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ABSTRACT Ultrasound is a prominent imaging technique used in a variety of applications. Due to very high
frame rate, the amount of raw data obtained while using an ultrasonic device is large. Thus, data management
and storage are posing significant problems. To address these issues, we proposed and implemented a few
efficient data acquisition, reconstruction, filtering, and noise removal techniques. These methods reduce
the amount of raw data collection via hardware devices, followed by missing data reconstruction in the
software using a variety of digital signal processing techniques such as Spline interpolation, Discrete Cosine
Transform (DCT) and Inverse Discrete Cosine Transform (IDCT), Discrete Sine Transform (DST) and
Inverse Discrete Sine Transform (IDST) etc., This reconstructed data is sent for Frequency Domain (FD)
beamforming (a recently proposed beamforming technique) and post-processing to generate output images.
For comparison, all outputs were generated using full data and Delay-and-Sum (DAS) beamforming
(traditional beamforming technique in ultrasound). From which, it was clear that we can reduce the data
storage cost by 33.3% and 50%, by increasing the software’s operation time by a few seconds (i.e. less than
one minute).

INDEX TERMS Ultrasound, spline interpolation, acoustical radiation force impulse (ARFI) imaging, delay-
and-sum (DAS) beamforming, frequency domain (FD) beamforming, spline interpolation, discrete cosine
transform (DCT), inverse discrete cosine transform (IDCT), discrete sine transform (DST), inverse discrete
sine transform (IDST).

I. INTRODUCTION
Ultrasonic imaging is famous for depth-based imaging. High
frequency sound waves emitted from ultrasound scanner will
penetrate the body of interest, hit the object of interest, and
most of the waves will return to ultrasonic transducer ele-
ments as echo signals (i.e. data frames) [1]. Thus obtained
data frames are either stored inside ultrasound machine or
external storage device for further processing.

This imaging technique is so fast that it will generate thou-
sands of data frames within a fraction of seconds [2]. Given
this situation, data storage is presenting a major challenge.

We studied and closely observed various research works
done in this area, some made use of data redundancy feature
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in ultrasound imaging. That is, techniques were developed
to get rid of significant amount of channel data using a
specified rule of thumb (which varies from one research work
to another) and final images were generated using reduced
data. As a result, finer and essential details were missing in
output images.

One such work was done by Jian-yu [3], [4], which com-
bined adjacent sensor data entries into a single entity to
generate final images. Although they understood the rela-
tionship between image quality and data quantity, final
images were generated with missing details. Recently pro-
posed random subsampling method [5] by Junjin Yu down
sampled the channel data in a randomized fashion and gen-
erated final output images with holes in the channel data.
As a result, key features in the rat brain images were
missing.
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Novel works were done in the field of ultrasound imag-
ing, related to channel data acquisition. Delcker and their
team [6] proposed magnetic sensor data acquisition, which
helped in imaging and measuring the diameter of optic nerve
and lateral rectus muscle. Moeen Ud Din [7] and his team
developed a hardware system for fingerprint data acquisition
using ultrasound imaging. Another interesting hardware sys-
temwas developed byMuhammadNasir Ullah [8], which can
collect ultrasound and gamma signals simultaneously using
a common channel. Similar hardware systems were designed
by Boni [9] and Chris [10], which acquire ultrasound raw data
from multiple channels and store it in the onboard memory
device.

Similarly, some research works are based on channel data
compression to save storage costs. P. W. Cheng and his
group [11], [12] proposed lossy data compression techniques
for full channel data, which facilitated much faster data
transfer from ultrasonic system to the processing computer.
Channel data quantization was proposed by Daler to reduce
the amount of data storage and transfer costs [13]. That is,
entire channel data is encoded using a specially designed
codebook. Values of this codebook are scaled based on
raw channel data while encoding and decoding. Although it
achieves good compression ratio, scaling algorithm changes
with data, and designing a new codebook, encoding and
decoding of channel data as per that codebook are added
complexities in this technique.

