
Received 5 July 2024, accepted 23 July 2024, date of publication 29 July 2024, date of current version 6 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3434585

Adapting Containerized Workloads for the
Continuum Computing
ALBERTO ROBLES-ENCISO AND ANTONIO F. SKARMETA , (Senior Member, IEEE)
Department of Information and Communications Engineering, University of Murcia, 30100 Murcia, Spain

Corresponding author: Alberto Robles-Enciso (alberto.roblese@um.es)

This work was supported in part by Seneca Foundation in Region of Murcia (Spain) under Grant 21463/FPI/20, and in part by European
Union’s Horizon Europe Research and Innovation Program through the FLUIDOS Project under Grant 101070473 and through
RIGOUROUS under Grant 101095933.

ABSTRACT Container and microservices management platforms are currently one of the most important
tools for cloud computing, but since the scope of these tools is homogeneous cloud architectures they
have serious limitations in adapting to new computing paradigms. Therefore, using the default scheduler
in heterogeneous node systems faces significant limitations when tasked with orchestrating workloads in
a Continuum Computing environment, as the nodes have very different characteristics and restrictions.
To solve this limitation we decided to use Kubernetes as it is the most popular Container management tool
and we propose to replace the native scheduler with a reimplementation that gives us complete flexibility
for the process of assigning pods to nodes, providing a framework to design algorithms that considers all
the necessary parameters for the deployment of services in a Continuum. In addition, we address one of
the most limiting aspects of the K8s scheduler, its pod-by-pod allocation approach, which makes it difficult
to optimise the complete set of allocations. To test our proposal we design a use case and perform several
tests on a real environment based on virtual machines, in which stress tests are conducted to measure the
performance of each method. We then present a series of results to justify the benefits of our proposal,
including the reduced performance provided by the pod-pod approach and how a batch-based approach
greatly improves efficiency. The results show the usefulness of using batch-based approaches and how the
Kubernetes scheduler extension points are not enough to support the requirements of the Continuum.

INDEX TERMS Scheduling, containers, resource allocation, computing continuum, edge computing.

I. INTRODUCTION
As the demand for scalable and efficient computing solutions
continues to grow, cloud-based solutions were initially the
best approach to address this need. However, the surge in
online services and users has made it challenging to sustain
the cloud computing paradigm due to increasingly congested
cluster bandwidth and the rising demand for ultra-low latency
services.

From these requirements emerges the promising Edge
Computing paradigm which proposes to delegate as much as
possible of the computation to specially integrated nodes in
areas close to the users, thus reducing latency considerably
and limiting bandwidth usage as they process locally the

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Tsun Cheng .

largest amount of data without the need to communicate
with the Cloud node. To further increase the performance,
another layer of nodes called Fog is usually integrated, which
has more computational power (slightly similar to the Cloud
level) but is closer to the Edge nodes, so you have the popular
Edge-Fog-Cloud architecture. Even so, it remains a passive
model where decisions are made solely about whether to send
data to one level or another. Alternatively, users can only
interact with the Edge layer, which aggregates information
to progressively reduce its volume (while increasing its
semantics) before it reaches the Cloud level.

In this context, the Computing Continuum appears as
an innovation to take advantage of the Edge-Fog-Cloud
architecture by conceptually merging all layers into a single
computing continuum, allowing developers the flexibility
to implement their applications in a distributed manner

104102

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-5501-4608
https://orcid.org/0000-0002-5525-1259
https://orcid.org/0000-0003-3306-6148


A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

across an ecosystem of various types of nodes located in
distant locations. Since it is necessary to operate with the
complete set of nodes, it is important to consider their
individual characteristics, as it is a heterogeneous and diverse
set of devices. This includes some nodes with very low
computational capacities and others with high computational
power, including specialized acceleration units such as GPUs.
Therefore, it is crucial to optimally allocate services (tasks)
to the nodes that are best suited according to various criteria.
This challenge is known as the Task Allocation Problem
(TAP), which involves determining the most efficient way
to distribute computational tasks across the available nodes
to maximise performance and ensure efficient resource
utilisation.

On the other hand, container orchestration solutions
address the needs of cloud computing and microservices, but
a significant proportion of container management systems
do not explore new paradigms and focus on ensuring their
operation in Cloud Computing architectures, being hardly
adaptable to more complex networks such as Continuum
Computing. One of the most famous tools in the service
orchestration domain with the potential to adapt to Contin-
uum is the well-known platform Kubernetes (K8s), an open-
source platform born out of Google’s experience with
managing containerized applications at scale, Kubernetes
has become de facto standard for automating deployment,
scaling, and management of containerized applications.
Its architecture, built around a cluster of nodes, provides
a platform-agnostic solution for container orchestration,
enabling seamless scaling and resilience across diverse envi-
ronments. Thus, K8s is a very useful tool for the computing
continuum but it has some very important limitations that
reduce the effectiveness of its implementation due to its
fundamental emphasis on cloud computing.

A. MOTIVATION AND CONTRIBUTIONS
As already mentioned, the de facto tool for deploying
and managing containers (applications and services) is
Kubernetes, so we will focus on adapting it, although our
solution can easily be applied to other similar tools. However
it is not possible to use the standard version directly to handle
a computing continuum, hence this work aims to describe the
limitations of container orchestration systems and to propose
solutions to adapt its features to the continuum.

While Kubernetes has revolutionized container orches-
tration, its default scheduler faces significant limitations
when tasked with orchestrating workloads in continuum
computing environments. In particular, the conventional
scheduler approach to assigning pods to nodes is inadequate
because it neither considers the characteristics of the nodes
nor the conditions of the network. In addition, K8s offers
several extension points to modify the operation of the
scheduler, but these are still very basic and do not allow for
the deployment of a sophisticated decision engine.

In this context, we consider that it is appropriate to reim-
plement the scheduler to become an independent module of

the K8s core in order to be enabled to perform more complex
scheduling decisions, by acting as a middle point between
application deployments by users and the K8s cluster.
Furthermore, this module will be able to make pod-node allo-
cation decisions on a complete set of services (e.g. a deploy)
achieving a more optimal allocation, contrary to the greedy
one-by-one pod allocation approach of Kubernetes vanilla.

Therefore, the main contributions of this work are the
following:

• We defined a Computing Continuum architecture
using Kubernetes which includes different layers of
devices (edge-fog-cloud model), each one with different
capabilities and computing power.

• We have implemented a module that manages K8s
deployment requests (yaml files) and then sends them
to Kubernetes including the required metadata for
pod-node allocation.

• We have also reimplemented the native K8s scheduler to
include the additional metadata that has been introduced,
and also to be able to communicate directly with our
orchestration module to resolve the allocation.

• We have implemented a greedy algorithm for the indi-
vidual pod-node allocation following a similar approach
to Kubernetes but including the necessary constraints in
Computing Continuum (computational power, latency,
bandwidth, capabilities, location, etc.).

