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ABSTRACT Low-light images captured at night often suffer from improper exposure, color distortion,
and noise, which degrades the image quality and have a negative influence on subsequent applications.
Many existing deep learning-based methods enhance low-light images through spatial domain, which
may sacrifice the original image information. In this paper, we put forward a deep learning network for
enhancing low-light images based on wavelet transform. We utilize the wavelet transform to divide the
image into various frequency scales and then analyze the frequency characteristics of different low-light
images in the wavelet domain. The proposed network comprises a low-frequency restoration subnet
and high-frequency reconstruction subnet that uses an optimal coefficient of wavelet decomposition to
construct a frequency pyramid. Furthermore, we utilized different attention mechanisms to extract frequency
information from different images, gradually restoring the brightness information and details of low-
light images. Additionally, we utilized a self-constructed multi-scale exposure low-light image dataset for
training. Numerous experiments on publicly accessible datasets and our established dataset show that the
proposed approach quantitatively and qualitatively surpasses state-of-the-art approaches, particularly for
real and complex low-light scenarios. Furthermore, our method produces better visual effects than others
and performs well in real-time and real-word downstream vision tasks.

INDEX TERMS Low-light image enhancement, wavelet transform, multi-scale, attention, deep learning.

I. INTRODUCTION
The rapid development of mobile devices has allowed people
to take photos and share them on social media anytime and
anywhere. However, acquiring high-quality images in low-
light situations is a tough task. Increasing ISO, aperture,
long exposure, and flash can improve the first shot image.
A high ISO enhances the sensitivity of the sensor while
amplifying noise. Furthermore, many devices do not have
large-aperture lenses and large-sized sensors. Moreover,
prolonged exposure can cause motion blurring and limited
usage scenarios. The use of flash lights up the subject of
the shot but makes the photo visually unpleasant. On the
other hand, most users do not know the equivalent exposure
operation and take up a lot of time in post-processing
the photos. They only wanted to obtain satisfactory photos
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quickly. As a result, low-light image enhancement (LLIE) has
always been an important issue of concern to the community,
and developing an efficient LLIE method is essential for
improving the viewing experience and subsequent usability
of images.

Deep learning-based approaches have delivered impressive
results in low-level visual tasks, far surpassing traditional
image enhancement methods, such as defogging [1] and high
dynamic range reconstruction [2]. Traditional approaches like
histogram equalization [3], [4] and gamma correction [5],
[6], stretch the image contrast to restore photos. The Retinex
theory [7], which is founded on the color perception of the
human eyes and color invariance, determines the reflective
properties of objects by eliminating the influence of lighting.
Image fusion [8] combines different images captured from
the same scene to synthesize a single high-quality image to
restore luminance information. Furthermore, Cooley et al.
[9], decomposed an image into amplitude and phase spectra

105674

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-7991-9038
https://orcid.org/0009-0004-0798-3668
https://orcid.org/0009-0004-6627-5186
https://orcid.org/0000-0002-1290-4272
https://orcid.org/0000-0002-1135-5160


Y. Xiang et al.: WMANet: Wavelet-Based Multi-Scale Attention Network for Low-Light Image Enhancement

using the Fast Fourier Transform method, which was then
processed separately and inverted in the spatial domain to
recover the image. However, these handcrafted constraints
and priors must be sufficiently adaptive, and the enhanced
results may result in strong noise or excessive enhance-
ment. Learning-based methods usually sample paired low-
light/normal-light datasets for training and use regularization
terms to constrain the loss. Thus, the model can learn the
mapping relationship between the paired images. There is
no unified optimal lighting, and each user has a different
preference for image lighting. Therefore, simply mapping
low-light images to specific lighting levels is inappropriate.

This paper suggests a deep wavelet transform-based multi-
scale LLIE model to partially solve the above problems
inspired by deep Fourier exposure correction [10] and Multi-
level Wavelet-CNN [11]. First, we constructed a multi-scale
exposure image dataset to make learning more efficient and
infer rich illumination adjustments. Our model comprises
a Low-frequency Repair Network (LRN) module and a
High-frequency Reconstruction Network (HRN) module.
First, the input images were converted to the wavelet domain,
and then the frequency pyramids were constructed using
the optimal wavelet decomposition coefficients. Following
the principle of the divide-and-conquer method, LRN is
used to recover the luminance information for the low-
frequency portion, in which the Simplified Attention (SA)
mechanism is designed to reasonably assign weights to
different lighting regions, enhance the interaction between
regions with different exposure levels, and remove the
transposed convolution to avoid the artifacts in the image,
HRN to reconstruct the details and reduce the noise, where
the feature extraction block (FEB) is applied to efficiently
extractor the features of each high-frequency portion, and
then the cross-attention mechanism is utilized to fuse the
different high-frequency information. The loss function is
carefully crafted to constrain the reconstruction and colors
such the low-light images can be effectively recovered with
reasonable exposure, precise details, and vivid colors. The
following are the main contributions of this paper:

• We propose a low-light image enhancement network
that employs wavelet transform to construct a frequency
pyramid, extracting multi-scale critical features from the
training dataset for efficient image enhancement.