However, some researchers believe that full data and kerf
(distance between two adjacent sensors) are very crucial in
ultrasound image formation. For example, Al-Hayani [14],
who understood the relation between kerf and image quality,
reduced kerf value in this work to generate output images
using full data with utmost clarity. This covered several fine
details of fetus phantom. Note that it comes with an expense
of processing time and large amount of channel data.

Research work done by Marzougui [15] and Akbar [16]
focused on emission angle based data reduction. In which,
full zero-angle data was extracted for output image gener-
ation, non-zero angle data was either chosen or discarded,
or subjected to subsampling based on similarity metrics
such as Structural Similarity (SSIM) Index, Mean Square
Error (MSE) etc., Although this provides scope for research
in efficient angle based data extraction in ultrasound imaging,
these techniques come with added computational complexity
(due to similarity metrics calculation, data selection or rejec-
tion, downsampling etc.,), and lower overall image quality
(due to missing raw data).

D’Souza [17] and Anjidani [18] focused on efficient speed
of sound (SOS) wave calculation and neural network based
ultrasound image enhancement respectively. While former
focused on reducing the number of complex multiplications
in SOS profiling by discarding spectrum values with smaller
magnitude, the latter focused on designing a simple con-
volutional neural network for image enhancement. Image
enhancement is important in the field of ultrasound (and our
future scope).

Coming to data related issues in ultrasound imaging,
Guo and his research group developed half matrix focusing
method [19], assuming that the data is symmetric, upper
triangular or lower triangular matrix in the data was discarded
and final output images were generated. Because of which,
50% of channel data is lost. Moreover, final output image
quality is poor, and Signal-to-Noise Ratio (SNR) value is low.

From above works, we learnt the effects of ignoring or
reducing raw data content. This provided us with a scope to
develop an ultrasound imaging technique, which will solve
both data storage and image quality problems. Our plan is to
develop efficient data acquisition techniques (which will save
our data storage cost), followed by data reconstruction in the
software (which will improve overall output image quality).
Our contributions in this paper are listed as follows:

1) Proposed two efficient data acquisition techniques.
2) Explored various interpolation techniques inMATLAB

and in image processing, applied ‘Spline’ interpolation
on above techniques for data reconstruction, followed
by noise filtering.

3) We also applied DCT/DST on efficient data acqui-
sitions, performed appropriate zero padding on that
transformed data, followed by IDCT/IDST to recon-
struct missing data.

4) Calculated time taken for data reconstruction in the
software, which is compared with percentage of mem-
ory saving in storage devices.

5) Applied recently proposed FD beamforming on recon-
structed data and generated output images.

6) Resulting images and data were compared with that
of ground truth (i.e. full data outputs via DAS beam-
forming), calculated various parameters to show that
outputs obtained from proposed methods are very close
to ground truth (with added savings in the raw data
storage).

7) Simplified elastographic image generation process in
Acoustical Radiation Force Impulse (ARFI) imaging,
and then filtering the elastogram images for noise
reduction and feature extraction.

This paper is structured as follows:

1) Introduction followed by related knowledge (which
covers DAS and FD beamforming, simple elasto-
graphic image generation and filtering).

2) Proposed methods (which explain about all data
acquisition and reconstruction methods), experimental
results and analysis.

3) Conclusion and future work.

II. RELATED KNOWLEDGE
A. DELAY-AND-SUM (DAS) BEAMFORMING
DAS beamformer is the most basic and conventional beam-
forming technique in ultrasound. Ultrasonic signals sent by
transducer elements will hit the target, and echo signals
are received by elements at different time instants [20].
Appropriate timing delays are to be applied on echo signals
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to keep them synchronous. Thus obtained time delayed echo
signals are summed together to produce output signal [21].

In Fig.1, τ1, τ2, τ3, . . . , τM represent timing delays, which
are used to make sure that signals received from M num-
ber of sensors are focused and processed accordingly. Here
m represents individual sensor. Thus obtained delayed signals
x1[n], x2[n], x3[n], . . . , xM [n] get multiplied with correspond-
ing weighting coefficients w1[n], w2[n], w3[n], . . . , wM [n]
to form the outputs y1[n], y2[n], y3[n], . . . , yM [n]. These
individual outputs add together to generate final beamformed
signal y[n].