• In addition, we have designed an optimal algorithm
(based on backtracking) to solve the problem of
allocating a set of services (several pods at once) to the
nodes, achieving a more optimal allocation concerning
the greedy algorithm.

• To test the methods we have designed a real test scenario
with virtualised Kubernetes nodes, modified to have the
real performance that we defined in the tests.

• In addition, we have also implemented a docker image to
simulate the CPU usagewhen receiving a service request
over time according to the computational characteristics
of the node and the requirements of the service. In this
way, we can simulate the realistic behaviour of different
types of applications and perform stress tests on the
infrastructure.

• Finally, the result of our proposal is analysed to demon-
strate how the basic Kubernetes scheduler operation
is not suitable to consider the requirements of the
Computing Continuum.

B. ORGANIZATION
The rest of the paper is organized as follows. In section II
we explore the state of the art of the continuum and the
allocation problem. In section III we introduce the task
assignment problem with its main components. In section IV
we present our proposals to adapt the Kubernetes scheduler
to the Computing Continuum paradigm. Then, in section V
we evaluate the proposed solution in different scenarios and
analyse the results. Finally, the conclusions and future work
are drawn in section VI.

VOLUME 12, 2024 104103



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

II. STATE OF THE ART
The process of deciding what resources to maximise the
efficiency of an infrastructure is a well-known problem,
however with the emergence of the concept of Continuum
Computing new ideas and challenges emerge in terms of
determining how to manage this new type of network in
the most efficient way [1]. To verify the feasibility, the
possibilities of Continuum are explored with experiments
and simulations to discover the possible future potential of
this kind of distributed infrastructure, as for example Daniel
Rosendo et al. describe in [2]. However, the management
of the Continuum requires considering its heterogeneous
characteristics, something that is not common in the methods
applied in Cloud Computing. In [3] Marchese and Tomarchio
present in their paper how it is necessary to modify standard
task schedulers to consider new features that are very relevant
in the process of deciding the best node to perform a job, such
as bandwidth usage or the cost of using it. Similarly, Fu et al.
exploit the Continuum to deploy microservices and for this
purpose they developed in [4] a system (Nautilus) in charge
of deploying the services in an optimal way, ensuring QoS
and always considering the use of the network, since it is an
important factor in the computing continuum due to its direct
impact on the performance of the services.

Although the concept of Continuum Computing is rel-
atively new, it benefits from the fact that the problem of
managing computing resources efficiently in a network of
nodes is a research area that has been extensively studied
by Cloud Computing and recently significantly improved
by Edge Computing. Therefore, there are a large number
of works proposing all kinds of algorithms, methodologies
and frameworks for task and node management [5], [6],
being of special interest the new approaches based on Edge
Computing [7], which are easily adaptable to the Continuum
Computing paradigm. As mentioned, the continuum differs
from Cloud Computing by having to address new constraints
in the process of deciding nodes, for example, it is important
to take into account energy consumption [8], the geolocation
of the node [9], latencies [10], and even if the node
is moving [11]. To achieve this, various algorithms are
employed. However, due to the typically high computational
complexity of the problem, alternative techniques are often
utilized, with a recent focus on those based on evolutionary
methods [12]. Additionally, even novel techniques such as
Reinforcement Learning have been enhanced [13] to achieve
better integration into Edge-Fog-Cloud systems, allowing to
dynamically learn in which layer the offloading of a task is
most appropriate.

In multi-node systems where services are deployed,
Kubernetes stands as the de facto standard. This container
orchestrator has gained immense popularity in the cloud
computing and microservices management industry due to
its robust capabilities. However, the default performance
of K8s is limited in architectures other than relatively
homogeneous node clusters and is therefore not typical

for use in heterogeneous distributed systems. Even so,
these limitations are known and discussed by several works
[14], [15], which provide methodologies for improvement
supported by the tools that Kubernetes offers to extend the
functionality of its components, for example the scheduling
Framework. However, these works tend to focus mainly on
Cloud computing architectures, as for example in the paper
by Lebesbye et al. [16] where the limited performance of
the K8s default scheduler is identified and they propose a
service (Boreas) which provides a better way to select the
best nodes for each of the services but within a single Cloud
cluster. Similarly, Marchese and Tomarchio [17] propose to
improve the K8s scheduler for its limited performance by
taking into account network-related parameters, extending
the architecture to an edge computing environment where it
is critical to consider the quality of the connection between
nodes. In addition, other works also address this issue, such
as [18] where the concept of Computing Continuum is also
introduced, while others also report an increasing interest in
adding new features to the scheduling, such as the geolocation
of nodes [19], which are very important for the continuum,
thus serving as a reference for future research. The paper by
Sebastian Böhm and Wirtz [20] discusses in a general way
the difficulties of orchestrating Cloud-Edge architectures in
Kubernetes and proposes solutions, being one of the few to
explicitly discuss many of the critical limitations of the K8s
scheduler, for example, one of the most notable is the one-to-
one mapping approach of the pod to node allocation process.

As a conclusion, there are many works dealing with node
task allocation, intelligent container management and similar,
so this work does not aim to propose different methods for
optimal resource management. The main objective is what
has been detected in the literature review, there is a limited
number of papers and tools that focus on improving the most
important orchestrator of Cloud Computing to be efficient in
the new computing paradigms. Although the area of Edge
Computing is being addressed in recent works, the new
Continuum approach that combines the classic Cloud model
with Edge and Fog is not yet a very advanced area of study,
especially in the necessity to incorporate the differential
characteristics of each node (compute power, hardware
accelerators, specific capabilities, etc.) into the orchestrator
resource management process. Therefore, we consider rele-
vant to try to integrate the individual properties of the nodes
in the resource management, in particular the aspects related
the allocation of workloads to nodes. Consequently, when
the orchestrator has to decide to which node to send a job,
it can consider the capabilities and performance of the node,
thus being able to select the node that for example solves
the problem faster (higher computational power) although it
has more latency, or the node that is from a specific country
and has a hardware accelerator (GPU) available. In short,
the orchestrator will consider the heterogeneous nature of its
nodes when choosing where to send computing tasks, so as
to optimise the use of the infrastructure and improve QoS.

104104 VOLUME 12, 2024



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

III. TASK ASSIGNMENT PROBLEM
The main problem that orchestrators of applications have to
handle in a computing continuum is to determine in which
parts of the infrastructure it is most convenient, according
to all kinds of criteria, to deploy the services in order to
optimise the overall use of resources. This problem is called
the Task Assignment Problem (TAP) which is considered a
combinatorial optimisation problem commonly referred to as
the Assignment Problem [21].

In general terms, the assignment problem is defined as:
Given a set of tasks and a set of agents, each task can be
assigned to any of the agents incurring a cost and providing
a benefit, as long as the agent’s capacities are not exceeded.
The objective is to find the best task-agent assignment of all
tasks that maximises the final benefit without exceeding the
capabilities of each agent. The capabilities of an agent can be,
in addition to the typical CPU and RAM, others such as its
location, CPU speed, average latency, available bandwidth,
GPU or RAM-ECC availability.