• We further designed a low-frequency restoration net-
work (LRN) and a high-frequency reconstruction net-
work (HRN), where the SA of the LRN efficiently
assigns weights to different light regions, and the HRN
utilizes FEB and cross-attention for efficient learning
and feature fusion.

• A new dataset was constructed that contained seven
scales of exposure levels and 22,500 images, each with
expert-retouched references.

• We executed comprehensive experiments on publicly
available datasets and our established dataset, to evaluate
the robustness and effectiveness of the put forward
model.

II. RELATED WORK
This section briefly reviews various existing LLIE meth-
ods, which can be categorized into two main types:
traditional-based and deep-learning-based LLIE approaches.
Traditional-based enhancement approaches include his-
togram equalization, image fusion, and Retinex theory.
Lately, deep-learning-based approaches have become the
most popular.

A. TRADITIONAL-BASED LLIE METHOD
Histogram Equalization (HE) [3], [12], [13] is a classic
method for image enhancement. If an image has an even
distribution of pixel values among all grayscale levels,
it exhibits high contrast and broad dynamic range. Con-
sequently, the HE algorithm adjusts the grayscale using a
uniform probability density function to reproduce dark area
details. However, simply changing the mapping relationship
of pixels in HE needs to be more flexible, it may ignore
the structural information of the image, which results in
insufficient enhancement and noise amplification issues.

To address the limited dynamic range problem in images
and the loss of structural information, a stack-based high
dynamic range (HDR) [14] method was proposed to combine
multi-exposure images into an HDR map and subsequently
compress the dynamic range of themap using a tone-mapping
operator thereby reproducing scenes in the dark. Unlike the
HDRmethod, the multi-exposure fusion (MEF) method [15],
[16] generates HDR images by using multiple exposures
of the same scene and captures the best details of each
image based on the exposure time. Furthermore, Merianos
and Mitianoudis [17] used two image fusion methods, one
for brightness and the other for color. These methods yield
good results but require several images of the same scene.
Consequently, achieving fast real-time image enhancement
is complex, and images with low global illumination exhibit
poor restoration effects.

Retinex theory [7] typically decomposes images into
reflectance and illuminance components, assuming that the
reflectance component is concord under any illumination
condition. Therefore, the LLIE was formulated as an
illumination estimation problem. Wang et al. [18] presented
a method for maintaining natural details when processing
non-uniform illumination images. Additionally, Guo et al.
[19] refined the luminance map by obtaining the peak
intensity at each pixel location and incorporating structured
priors. Retinex theory-basedmethods have apparent strengths
when it comes to color image enhancement. However, using
Gaussian convolutional kernels for illumination estimation
cannot preserve edges [20], whichmay lead to halos in certain
areas with clear boundaries or overexposed images.

B. DEEP LEARNING- BASED LLIE METHOD
Recent years, the popularity of deep learning has driven
the development of the LLIE field, and many excellent
techniques have emerged [21], [22], [23], [24], [25], [26],
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[27], [28], [29], [30]. Wei et al. [24] presented Retinex-
Net by combines the retinex theory and neural networks
to estimate luminance maps and restore low-light images.
Furthermore, Sobbahi and Tekli [25] proposed LLHF-Net to
incorporate homomorphic filtering into a neural network to
perform image-to-frequency learning, and designed extended
models that can be used in different deep learning archi-
tectures. The EnlightenGAN presented by Jiang et al. [26]
is an unsupervised generative adversarial network (GAN)
that uses multiple-degree discriminators, self-regularization
perception loss, and attention mechanisms to constrain
non-paired data learning. Additionally, Li et al. [27] put for-
ward a Zero-Reference Deep Curve Estimation (Zero-DCE)
method that accepts low-light images as input and computes
higher-order curves to improve the image by adjusting its
dynamic range. Ma et al. [28] designed a self-calibrated
illuminant system (SCI) that utilized a cascade illuminant
learning methodology with weights sharing. Moreover, the
SNR-Net proposed by Xu et al. [29] combines CNN and
Transformer to improve low-light images by performing
long-range and short-range operators on different regions
of the image using the signal-to-noise ratio prior of the
images. Cai et al. [30] put forward the Retinexformer, which
introduced the Transformer into the Retinex model by first
calculating the illumination information and then utilizing the
Illumination-Guided Transformer to non-locally interact with
different lighting regions of the image.Moreover, Huang et al.
[10] introduced (FECNet), by converting the image to the
frequency domain via Fourier Transform and then applied an
amplitude sub-network and phase sub-network approach to
adjust the image exposure.