The weighting coefficients are fixed in non-adaptive DAS
beamforming technique and are defined using window func-
tions such as rectangular, Hanning, Kaiser etc., In this work,
DAS beamformer works with rectangular window function.
Thus, finally obtained beamformed output is represented
using (1):

y [n] =

∑M

m=1
ym[n] (1)

B. FREQUENCY DOMAIN (FD) BEAMFORMING
FD beamforming is a recently proposed beamforming tech-
nique [22], [23] to generate output images in ultrasound.
2D Fourier Transform was applied on the raw data in time
(x, t) domain, to obtain signal samples in frequency (kx , f)
domain. In this method, x means transducer element locations
(i.e. spatial axis), kxrepresent frequencies of spatial axis, t is
time axis and f is temporal frequency. In the next step, (kx , f)
data entries are translated into the (kx , kz) domain via spectral
interpolation.

Here, kz denotes the spatial frequencies in z−axis (which
represent image depth). We apply 2D Inverse Fourier Trans-
form on (kx , kz) data to obtain beamformed data Pe in (x, z)
domain.

Hilbert transform is applied on Pe(x, z), and then complex
conjugate is extracted fromHilbert’s output, followed by final
frequency domain interpolation to obtain final beamformed
data Pe(x, z).

C. ELASTOGRAPHIC IMAGE GENERATION
Our proposed methods were applied on Acoustical Radiation
Force Impulse (ARFI) imaging dataset [24] in ultrasound.
This dataset imaged a sphere in spherical phantom [25]
(see Fig. 6), whose young’s modulus E is greater than
surrounding background. We generate elastographic images
using displacement information and 2D shear wave speed.
The former was calculated along with beamforming pro-
cedure, latter was obtained by using Time-to-Peak (TTP)
technique coupled with a horizontally moving window of
app. 4mm [26], [27], which will propagate on entire data
frame. In TTP technique, we measure shear wave speed by
performing linear regression on known data entities such as
lateral distances and arrival times.

Lateral distance is the linear distance between a partic-
ular data point and the point where push force is exerted.
Arrival time is the time instant when shear wave reaches/hits

a particular data point. Note that the displacement value
is highest when shear wave hits the data point. This TTP
technique can be clearly explained using Fig. 4 and Fig. 5.

We have chosen five data points which are 2, 4, 6, 8
and 10 mm away from the push pulse. Fig. 4 shows dis-
placement time profiles plotted for these five locations.
Time instants at which displacement values are the highest
are noted, these are arrival times. From the graph, arrival
times for those locations are: 0.1667, 0.75, 1.083, 1.583,
and 1.833 respectively. Since the propagation of shear wave
is linear, we can calculate shear wave speed using following
linear regression technique:

X =


x1 1
x2 1
x3 1
x4 1
x5 1

 ,Y =


y1
y2
y3
y4
y5

 ,W =

(
w
b

)
, (2)

Y = XW (3)

Here x1, x2, x3, x4, x5are lateral distances (i.e. 2, 4, 6,
8, 10 mm), y1, y2, y3, y4, y5are arrival times calculated
from graph (Fig. 4). (i.e. 0.16, 0.75, 1.08, 1.58, 1.83 ms).
To calculateW (i.e. slopew and y−intercept b), the governing
equation is:

W = (XTX)−1(XTY ) (4)

The value of 1/w is our required shear wave speed cT .
Square of that obtained shear wave speed value will result
in shear modulus (µ).

The relationship between shear modulus (µ) and young’s
modulus (E) is shown in (5) [28]. Thus calculated E value
will replace center pixel in the window and procedure will
continue for entire data frame. The resulting output image is
our elastogram.