In this context, orchestrators ideally aim to solve the TAP
for each set of applications they want to deploy, but since
solving this problem is usually costly, they try to use another
methodology such as one-to-one assignments based on
heuristics. In the case of the continuum computing paradigm,
this problem is further complicated by the heterogeneous
nature of the devices that are part of the infrastructure
(from mobile phones to large datacenters), the widespread
physical locations between nodes, the limited bandwidth at
some nodes, and many other details. However, the different
capabilities of the elements of this sort of architecture can
be exploited to distribute services and applications over the
continuum according to their priority and computational
requirements, thus minimising the cost of the applications
while maximising their performance.

A. ELEMENTS
As mentioned above, the elements that constitute the
infrastructure of the computing continuum are very different
in terms of both capacity and design. In the areas closest
to the user we have smaller devices with limited capacities
but capable of responding quickly to requests (low latency),
at the other side we have Cloud servers with large computing
capacity but with higher latency and less available bandwidth.
In between the two sides, different devices with intermediate
capabilities are deployed to support the needs of users and
developers. Figure 1 summarises the typical distribution of
devices in a Continuum by identifying the services that could
be deployed at each point according to latency, bandwidth and
compute capacity.

Moreover, depending on the layer some devices may pro-
vide additional computing capabilities. For example, some
Fog nodes may have GPUs to accelerate deep learning tasks
while some Edge nodes may not have certain instructions
needed to speed up encryption tasks (e.g. AES-NI). It is
also important to note that the computational speed of each

device is different, so the same tasks can be solved faster
on a more powerful node even if it has higher latency. This
variety of characteristics must be carefully considered by the
orchestrator when deciding which node to assign a service to.

FIGURE 1. Computing continuum.

B. FORMAL DEFINITION
The task allocation problem is a well-known problem and can
be formalised as a Generalized Assignment Problem (GAP)
[22], which is an NP-hard [23]. The objective of the problem
is to define the best allocation of tasks to the nodes, therefore
the output of the algorithm will consist of an array of size S
(number of services to be deployed), where each element will
denote on which node (of the set N) that service is deployed.
Hence, the output solution to the problem is defined as below:

tw = {tw0, tw1, . . . , twn−1, tws}

where:

twx = {w | w ∈ N } (1)

Therefore, the optimisation problem of assigning S
services to N nodes is formulated as follows:

min
n∑

w=0

s∑
t=0

a(w, t) c(w, t)

subject to:
s∑

t=0

a(w, t)S tcpu ⩽ Nw
cpu ∀w

s∑
t=0

a(w, t)S tram ⩽ Nw
ram ∀w

n∑
w=0

a(w, t) = 1 ∀t

n∑
w=0

a(w, t)
s∑

t ′=0

a(w, t ′) · I(t ′ ∈ tanti) = 0 ∀t

a(w, t) = 0 if S tloc ̸= Nw
loc

a(w, t) = 0 if S treqCap ⊂ Nw
cap

a(w, t) = 0 if S tmaxLat > Nw
lat

a(w, t) ∈ {0, 1} (2)

where the function a(w, t) denotes whether a service t has
been assigned at a node w, such that:

a(w, t) =

{
1 if twt [eq 1] is equal to w
0 otherwise

(3)

VOLUME 12, 2024 104105



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

And the function c(w, t) denotes the cost of assigning the
node w to service t , which is expressed as the following
weighted sum of different parameters:

c(w, t) = α1 wnetworkDelay + α2 wcpuSpeed
+ α3 (tdesiredLatency − wlatency) (4)

The constraints of the problem described in eq. 2 represent
respectively: Node assignments cannot exceed the CPU
capacity of each node; Similarly, the RAM capacity of nodes
can never be exceeded; No more than one node can be
assigned per pod; Nodes will not have any services that have
anti-affinity between them; A task is assigned to a node only
if it has the same location, capabilities and required latency.

C. KUBERNETES LIMITATIONS
In this subsection we will present K8s specific limitations
to solve the TAP in an optimal way. As we said before,
although our work is focused on Kubernetes, our proposal
can be applied to other container platforms and service
systems as they usually share the same limitations. By default,
Kubernetes provides a scheduler that has a very basic
behaviour, and while it works well in general, it has limited
flexibility when more complex requirements are needed.
Therefore, K8s offers a whole framework to enhance/extend
it according to the particular needs of each cluster by making
use of a series of extension points to develop plugins. Figure 2
(from [24]) summarises the extension points they offer in
each part of the scheduling process.

FIGURE 2. Kubernetes Scheduling Framework, extracted from [24].

Through the use of extension points (e.g. Filter and Score)
the scheduler can be enhanced to consider the basic features
of the Computing Continuum, e.g. giving better scores (using
Score) to nodes that are geographically closer and for latency,
as well as excluding nodes (using Filter) that are not valid due
to their location or capabilities.

However, all these improvements have the limitation of
being bound to the predefined flow of steps of the K8s
scheduler, making it difficult to implement more complex
methodologies that require performing several different steps
or repeating them. Moreover, their proposed scheme is
inherently limited in that it offers sub-optimal solutions that
are likely to be far from the best solution to the problem.

When Kubernetes receives a request to deploy a service
(denominated Pod) it enqueues it in a list of Pods to be
assigned to a node. Periodically that queue is queried and
pods are sent one by one to the scheduler to decide on

which node will be allocated, resulting in a greedy pod-
pod allocation. This approach therefore limits the possibility
to optimise the allocation of a complete set of services by
allocating them individually and separately. To group pods
it is necessary to completely reimplement the scheduler
so that it is able to select more than one pod at a time
from the queue of pods to be assigned. In this paper we
have adopted this approach, implementing a new scheduler
fully customised to include all the needs of the Computing
Continuum architecture. Nevertheless, it is important to note
that since the optimisation problem is computationally very
expensive, alternative solutionsmust be implemented to solve
problems that are not of small size, e.g. genetic algorithms.

On the other hand, by reimplementing the scheduler it is
also possible to applymore complex techniques when solving
the task assignment problem, even considering the pod-by-
pod approach of K8s. For example, if it is not important to
optimise the complete set of services, pod-to-pod allocations
can be kept to solve a multi-objective problem (e.g. latency
and consumption) by using the best point of a Pareto front.

Therefore, the benefits of designing our own scheduler
are the improvement in both flexibility and functionality
of the default Kubernetes module, including the possibility
of being able to solve the deployment of a set of services
(pods) at once to obtain the optimal solution to the allocation
problem, instead of the greedy sub-optimal pod-to-pod
approach of K8s. Moreover, any other parameters can be
easily considered in the node selection process, such as
choosing the best node based on processor computing power,
distance, latency, available bandwidth, or even excluding
nodes that do not meet capacity requirements or specific
characteristics (e.g. GPU). Alongwith the constraints that can
be defined (e.g., maximum latencies, anti-affinity, location),
soft-constraints can also be defined as desirable but not
mandatory objectives in the optimisation process (e.g.,
desired average latency). In addition, as mentioned above,
the pod-to-pod deployment approach can be maintained
but the process can be enriched with more sophisticated
methods such as using the Pareto front for multi-objective
optimisation, more advanced heuristic algorithms and even
neural networks.

