine Learning Based Malware Detection Systems

3.00
2.55
2.50

2.00 1.92

1.50 1.32
1.00
1.00

0.50

0.00
Performance Ratio

® Original CDL — Features CDL — Samples Both

FIGURE 5. Performance comparison for the malware detection.

TABLE 9. Combined feature and sample reduction by using CDL.

. Accuracy  Precision  Recall : Training

Algorithm (%) (%) (%) Fl-score time (sec)
RF [34] 99.39 99.43 99.31 0.994 5.10
GBDT [35] 96.79 97.14 96.28 0.967 33.19

IV. CONCLUSION

The CDL methods could optimize a ML training dataset
without additional training sessions. Total of 34,111 malware
samples with 1,942 input features are trained as the reference
and various compact data have been constructed variously
with the statistically same accuracy. It is found that the
ML training dataset could be minimized by reducing the
input features of 1,467 and the samples of 16,339, which
corresponds to 2 times faster than the reference with
maintaining 99% the accuracy. Although the CDL for
combined feature and sample reduction provides the better
performance in terms of accuracy and the training time for
most of ML algorithms, this combined CDL reduction could
not be applied on some ML models because of significant
differences with the original ML algorithms.

According to our experiment result in Table 8, the random
forest (RF) and the gradient boosted decision tree (GBDT)
could be applied with the combined CDL (i.e., feature and
sample reductions together). The ML algorithms shall give
the statistically equal for various performance measures even
after significant data reduction by adapting the combined
CDL. Digesting the huge size of training dataset for ML
systems have been a vital issue to breakthrough from
traditional systems. However, current mechanisms including
XAI require one or several additional ML training rounds
before optimizing a ML algorithm. The novel compact data
design which uses basic statistical methods including the
correlation and the hypothesis test has been newly proposed.
The data size of ML training is dramatically reduced based
on the compact data learning (CDL) feature and/or sample
reductions. The original data size is reduced by up to 76%
for reducing the input features and 52% for reducing sample
size. If both optimizations are applied, the training data size
is reduced up to 39% (see Fig. 4).
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TABLE 10. The ANOVA based feature reduction performance
comparisons.

Algortm | Accumey Prechion Reell "y oo
RF [34] 99.25 99.30 99.15 0.992
CNN [36] 98.90 98.97 98.77 0.989
DT [41] 98.42 98.41 98.32 0.9837
KNN [36] 97.06 97.07 96.85 0.966
GBDT [35] 96.93 97.26 96.44 0.968
SVM [37] 93.63 95.27 92.69 0.936

The compact data design for ML training provides the
statistically same accuracy of the original malware detection
by using only one of third of the original training data size
(see Fig. 4). Roughly speaking, the ML training performance
is 2 times faster than the original one after adapting CDL.

Based on our experiments, the CDL performs three times
better for most ML algorithms in terms of the training times
without scarify other major performance measures including
accuracy, precision, recall and fl-score (see Table 9).

The efficacy of a ML-based malware detection system,
including a version that employs compact data, was eval-
uated, revealing that it could sustain an accuracy of 99%.
By reducing the input features by 76%, the training velocity
of the ML system utilizing the innovative compact data
approach was significantly enhanced. This indicates that an
ML system trained using this method is capable of attaining
an accuracy that is statistically equivalent to that achieved
with only 57% of the original dataset size. Furthermore, the
implementation of the combined CDL enables the attainment
of comparable ML performance levels, despite a substantial
data reduction of up to 60% although this efficiency is only
applicable for selected ML models.

APPENDIX A

ANOVA BASED FEATURE REDUCTION PERFORMANCES

In this appendix, a comparison of the performance of various
ML algorithms is provided by adapting ANOVA (Analysis
of Variance) for feature reduction (see Table 10). ANOVA is
widely employed in feature selection to support inference and
decision-making processes [45]. This appendix covers the
examination of diverse performance metrics for multiple ML
algorithms following the implementation of feature reduction
via ANOVA adaptation.

As mentioned in the previous section, it is observed that
feature reduction by adapting CDL enhances the performance
across all metrics, including accuracy, precision, recall, and
fl-score (see Table 7 in Section III for comparison).

APPENDIX B

ALGORITHMS FOR CDL FEATURE REDUCTION AND
SAMPLE REDUCTION

This appendix provides the the algorithm for the CDL
based feature reduction which has been introduced from the
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Algorithm 1 CDL Based Feature Reduction
Algorithm [47]

Input: Correlation heatmap matrix CM, Score line SL
Output: Selected features SF
for scores in CM (S;; € CM) do

| CM <« abs(Sj)
end
if CM (S;;) > SL then

| CM <« CM(S;)
end
while length of CM # 0 do
S;_most < S; most frequency feature
Sj_most < S; most frequency feature
if S;_most > S;_most then

CM <« CM delete all S;_most

‘ print SF(S;_most)

else

CM <« CM delete all S;_most
print SF(S;_most)

end

end

Algorithm 2 CDL Based Sample Reduction
Alogorithm

Input: Training dataset D, Beta level 8, Category number C
Output: Sample size Ry4;,, Optimized dataset R4,
Effectiveness E, Maximum sample size N,y

n, m < shape(D)

Doys < D(m)

Dj, < D(0:m-1)

z <« F~! #

m <« mean(D)

o <« standard_deviation(D;;;)
Lero < index(o=0)

Dout_us Cour < unique(Dyyt)

if C = 0 then
| C < length(Doyt)
end

for C; in range(C) do

I < index(Doys = Dour_ulCi])

Ntar < (2% 0)? /(mean(rows(Din[11)) — m)?
Nstar[Izero] <0

Npax < length(l)

Inax < index(Nstar > Niax)

Nstar Imax] < Nipax

L < Npgr — Sd\/mean(Nstar — Npar)?
Dout_rev < rows(rows(D, I), 0 : int(L))

end
Rsam < [L]
Riata < array(Dour_u)
E < sum([L])
n
return Rsam, Raata> Ey Nmax

previous research (see Algorithm 1) [47]. Additionally, this
section also provides the the algorithm for the CDL based
sample reduction. Although basic theoremtical background
of the CDL based sample reduction has been introduced from
the previous research [30], the implementation algorithm for
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the sample reduction is never been introduced before (see
Algorithm 2).
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