In [29], elastographic imageswere initially generated using
variouswindow sizes, averaging all of them to generate a final
elastographic image. However, in our work we have chosen
a reasonable window size which was able to generate good
quality elastographic images. Because of which, wewere able
to reduce unnecessary calculations in elastographic image
generation. This makes our elastogram algorithm work com-
putationally faster. Mean and median filters were applied on
this above elastographic image to generate final elastograms
with utmost clarity. These elastograms were able to show the
sphere in output images.

E = 3µ (5)

III. PROPOSED METHODS
A. EFFICIENT DATA ACQUISITION TECHNIQUES
When we conduct a research study on efficient data acquisi-
tion techniques, an obvious question from the crowd would
be, what is the need for efficient data acquisition when
full data and current imaging techniques are working fine?
The answer to this question is, less data acquisition has

105248 VOLUME 12, 2024



S. Konda, H. Chaoui: Efficient Data Acquisition and Reconstruction in Ultrasound Imaging

benefits such as lower ultrasonic device operating time, mem-
ory storage, power utilization, heat dissipation etc.,. Hence,
we propose two efficient data acquisition techniques based
on temporal sampling rate reduction, which are as follows:

1) REDUCE SAMPLING RATE BY 2/3
By reducing the temporal sampling rate of ultrasonic trans-
ducer by 2/3, we will collect two rows of raw data out of every
three rows. In this way, we can collect 66.6% of channel data
using ultrasonic transducer and ignore 33.3% of the data.

2) REDUCE SAMPLING RATE BY 1/2
In the second technique, we reduce the temporal sampling
rate of ultrasonic transducer by 1/2, i.e. we will collect one
row out of every two rows, will ignore every second row.
In this way, we can collect 50% of channel data using ultra-
sonic transducer and ignore the remaining 50% of the data.
Fig. 2 and Fig. 3 will explain these data reduction techniques
more clearly.

DNtn denotes data point acquired at time instant Nt and
sensor position n. Bold and ruled out rows are neglected in
raw data acquisition.

B. EFFICIENT DATA RECONSTRUCTION METHODS
Raw data collected in 3-1 and 3-2 (i.e. above sections) can
be sent as an input to ultrasonic image processing software,
where softwarewill reconstructmissing data andwill perform
further operations on new data. In this work, we propose two
data reconstruction techniques:

1) NORMAL IMAGE INTERPOLATION
We applied various interpolation techniques [30] on raw data
collected from 3-1 and 3-2. Among all those techniques,
‘Spline’ interpolation gave us better and reliable results.
Spline interpolation values are calculated based on cubic
interpolation of data points in the neighboring grid points in
that corresponding dimension. Note that cubic interpolation
is based on cubic convolution of nearest data points. And so,
we have chosen spline interpolation in MATLAB to recon-
struct the missing data. Our methods and their outputs are
named as (2/3 Spline + FD) and (1/2 Spline + FD) beam-
forming respectively. Here 2/3 and 1/2 represent temporal
sampling rate. The following are the steps which explain this
reconstruction technique:

1) Take subsampled data matrix as an input, reshape the
matrix (i.e. convert 2D data frame into 1D data).

2) Apply appropriate interpolation operation on 1D data
using ‘interp’ function, set the method as ‘spline’,
to reconstruct the missing data.

3) Thus, obtained data is passed through image processing
and noise elimination filters to filter the reconstructed
data.

4) We calculated the time taken by software to perform
the above steps 1, 2, and 3.

5) This filtered data is sent to ultrasonic image processing
system to generate all the required outputs.

In real time applications, higher order polynomial-based
interpolation techniques are not commonly used, due to their
complexity. Moreover, their results are almost equivalent to
(and sometimes not better than) spline (i.e. piecewise inter-
polation). And so, linear and cubic spline techniques are
popularly used for interpolation problems.