IV. PROPOSED APPROACHES
Given that we have replaced the Kubernetes scheduler
with our custom module that is responsible for offloading
node-pod allocation requests to another external module,
it is necessary to implement several allocation methods since
K8s would be completely untethered from that role. Since
our work is contextualised in the Continuum Computing
paradigm, all the proposed methods will take into account
the characteristics and requirements of the services that are
deployed in this type of infrastructure, thus addressing the
limitations of K8s.

In our proposals, two main categories can be defined,
the methods that make a pod-node allocation one by one
(K8s style) and the methods that make allocations from

104106 VOLUME 12, 2024



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

several pods to several at a time (batch) to achieve a better
optimisation of resources. The purpose of pod-pod methods
is to provide a quick solution for problems where the global
optimisation of the solution is not so important, but always
considering the constraints of the Continuum. On the other
hand, batch allocation solutions aim to optimise the allocation
of a given set of pods (5, 10, etc. . . ), always considering that
the optimisation of the whole set of pods is difficult to achieve
since either there aremany pods and the optimisation problem
is computationally very complex to solve, or the pods arrive
very slowly so it is not possible to wait to have a large set to
make the allocation.

A. BASELINE METHODS
To verify the performance and the proper operation of the
proposed methods, we have implemented a set of algorithms
that will be used as a baseline for comparison, providing
a lower bound of the worst possible performance of the
methods. These methods are not feasible to use in a real
environment as their behaviour is not suitable at all (e.g.,
assign nodes randomly), but they serve as a benchmark for the
comparison with the rest of the methods as the performance
is considerably limited. In the following subsections we will
present methods that are applicable in real environments and
will serve to compare performance in the experiments.

The first algorithm is the simplest of all, when it receives a
set of pods to assign directly it chooses the node randomly,
therefore its performance will be the worst of all as most
of the time the final assignment will violate a large number
of constraints. The result of this algorithm defines the upper
bound of worst performance and is therefore useless.

The second algorithm is an improvement of the previous
one, it is a random method but it tries to respect as much
as possible the constraints of the problem when choosing a
node. In this way, the result is quite acceptable as it limits
the number of restrictions that are violated but it is not the
best as it does not optimise the problem, it only randomly
selects a node from the set of possible nodes as a solution.
The algorithm is for comparison because it provides a way
to see if the proposed methods are able to offer superior
performance in choosing better nodes within the set of nodes
validated as a solution, if there is no improvement it would
be concluded that the methods are not worthwhile as they
do not improve on the simpler case of randomly assigning
valid nodes. Furthermore, it is important to mention that this
method is not feasible as its computational cost is very high
and it is only used for comparison purposes in the results
analysis section.

On the other hand, another algorithm that is implemented
is a basic Round-Robin algorithm that essentially assigns the
pods in order to each node. This method does not consider any
of the constraints of the problem and serves to simulate the
behaviour that the original K8s scheduler would have, since
if it does not include the Continuum metadata, it would just
assign the pods to the nodes following a round-robin scheme.

With these three algorithms we therefore have a suite of
methods to determine respectively the worst possible result,
an acceptable result and a result similar to native K8s.

B. POD-POD ALLOCATION
The first type of algorithms are those that perform the
allocation following the pod-to-pod style of Kubernetes,
therefore they individually assign the pods in the queue one
by one without attending to the global result of the mappings.

As already mentioned, the first two methods are exclu-
sively for defining the worst possible performance as their
assignment is purely random. However, the constraint-aware
Random algorithm gives an acceptable result by ensuring that
the solution satisfies the constraints of the problem regardless
of the end node. The third method that will be used in the tests
is Round-Robin, a very commonmethod in networks because
in systems where the elements are similar and there is no clear
preference between each of them, it achieves a good result
by distributing the work equally, so each pod in the queue of
pods to be assigned will be allocated to each node in order
in a cyclic pattern. The results of this method will be used to
simulate the default behaviour of K8s, because if no specific
metric is defined, the Kubernetes scheduler will distribute the
pods between the nodes in an orderly fashion.

Finally, we have implemented a greedy method for the
assignment of the pods to the best nodes, the methodology
consists of assigning a score to each node (using the cost
function of the eq. 4 and penalising the nodes that do not meet
the restrictions) and then ordering the nodes and choosing
the one with the lowest cost. In this way a fast pod-pod
assignment is achieved respecting the constraints of the
problem and with an acceptable sub-optimal result, since in
many types of problems greedy algorithms are not able to give
the optimal solution and a more complex or full exploration
method is required [25], [26].
Although the real objective is to achieve allocations follow-

ing a Batch scheme, pod-pod allocations are useful to obtain
fast solutions or to implement more complex mechanisms
such as multi-objective optimisations, for example, selecting
the best node according to its latency and consumption using
a Pareto front.

C. BATCH ALLOCATION
To obtain a result closer to the optimal one, it is mandatory
to process the allocations in batches in order to take into
account the joint allocation decisions, so that the best possible
combination can be found. Hence, the optimisation problem
defined above must be solved.

As an approach to solving the optimisation problem
previously defined (eq 2), given that we want to find the
best possible solution, we have opted for a strategy of full
exploration of the state space. For this, we have implemented
an algorithm based on backtracking, with some optimisations
to make the exploration faster, in such a way that the
algorithmwill test all possible assignments of nodes to the list

VOLUME 12, 2024 104107



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

of services to be deployed. The method essentially tests each
set of pod-node assignment combinations (the array defined
in eq. 1) in an orderly fashion and checks whether they meet
the constraints (restrictions of the problem in eq. 2) and what
fitness (eq. 4) it gives, writing down the best combination
it finds. However, it is important to mention that it is a
method that usually has a high and exponentially growing
computational cost. Therefore, if the problem is of small size
(5-10 pods and 10-20 nodes) its use is feasible, but if a large
number of pods have to be assigned, its use is prohibitive
because its execution time is very large.

For large scenarios, the allocation can be split into smaller
batches, slightly reducing the performance of the final allo-
cation but making it manageable, for example, by separating
one allocation of 20 pods into two batch of 10 pods. On the
other hand, another alternative solution in this case is to use
methods based on metaheuristic techniques such as Genetic
Algorithms [27] or Particle Swarm Optimisation [28]. Thus,
even if the problem is very large, using population-based
techniques it is possible in a short time to find solutions
with a performance relatively close to the optimal one.
To demonstrate this alternative, we have implemented a
genetic algorithm (similar to that proposed in [29]) that
solves the node assignment problem through a population
of individuals that are iteratively improved until reaching a
solution very close to the optimal one.

V. SIMULATIONS RESULTS AND DISCUSSION
In this section the performance of the proposed solution is
analyzed using the results obtained in a real test environment.
We will also evaluate the results against other methods
described above to compare and prove the necessity of
replacing the native Kubernetes scheduler to satisfy the
requirements of the Computing Continuum. Furthermore, the
results analysis section will focus on the demonstration and
justification of the need to adapt the pod-pod K8s scheduler
for the Continuum, so it will not be intended as a benchmark
between different allocation algorithms.

A. ARCHITECTURE
The architecture of the test scenario is the already mentioned
Computing Continuum, consisting of different layers of
devices further and further away from the end user but with
higher computational capacity. Figure 3 summarises the one
we have used for testing, in which we have divided the
devices into three levels.

The first level (Edge Layer) is the closest to the users
and consists of a set of low-power, low-computing-capacity
devices that are close enough to the users to provide low-
latency, high-bandwidth access to services.

The second level (Fog Layer) is a mid-point of the
architecture where more powerful servers are deployed to
handle all the heavy tasks that the edge devices are unable to
tackle. These devices are usually relatively close (same region
or state) as the edge devices so their latency is not very high
and have an acceptable bandwidth.

FIGURE 3. Computing Continuum Architecture (Edge-Fog-Cloud Schema).

Finally, the third level represents the Cloud which consists
of large data centres with high computing capacity. The
disadvantage of the Cloud is that due to the small number
of nodes and the great distance from the end users, its latency
is usually very high and its bandwidth very low.

In our tests the Edge layer is designed to have a
latency between 5 and 10 milliseconds while maintaining a
bandwidth of 200mbps. The Fog layer provides a latency
between 10 and 25ms and a bandwidth of 100mbps and lastly
the Cloud layer has a latency of 30 to 50ms and a bandwidth
of 40mbps.

To connect the nodes, deployed as independent Kubernetes
clusters, to each other we have used a very promising new
technology to interconnect clusters simply and seamlessly
known as Liqo [30]. The main idea of the toolkit provided
by the open-source Liqo.io project is to be able to integrate
several Kubernetes-based clusters in a completely transparent
and user-friendly way for the administrator, simulating the
remote clusters as virtual nodes. Also, in order for the
orchestrator to be aware of the status of each node, it is
obligatory to register the node (and properly authenticate
itself using secure techniques) in the infrastructure first,
so that the orchestrator is properly informed of the hardware
characteristics, capabilities and metadata of the nodes to be
considered in the resource management process. An example
of a mechanism for offering and registering resources from
nodes to users who want to use them is the one proposed by
Galantino et al. in [31], where they present a protocol (REAR)
for the management of request management and resource
reservation in a Continuum Computing network.

Regarding the operation of the application and service
deployment process, the first step is to receive the deployment
request (set of services) in our orchestrator which will collect
the infrastructure information and will solve the allocation
problem considering the constraints and optimising the result.
After that, it will send the request to Kubernetes to deploy
the pods and send them to the pod-to-node queue, being
processed by our custom scheduler which will assign the pods

104108 VOLUME 12, 2024



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

TABLE 1. List of cloud, fog and edge nodes.

to the nodes decided in the first step. Finally, the orchestrator
is notified that the process has been completed so that the user
or administrator can be informed.

Moreover, the orchestrator will periodically check the
status of the infrastructure and collect all the statistical
information required, for example, CPU and RAM usage of
the nodes, latency between layers, among others.

B. SIMULATION SETUP
To perform the tests in a realistic Kubernetes environment,
10 virtual machines were deployed in different locations and
each one was configured to host a Kubernetes cluster. Each
virtual machine has been modified to have the defined CPU
performance, latency and bandwidth using the cpulimit [32]
and Traffic Control (tc) [33] tools. The implementation of our
custom scheduler is based on the example proposed by san-
poshiho [34], and for the pod assignment to be decided with
our scheduler we have used the ‘‘schedulerName’’ parameter
in each Pod. Table 1 fully summarises the technical informa-
tion of the testing environment. As can be seen, the set of k8s
nodes is heterogeneous as they have different computational
power, capabilities, latencies and locations. To synchronize
the information related to the state of each node with the
orchestrator, we have used the metrics server provided by
Kubernetes together with a distributed Prometheus server to
register all the metrics not supported by K8s.

Table 2 summarises the information related to the test, such
as alpha parameters of the cost function and the JMeter stress
test specifications.

C. DEPLOYED APPLICATIONS
In order to verify the implemented methods, a group of
applications (services) have been designed to be deployed
on the nodes. Each application has specific CPU and RAM
requirements (in the same way as a standard Kubernetes
deploy) but additionally we can add conditions such as
affinity, anti-affinity, minimum latency, desired latency, loca-
tion restrictions, specific hardware capabilities requirements
(GPU, RAM-ECC, NVMe disks, AES-NI instructions, . . . )
and many others. In practice, each application is based on

TABLE 2. Parameters of the simulation.

the same docker container which via machine environment
variables and Pod parameters is adjusted to procedurally
simulate realistic CPU and thread usage similar to those
expected. Table 3 details the services we have designed to
perform the stress tests of each method on the infrastructure.

TABLE 3. Services to be deployed.

The Figure 4 shows the dependency scheme of the example
application that we have designed, which emulates a kind
of simplified image classification app. The part closest to
the users is the front end of the application (a PWA web
page) which must be deployed in Spain (target users) and
must have three replicas for scalability reasons. The middle
part of the application is the image classification process

VOLUME 12, 2024 104109



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

(relatively high computational), which must be deployed
within Europe to comply with GDPR. In addition, we have
three other complementary services; the database which has
to be deployed in Germany as it is the headquarters of the
company, a public API that requires little computation and
finally a service to obtain the complete model of our classifier
whichwill first have to compress it (high computational cost).

FIGURE 4. Services of the sample application.

Since the application follows the PWA model [35], the
services do not interact with each other, it is the end user who
will call each service when needed. The image 5 depicts the
interaction flow of the application, when the user launches
the app it downloads the front end of the web service that
serves as an interface to use the App, once the user uploads an
image to classify, the user device will connect to the classifier
service. Within the application interface there is an option
to download the trained model, which will communicate
with the ‘‘compressor’’ service to compress the model and
download it.

FIGURE 5. Interactions between the user and each service of the
application.

D. RESULTS
In this section we will present the results of the tests
conducted in a real environment of virtualised nodes,
according to the characteristics and requirements specified
above. The analysis of these results will focus on justifying
the need to replace the K8s scheduler in the context of the
Computing Continuum, so different types of algorithms to
solve the optimisation problem will not be analysed, as each

of them will be suitable in different contexts according to the
needs of the administrators.

In order to visually illustrate the operation of the optimal
algorithm for allocating batches of services to the infrastruc-
ture, the orchestrator is requested to deploy three times the use
case presented above, to force the nodes to become saturated
and force the algorithm to decide new nodes for the next
deploy. Figure 6 shows the process, starting initially from the
empty infrastructure (top left), and at each step showing the
allocation of the use case services up to three times (bottom
right).