Mathematical equation governing this linear spline is given
below:

IK (v) = Ik + (Ik+1 − Ik )(V − Vk )/(Vk+1 − Vk ) (6)

(6) is a linear line segment between the two points (Vk , Ik )
and ((Vk+1, Ik+1).
In general, linear interpolation reconstruction does not

consider slopes and inclinations of a curve. And so, we have
chosen cubic splines for more accurate reconstruction. The
main equation for cubic spline interpolation is:

IK (v) = Ik + ak (V − Vk) + bk(V − Vk)2 + ck(V − Vk)3

(7)

The boundary or limiting conditions in (7), ak , bkand ck
are:

ak =
Ik+1 − Ik
Vk+1 − Vk

−
(2mk + mk+1) (Vk+1 − Vk )

6
(8)

bk = 0.5 mk (9)

ck =
(mk+1 − mk )
6(Vk+1 − Vk )

(10)

Here, V = [Vk , Vk+1] and k = 0, 1, . . . , (n-1).

2) MISSING DATA RECONSTRUCTION USING COSINE
AND SINE TRANSFORMS
In this technique, we are using Discrete Cosine Trans-
form (DCT), Inverse Discrete Cosine Transform (IDCT) or
Discrete Sine Transform (DST), Inverse Discrete Sine Trans-
form (IDST) [30] functions in MATLAB to reconstruct the
missing data in 3-2. Thesemethods are explained in following
sections:

a: DCT, IDCT/DST, IDST BASED DATA RECONSTRUCTION
In this method, we are applying either 1D DCT or 1D DST
on the missing data (3)-(2), followed by appropriate zero
padding. Zero padding is a technique to add zeros at the end
of the signal sample to match the size of full data frame. After
which, we perform 1D IDCT or 1D IDST on that zero padded
data frame, which will reconstruct the missing data. In this
way, we will reconstruct 50% of that missing data.

b: DISCRETE COSINE TRANSFORM (DCT)
DCT is used to represent data points as a sum of cosine
functions oscillating at different frequencies. Using DCT,
we will be able to separate the image into various spectral
bands.

The equation for 1D DCT for an N-sampled signal f [n] is:

F [v] =

√
2
N
c [v]

∑N−1

n=0
f [n] cos

(
π (2n+ 1)v

2N

)
,

0 ≤ v≤N − 1 (11)
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FIGURE 1. DAS beamformer.

FIGURE 2. Data matrix subsampled by 2/3.

FIGURE 3. Data matrix subsampled by 1/2.

Here n is a sampling time instant, and c[v]is a normaliza-
tion factor, which is defined by:

c [v] =

{
1/

√
2, v = 0

1, otherwise
(12)

The recovered/reconstructed signal f [n] can be obtained
from F [v] using 1D IDCT:

f [n]=
∑N−1

v=0
c [v]F [v]

× cos
(

π(2n+ 1)v
2N

)
, 0≤v≤N − 1 (13)

c: DISCRETE SINE TRANSFORM (DST)
DST is also another transform in the field of signal process-
ing, which is used to represent data points as a sum of sine
functions.

FIGURE 4. Displacement time profile plotted for five chosen locations at
various distances (2, 4, 6, 8, and 10 mm) away from the push. The first
green peak (at 0.1667 ms), second blue peak at (0.75 ms), third red peak
(at 1.083 ms), fourth black peak (at 1.583 ms), and fifth magenta peak
(at 1.833 ms) correspond to the locations that are 2, 4, 6, 8, and 10 mm
away from the push, respectively.

FIGURE 5. Linear regression graph for 5-data points.

FIGURE 6. Front view of CIRS spherical phantom [25].

The equation for 1D DST for an N-sampled signal
x [n] is:

Xk =

∑N−1

n=0
x [n] sin

(
π (n+ 1)(k + 1)

N + 1

)
,

k = 0, . . . ,N − 1 (14)
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FIGURE 7. B-mode images for DAS and FD beamforming.

FIGURE 8. B-mode images for (2/3 Spline + FD), (1/2 Spline + FD), (DCT + FD) and (DST + FD).

FIGURE 9. Displacement images for DAS and FD beamforming for frame# 18.

FIGURE 10. Displacement images for (2/3 Spline + FD), (1/2 Spline + FD), (DCT + FD) and (DST + FD) for frame# 18.
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FIGURE 11. Displacement images for DAS and FD beamforming for Frame# 36.