The first stage shows the starting state of the nodes that
we have defined, showing to the right of each one of them
a bar with the percentage of the amount of CPU required
by the node’s services and below a number with the amount
of available milliCPU. In the next step we can see how
the set of services of the use case is allocated (using the
optimal algorithm) in the infrastructure, highlighting how
the database is placed in the node in Germany (location
requirement), the heaviest tasks (classify and compress) end
up in the fastest nodes (Turin and Madrid) and the rest
of the web services are distributed among the nodes with
lower latency. It is therefore confirmed that the Continuum
requirements are being respected as services are distributed
across a multi-level infrastructure in the most optimal way
according to latency, computational speed, etc, and also
respecting constraints such as location and anti-affinity.

However, to ensure that the proposal works properly and
dynamically, it is necessary to force the nodes to reach
their maximum capacity so that the method has to search
for alternative nodes that respect the constraints. For this
purpose, the allocation of the use case services to the system
is repeated twice more (without overwriting them), so that
some of the nodes are saturated with the extra work. This can
be seen in the third stage (bottom left) where the compression
service is assigned again to the most powerful node (Turin)
taking it to the limit of CPU capacity so that the classification
service is distributed between the next two most powerful
nodes (Madrid and Valencia).

Similarly, as we continue to the last step (bottom right) it
becomesmore complicated to allocate services asmany of the
best candidate nodes are already at their maximum capacity,
so compute-intensive services start to be distributed closer
and closer to the edge, for example the compression service
is sent to the Murcia node as it has the least work and has an
acceptable compute power.

If a similar approach to K8s had been followed, it would
not have been possible to optimise the allocation of services
to nodes in this way, so there is a clear need to enhance
the default scheduler, especially for the batch allocation
process. Furthermore, the number of services varies based
on the algorithm employed and in our situation, the optimal
algorithm’s high cost results in fewer services, a number that
can be readily increased by utilizing evolutionary algorithms.
However, to show its potential we have performed a test
where we fully optimise the allocation of the use case services

104110 VOLUME 12, 2024



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

FIGURE 6. Evolution of allocating service batches to the infrastructure (from top left to bottom right).

three times, so the result will be the best possible allocation
of the last step in Figure 6. The result is shown in the left part
of Figure 7, although it is computationally unfeasible within
the scheduler, it is useful to clearly see the good performance
of the proposal as it shows how the most expensive services
(compressor and classifier) are kept within the most powerful
nodes while the web services are perfectly distributed in the
edge nodes with lower latency. Likewise, the right-hand side
of the figure depicts an example of a pod-pod allocation using
the proposed greedy algorithm. As mentioned above, this
approach would be a direct improvement on the Kubernetes
scheduler as it would consider the continuum requirements
and search for the best node to meet the constraints, while
maintaining a fast pod-pod allocation approach. But, the
solution obtained has a much lower performance than the
optimal batch solution because each allocation is done
independently and without considering the others, so it tends
immediately to saturate the nodes with the best cost function
and many nodes are left with a reduced utilization.

After graphically analyzing an example of how the pods
would be distributed across the nodes using the proposed
methods, we will proceed to describe the second set of
tests in this section. We will deploy the services of the use
case three times (d1, d2, d3) on the initial infrastructure in
the same manner as in the previous test, utilizing each of
the described methods: the complete deployment of all the
services (Figure 7 left), the deployment of each batch of
services individually (Figure 6), the deployment of each batch
of services individually using the Genetic algorithm instead
of the previous one based on Backtracking, the pod-pod
deployment with the greedy algorithm (Figure 7 right),
the algorithm that allocates pods randomly while meeting
the constraints, a round-robin-based method, and finally,

a completely random algorithm. Then, we will measure
the result of the pod-node allocation on the virtual node
infrastructure by conducting a series of stress tests using
the Apache JMeter tool. These tests will assess whether
the performance of the deployed services, specifically the
average response time, is affected when the load on them
is significantly increased. The complete results of all the
tests are summarized in Figure 8, showing the average
response time for each service and deployment according
to the allocation method used. To perform the stress tests,
JMeter has been configured with the configuration specified
in table 2, in such a way that every 4 seconds a request is
generated to each service multiplied by the number of users
of that service, thus simulating an intensive use of all the
applications deployed on the infrastructure. At the beginning
of the JMeter test, nodes are able to resolve requests to
services within a few milliseconds, but as the number of
requests increases, they become saturated, causing some
services to take several seconds to process each request. The
final result of the test will be the total average response time
of each of the services of each deployment taking into account
all the requests made during the stress test.

As shown in Figure 8, the worst result (higher bars,
hence longer response time) comes from the totally random
algorithm (grey bars), which is obvious since the choice
of nodes is not at all appropriate. Moreover, it can be
seen how it is not even an optimal allocation in the sense
of using available resources properly, since some services
(for example, d3-web-r1 and d3-web-r2) have a response
time below the rest of the method, this is because they are
allocated in very powerful nodes so they are not saturated,
but they occupy very expensive resources necessary for other
services with a higher workload (compressor or clasificator).

VOLUME 12, 2024 104111



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

FIGURE 7. Complete Batch deploy vs Pod-Pod Greedy allocation.

FIGURE 8. Average response time of each service for each method.

Similarly, the round-robin based method (blue bars) has a
reduced performance that is slightly higher than the previous
method simply because it distributes the services equally
among the nodes.

On the other hand, the random method that respects the
restrictions (orange bars) improves the response time by
considering the problem constraints but in some services (e.g.
d1-classif-r2) it gives a bad result as it is still a randommethod
that does not choose the best node. However, as mentioned
above, it is a good method to define the baseline performance
to be improved, as it takes into account the requirements of
the continuum but does not choose the best possible node.

As a first approach to the task of assigning pods to nodes
we have the greedy algorithm (purple bars) that follows a
pod-pod assignment pattern but takes into account that the
best node (lowest value of the cost function) must be chosen
from the set of valid nodes (they meet the requirements of
the deployment). As can be seen in the graph, in all services
the result is acceptable and remains similar between the three

deployments, however some services with lowworkload (e.g.
web) tend to have a low performance as many end up in the
same nodes as explained previously about figure 7. Since pod-
by-pod allocation is done individually it is not possible to
optimise the full set of allocations so that some nodes that
have a good cost function for a given service end up with
several instances of that service as the best candidate appears
at each stage, when if all allocations are considered at once it
is possible to identify that it is better to deploy them on other
nodes even if their cost function is worse but the total cost is
optimised.

Adding the possibility of being able to solve the allocation
problem in blocks of services (batch) leads to a clear
improvement in the performance of applications. The result
is seen in the yellow bars representing the method that
deploys the pods in three batches to optimise the choice of
nodes in each batch using an optimal algorithm. This method
gives a much better performance than the other methods,
where there is a clear improvement between the pod-pod and

104112 VOLUME 12, 2024



A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

batch schemes, justifying the need to improve the pod-node
allocation process so that it can consider several pods at
the same time. Moreover, the alternative based on a Genetic
Algorithm offers a performance quite similar to the optimal
one based on Backtracking, but with a shorter execution
time, which allows its application in real-world environments
where execution time is critical, even if the solution is not the
best of all.

Finally, we perform a test where we run the optimal method
(green bars) to perform the allocation of the three deploys
as one, thus giving the maximum optimal result of our tests.
We can appreciate in the graph how the response time of the
services is improved since the allocation is slightly better, but
even so the improvement is limited, so it can be inferred that
splitting the deploy between three does not have a critical
impact on performance and allows it to be computationally
possible to solve the optimisation problem by considerably
reducing the size of the problem.

In conclusion, while the native k8s scheduler is gener-
ally functional, it is not the most suitable scheduler for
a Continuum Computing scenario as illustrated by the
Round-Robin and Random-Restriction algorithms. Similarly,
if it is possible to integrate the continuum requirements into
the scheduler, the performance improves directly (random
algorithm that respects the constraints and greedy pod-pod
algorithm). However, performance will always be limited
by the pod-to-pod allocation scheme offered by Kubernetes,
so if we want to improve performance we need to be able to
allocate several pods at once (batch). This is evidenced by
batch-based deployments, where the improvement is clearly
seen in situations where the infrastructure is saturated as the
choice of nodes has been the most appropriate considering
the whole set of services.

VI. CONCLUSION AND FUTURE WORK
One of the most important current tools for container
and microservices management is undoubtedly Kubernetes.
However, its principal emphasis is on resource management
in Cloud Computing architectures, so its applicability is
therefore constrained. To increase the dynamism and flexi-
bility of the K8s elements, different tools, frameworks and
plugins are provided to increase the features and adapt to
new requirements, e.g. the scheduler extension points. Even
so, the native scheduler still has limitations that hinder its
application in Continuum Computing architectures, such as
the lack of considering relevant parameters in heterogeneous
architectures (different computing power and capabilities)
and the one-to-one approach to the assignment process of
pods to nodes.

To solve this problem we propose a framework that
considers all the necessary parameters for the deployment
of services in a Continuum, as well as providing a set of
algorithms for different applications (pod-pod and batches).
We then present a series of results to justify the benefits of
our proposal and demonstrate the limitations of the basic
Kubernetes orchestration, including the reduced performance

provided by the pod-pod approach and how a batch-based
approach greatly improves efficiency.

Nevertheless, our objective is to justify the necessity of
adapting Kubernetes for Continuum, so the main focus of
this work is limited to providing the basic principles and
tools that can be used as a basis for implementing more
complex solutions. Therefore, future work should focus
on implementing more complex algorithms to solve the
allocation problem, including Genetic Algorithms, Particle
Swarm Optimization (PSO), Ant Colony Optimization,
and Reinforcement Learning. Additionally, exploring new
approaches for Pod-Pod allocation, such as applying neural
networks or multi-objective algorithms like the Pareto Front,
would be valuable.

REFERENCES
[1] D. Kimovski, R. Mathá, J. Hammer, N. Mehran, H. Hellwagner, and

R. Prodan, ‘‘Cloud, fog, or edge: Where to compute?’’ IEEE Internet
Comput., vol. 25, no. 4, pp. 30–36, Jul. 2021.

[2] D. Rosendo, P. Silva, M. Simonin, A. Costan, and G. Antoniu, ‘‘E2Clab:
Exploring the computing continuum through repeatable, replicable and
reproducible edge-to-cloud experiments,’’ in Proc. IEEE Int. Conf. Cluster
Comput. (CLUSTER), Sep. 2020, pp. 176–186.

[3] A. Marchese and O. Tomarchio, ‘‘Orchestrating serverless applications
in the cloud-to-edge continuum,’’ in Proc. 1st Int. Workshop Middleware
Comput. Continuum. New York, NY, USA: Association for Computing
Machinery, Dec. 2023, pp. 12–17, doi: 10.1145/3631309.3632834.

[4] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, ‘‘Adaptive resource
efficient microservice deployment in cloud-edge continuum,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 8, pp. 1825–1840, Aug. 2022.

[5] J. H. Joloudari, S. Mojrian, H. Saadatfar, I. Nodehi, F. Fazl,
S. K. Shirkharkolaie, R. Alizadehsani, H. M. D. Kabir, R. S. Tan,
and U. Acharya, ‘‘Resource allocation problem and artificial intelligence:
The state-of-the-art review (2009–2023) and open research challenges,’’
Multimedia Tools Appl., vol. 83, pp. 67953–67996, Jan. 2024.

[6] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan,
‘‘Task scheduling in cloud computing based on meta-heuristics:
Review, taxonomy, open challenges, and future trends,’’ Swarm
Evol. Comput., vol. 62, Apr. 2021, Art. no. 100841. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S221065022100002X

[7] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, ‘‘Resource scheduling in edge
computing: A survey,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 4,
pp. 2131–2165, 4th Quart., 2021.

[8] S. K. Mishra, S. Mishra, A. Alsayat, N. Z. Jhanjhi, M. Humayun,
K. S. Sahoo, and A. K. Luhach, ‘‘Energy-aware task allocation for multi-
cloud networks,’’ IEEE Access, vol. 8, pp. 178825–178834, 2020.

[9] F. Faticanti, M. Savi, F. De Pellegrini, and D. Siracusa, ‘‘Locality-
aware deployment of application microservices for multi-domain
fog computing,’’ Comput. Commun., vol. 203, pp. 180–191,
Apr. 2023. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0140366423000506

[10] C. Chakraborty, K. Mishra, S. K. Majhi, and H. K. Bhuyan, ‘‘Intelligent
latency-aware tasks prioritization and offloading strategy in distributed
fog-cloud of things,’’ IEEE Trans. Ind. Informat., vol. 19, no. 2,
pp. 2099–2106, Feb. 2023.

[11] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, ‘‘Mobility-aware
joint task scheduling and resource allocation for cooperative mobile edge
computing,’’ IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 360–374,
Jan. 2021.

[12] J. Tang, G. Liu, andQ. Pan, ‘‘A review on representative swarm intelligence
algorithms for solving optimization problems: Applications and trends,’’
IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1627–1643, Oct. 2021.

[13] A. Robles-Enciso and A. F. Skarmeta, ‘‘A multi-layer guided rein-
forcement learning-based tasks offloading in edge computing,’’ Com-
put. Netw., vol. 220, Jan. 2023, Art. no. 109476. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128622005102

VOLUME 12, 2024 104113

http://dx.doi.org/10.1145/3631309.3632834


A. Robles-Enciso, A. F. Skarmeta: Adapting Containerized Workloads for the Continuum Computing

[14] C. Carrión, ‘‘Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,’’ ACM Comput. Surv., vol. 55, no. 7, pp. 1–37, Dec. 2022, doi:
10.1145/3539606.