FIGURE 12. Displacement images for (2/3 Spline + FD), (1/2 Spline + FD), (DCT + FD) and (DST + FD) for frame# 36.

TABLE 1. Structural Similarity Metric (SSIM) calculations for displacement images for FD (recently proposed), (2/3 Spline + FD), (1/2 Spline + FD),
(DCT + FD), (DST + FD) beamforming.

Here n is a sampling time instant, the recovered/
reconstructed signal x[n] can be obtained from Xk using
1D IDCT:

x [n]=
2

N + 1

∑N

k=1
Xk . sin

(
πkn
N + 1

)
,n = 1, . . . , N

(15)

d: RECONSTRUCTION/INTERPOLATION WITH
ZERO PADDING
In the theory of digital signal processing, zero padding in
frequency domain will result in interpolation in the time
domain f [n]. That is:

INTERPL,N (f ) = IDCT (2 · ZEROPADL,N (F)) (16)

105252 VOLUME 12, 2024



S. Konda, H. Chaoui: Efficient Data Acquisition and Reconstruction in Ultrasound Imaging

TABLE 2. Image Mean Square Error (IMMSE) calculations for displacement images for FD (recently proposed), (2/3 Spline + FD), (1/2 Spline + FD),
(dct + fd), (dst + fd) beamforming.

TABLE 3. Peak signal to noise ratio (PSNR) calculations for displacement images for FD (recently proposed), (2/3 Spline + FD), (1/2 Spline + FD),
(DCT + FD), (DST + FD) beamforming.

FIGURE 13. Filtered elastograms after applying 21-pixel disc averaging for (2/3 Spline + FD), (1/2 Spline + FD), (DCT + FD) and (DST + FD).

Here:

ZEROPADL,N (F) =

{
F [v] , 0≤v < N
0,N≤v < L · N

(17)

In our work, we are zero padding the DCT output F[v] by
a factor L = 2 and will perform IDCT to reconstruct missing
data. Please note that DCT and IDCT in this section can be
replaced with DST and IDST.
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FIGURE 14. Filtered elastograms after applying 21-pixel disc averaging for DAS and FD beamforming.

FIGURE 15. Filtered elastograms after applying 35-pixel disc averaging for DAS and FD beamforming.

FIGURE 16. Filtered elastograms after applying 51-pixel disc averaging for DAS and FD beamforming.

This reconstructed data is sent for ultrasonic image pro-
cessing and final output generation. Please note that our
methods are named as (DCT + FD) and (DST + FD) beam-
forming respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
Fig. 7 presents DAS and FD beamformed images for sphere
in CIRS spherical phantom. In DAS image, the sphere is
seen like a black shadow in the right side of the image.
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FIGURE 17. Filtered elastograms after applying 35-pixel disc averaging for (2/3 Spline + FD), (1/2 Spline + FD), (DCT + FD) and (DST + FD).

FIGURE 18. Filtered elastograms after applying 51-pixel disc averaging for (2/3 Spline + FD), (1/2 Spline + FD), (DCT + FD) and (DST + FD).

TABLE 4. Structural Similarity Metric (SSIM) calculations for elastogram images for FD (recently proposed), (2/3 Spline + FD), (1/2 Spline + FD),
(DCT + FD), (DST + FD) beamforming.

However, boundary of the sphere is clearly noticeable in FD
beamforming. Sphere boundary is also seen in all the Fig. 8
images. From which it is clear that:

1) FD beamforming is better than DAS, which can gener-
ate final images with more clarity and sharpness.

2) Fig. 8 images were obtained after performing efficient
data acquisition and data reconstruction. Still, these
outputs are far better compared to conventional DAS
technique.

Our (2/3 Spline+ FD) and (1/2 Spline+ FD)methods take
approximately 32s for 33.3% and 50% data reconstruction,
our (DCT + FD) and (DST + FD) methods take approx-
imately 0.7s and 3.8s respectively for 50% data recovery.
From which, it is evident that proposed methods are more
efficient compared to conventional techniques.

Fig. 9, Fig. 10, Fig. 11, and Fig. 12 show displacement
time frame images for frame# 18 and 36 for both reference
methods and our techniques. Visually all images in Fig. 9
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and Fig. 10 look alike, and images in Fig. 11 and Fig. 12 look
similar. However, it’s always a better idea to calculate image
metrics, so we can be confident about results.

We present SSIM, Image Mean Square Error (IMMSE)
and Peak Signal to Noise Ratio (PSNR) values [31] for
displacement images in tables 1, 2, and 3. SSIM values are
in the range of 0.89 to 0.99, IMMSE values are very low
(i.e. in the order of 10−5and 10−6), PSNR values are in the
range of 145 to 155.

Fig. 13 to Fig. 18 display filtered elastogram images after
applying averaging filters with disc sizes 21, 35 and 51 pixels
on elastographic image data, alternating white and red col-
ored circle in the images represent actual sphere. The thick
yellow patch inside that circle is the sphere we imaged using
our practical approach.

Our elastogram images obtained from averaging filters of
35 and 51 pixels are better (i.e. three-fourth of the circle is
filled with yellow color) compared to that of 21pixels (where
only a portion of the circle is yellow). SSIM values calculated
for all the elastographic images (available in table 4) are in the
range of 0.92 to 0.99.

V. CONCLUSION AND FUTURE WORK
In our literature study, we inspected a good number of tech-
niques in ultrasound imaging, related to data acquisition, data
compression etc., While some techniques used data redun-
dancy feature in ultrasound imaging to reduce the amount
of raw data for final image generation, others focused on
data compression for data storage and transfer. Some of the
techniques were based on emission angle based efficient
data acquisition. However, these techniques did not focus on
missing data reconstruction for output image generation. As a
result, key details were missing in output images. Please note
that, although Daler’s technique is an exception to above,
it comes with an expense of designing a new code book for
encoding the channel data and scaling it (where, scaling is
data dependent), and decoding it in the end.

In our work, we focused on both efficient data acquisition
and missing data reconstruction for final image generation,
which will overcome all the image and data related issues
in above techniques. As a result, all our output images
(i.e. b-mode, displacement and elastographic images)
and image comparison metrics (such as SSIM, IMMSE
and PSNR) are in very close resemblance with conventional
techniques.

In this work, we presented two efficient data acquisition
and three data reconstruction techniques. When we com-
pare the results of our methods with standard techniques,
we noticed that our techniques are more efficient and are
offering the advantage of data savings up to 50%. Since the
amount of data acquisition by ultrasonic device and trans-
ducer got reduced by half, the device’s operation time is also
reduced by half.

We know that device operation time of ultrasonic sys-
tem is directly proportional to some of the factors such as
power consumption, heat dissipation, system usage, sensor

operational lifetime etc., With our technique, if the former
aspect got reduced by 50%, then all the latter factors will
also reduce by same amount, which will increase ultrasonic
system’s life time as a whole.

Our techniques can save 50% storage space in memory
devices, which comes with an expense of very low data
reconstruction software time lapse (which is minimum for
DCT + FD and DST + FD techniques (i.e. 0.7s and 3.8s
respectively), maximum for spline techniques (i.e. app. 32s)).

There are several key areas for future scope. Firstly, our
elastographic image generation approach involves manual
calculation of certain parameters (such as lateral distances,
choosing window sizes and pixel estimates etc.,). We are
working to make this automated, so our elastogram technique
can work for any data. We are also investigating as to how
we can use artificial intelligence (AI) and deep learning tech-
niques to generate more accurate and efficient elastograms.

Our second focus is to integrate compressive sensing [32]
into our data acquisition and reconstruction techniques; we
are also investigating how we can use AI for efficient
data reconstruction and image enhancement, exploring non
destructive testing methods [33]. Our techniques were suc-
cessfully applied on ARFI data, and we obtained better
results. So lastly, we will be applying our techniques in
other imaging techniques in the field of ultrasound (such as
synthetic aperture, focused imaging etc.,)
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