[15] S. Wen, R. Han, K. Qiu, X. Ma, Z. Li, H. Deng, and C. H. Liu, ‘‘K8sSim: A
simulation tool for kubernetes schedulers and its applications in scheduling
algorithm optimization,’’Micromachines, vol. 14, no. 3, p. 651, Mar. 2023.
[Online]. Available: https://www.mdpi.com/2072-666X/14/3/651

[16] T. Lebesbye, J. Mauro, G. Turin, and I. Yu, ‘‘Boreas—A service scheduler
for optimal kubernetes deployment,’’ in Proc. Int. Conf. Service-Oriented
Comput., Nov. 1007, pp. 221–237.

[17] A. Marchese and O. Tomarchio, ‘‘Network-aware container placement in
cloud-edge kubernetes clusters,’’ in Proc. 22nd IEEE Int. Symp. Cluster,
Cloud Internet Comput. (CCGrid), May 2022, pp. 859–865.

[18] A. Marchese and O. Tomarchio, ‘‘Extending the kubernetes platform with
network-aware scheduling capabilities,’’ in Service-Oriented Computing
(Lecture Notes in Computer Science), vol. 13740. Cham, Switzerland:
Springer, 2022, pp. 465–480, doi: 10.1007/978-3-031-20984-0_33.

[19] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, ‘‘Geo-distributed
efficient deployment of containers with kubernetes,’’ Comput. Commun.,
vol. 159, pp. 161–174, Jun. 2020.

[20] S. Böhm and G.Wirtz, ‘‘Towards orchestration of cloud-edge architectures
with kubernetes,’’ in Proc. Int. Summit Smart City 360◦, Nov. 2021,
pp. 207–230.

[21] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2012. [Online]. Available: https://epubs.siam.org/doi/
abs/10.1137/1.9781611972238

[22] T. Öncan, ‘‘A survey of the generalized assignment problem and its
applications,’’ Inf. Syst. Oper. Res., vol. 45, no. 3, pp. 123–141, Aug. 2007.
[Online]. Available: https://api.semanticscholar.org/CorpusID:1696231

[23] P. Avella, M. Boccia, and I. Vasilyev, ‘‘A computational study of exact
knapsack separation for the generalized assignment problem,’’ Comput.
Optim. Appl., vol. 45, no. 3, pp. 543–555, Apr. 2010.

[24] Kubernetes Scheduling Framework. Accessed: Apr. 30, 2024.
[Online]. Available: https://kubernetes.io/docs/concepts/scheduling-
eviction/scheduling-framework/

[25] J. Mestre, ‘‘Greedy in approximation algorithms,’’ in Algorithms—ESA
2006, Y. Azar and T. Erlebach, Eds., Berlin, Germany: Springer, 2006,
pp. 528–539.

[26] S. Khuller, B. Raghavachari, and N. E. Young, ‘‘Greedy methods,’’ in
Handbook of Approximation Algorithms and Metaheuristics. Boca Raton,
FL, USA: CRC Press, 2018, pp. 55–69.

[27] A. R. Tailor and J. M. Dhodiya, ‘‘Multi-objective assignment problems
and their solutions by genetic algorithm,’’ in Computational Management.
Cham, Switzerland: Springer, 2021, pp. 409–428, doi: 10.1007/978-3-030-
72929-5_19.

[28] C.-M. Lai, W.-C. Yeh, and Y.-C. Huang, ‘‘Entropic simplified swarm
optimization for the task assignment problem,’’Appl. Soft Comput., vol. 58,
pp. 115–127, Sep. 2017. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1568494617302120

[29] M. S. Ajmal, Z. Iqbal, F. Z. Khan, M. Ahmad, I. Ahmad, and
B. B. Gupta, ‘‘Hybrid ant genetic algorithm for efficient task scheduling
in cloud data centers,’’ Comput. Electr. Eng., vol. 95, Oct. 2021,
Art. no. 107419. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0045790621003839

[30] M. Iorio, F. Risso, A. Palesandro, L. Camiciotti, and A. Manzalini,
‘‘Computing without borders: The way towards liquid computing,’’ IEEE
Trans. Cloud Comput., vol. 11, no. 3, pp. 2820–2838, Sep. 2023.

[31] S. Galantino, E. Albanese, N. Asadov, S. Braghin, F. Cappa,
A. Colli-Vignarelli, A. Majid, E. M. Fabregas, J. Marino, L. Moro,
L. Nedoshivina, F. Risso, D. Siracusa, A. Skarmeta, and L. Zuanazzi,
‘‘Building the cloud continuum with REAR,’’ in Proc. IEEE Int. Conf.
Netw. Softwarization, Jun. 2024, pp. 67–72.

[32] A. Marletta, ‘‘CPU usage limiter for Linux,’’ Sourceforge, Tech. Rep.,
2012.

[33] M. P. Stanic, ‘‘TC—Traffic control,’’ Linux QOS Control Tool, 2001.
[Online]. Available: https://arvanta.net/mps/linux-tc.pdf

[34] Kubernetes Simple Scheduler—GitHub. Accessed: May 15, 2024.
[Online]. Available: https://github.com/sanposhiho/mini-kube-
scheduler/tree/initial-random-scheduler?tab=readme-ov-file

[35] D. Fortunato and J. Bernardino, ‘‘Progressive web apps: An alternative to
the native mobile apps,’’ in Proc. 13th Iberian Conf. Inf. Syst. Technol.
(CISTI), Jun. 2018, pp. 1–6.

ALBERTO ROBLES-ENCISO received the B.S.
and M.S. degrees in computer science from
the University of Murcia, in 2019 and 2020,
respectively, where he is currently pursuing the
Ph.D. degree. Since 2021, he has been a Seneca
Pre-Doctoral Researcher with the Department
of Information and Communications Engineer-
ing, University of Murcia. His research interests
include orchestration, the Internet of Things, edge
computing, and energy optimization.

ANTONIO F. SKARMETA (Senior Member,
IEEE) received the Ph.D. degree in computer
science from the University of Murcia, Murcia,
Spain. He has been a Full Professor and the
Head of the Research Group ANTS, University
of Murcia, since its creation in 1995. Since 2014,
he has been the Spanish National Representative
of the Marie Skłodowska-Curie Actions within
H2020. He has worked on and coordinated dif-
ferent European Union research projects in the

Internet of Things (IoT) area, such as SMARTIE, SOCIOTAL, IoT6,
and IoTCrawler. His research interests include the integration of security
services, identity, the IoT, and smart cities.

104114 VOLUME 12, 2024

http://dx.doi.org/10.1145/3539606
http://dx.doi.org/10.1007/978-3-031-20984-0_33
http://dx.doi.org/10.1007/978-3-030-72929-5_19
http://dx.doi.org/10.1007/978-3-030-72929-5_19