Overall, deep learning-based approaches typically process
images in the spatial domain, the structure of the Transformer
requires larger computational resources and guidance from
image priori, and they rarely explore potential solutions
from the frequency domain. However, the global information
in an image can be effectively captured in the frequency
domain. Some studies [31], [32], [33] have investigated
strategies to improve neural networks’ generalization ability
and data enhancement using Fourier transform. Generally,
the Fourier transform divides an image into low and high-
frequency parts, which may not capture the local structural
information of the image, leading to further information
leakage after the inverse transformation. Most of the current
methods use paired datasets that contain only low-light and
the corresponding ground-truth images, and further ignore
multiple exposure levels in between. Consequently, methods
trained on these datasets have poor generalization in real
complex low-light scenes and are prone to color distortion.
We will describe our proposed methodology and dataset in
Sections III and IV, respectively, to address the above issues.

III. PROPOSED METHOD
A. MOTIVATION
In this paper, we introduce a new wavelet-based perspective
for LLIE, that facilitates the restoration of frequency

domain information. Following the literature [34] the wavelet
transform is an expression between the Fourier and spa-
tial domains that decomposes a signal into a series of
independent, spatially orientated frequency channels. The
low-frequency component comprises most of the luminance
information, whereas the high-frequency component com-
prises the structural and textural information. First, let’s relive
the operations and properties of the wavelet transform, given
a low-light image x ∈ RH×W×C , we down-sample and
transform the input image into one low-frequency portion
and three high-frequency portions using a two-dimensional
discrete wavelet transform (2D-DWT) with a Symlet wavelet
function, which can be formulated as follows:

{Alow, Vlow, Hlow, Dlow} = 2D - DWT(x), (1)

where Alow denotes the low-frequency coefficient of the
image, which impacts the global brightness of the image, and
Vlow, Hlow, Dlow denote the high-frequency coefficients of
the image, which represent the details of the image in the
horizontal, vertical, and diagonal directions, respectively.
As seen in Fig. 1, the low-light image can be restored

to approximately the same light level as normal-light by
exchanging the low-frequency coefficients and then inverting
them using a two-dimensional inverse discrete wavelet
transform (2D-IDWT). Therefore, the key to restoring
low-light images in the wavelet domain is to restore the
low-frequency coefficients of the low-light images, i.e.,
restore the low-frequency coefficients that are consistent
with the normal-light images. It can also be seen in
Fig. 1 that detail is lost in low-light images compared
to normal-light images, and is not sufficient enough to
restore the low-frequency coefficients but the high-frequency
coefficients, which represent the detail information, also need
to be enhanced. Therefore, we designed a low-frequency
restoration network (LRN) and high-frequency reconstruc-
tion network (HRN) to achieve light restoration and detail
reproduction from low-light images.

B. OVERALL NETWORK FRAMEWORK
Fig. 2 illustrates the general framework of the suggested
approach. First, the low-light image is converted into
wavelet domain using 2D-DWT. To construct the wavelet
pyramid structure and coarse-to-fine extraction of image
features, we decomposed the image l times and obtained
low-frequency and high-frequency coefficients each time.
This can be formulated as follows:{

Al low, V l
low, H l

low, Dl low
}

= 2D - DWT(Al−1
low),

(2)[
C l, L l

]
= 2D - DWT(x, l, ‘sym2′), (3)

where Al low, V l
low, H l

low, Dl low ∈ R
H
2l

×
W
2l

×C ,
l∈[1, l] and C l represents the low-frequency coefficients
after each decomposition corresponding to the Al low. The
L l represents the three high-frequency coefficients after
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FIGURE 1. Schematic diagram of low-frequency wavelet coefficient exchange between a low-light image and a normal-light image.

FIGURE 2. The overall framework of the put forward approach, consisting of LRN and HRN.

each decomposition corresponding to {Vlow, Hlow, Dlow},
and sym2 is a wavelet function with approximate symmetry
proposed by Daubechies [35], to reduce the phase distortion
during the decomposition and reconstruction of images.
Subsequently, we input the low-frequency coefficients C of
each layer of the wavelet pyramid into the low-frequency
restoration network and the high-frequency coefficients
L into the high-frequency reconstruction network. The
enhanced low-frequency and high-frequency portions are
reconstructed by the 2D-IDWT to rebuild the recovered
low-light image ŷ, which is formulated as follows:

ŷl−1
= 2D - IDWT(

{
Âllow, V̂ l

low, Ĥ l
low, D̂llow

}
). (4)

Such a refinement transformation process continues until the
final output image is generated.

C. LOW-FREQUENCY RESTORATION NETWORK (LRN)
As shown in Fig. 3, the LRN comprises three encoder
modules (E1, E2, E3) and two decoder modules (D1, D2),
which receive the low-frequency portion of the extracted
wavelet pyramid decomposition Al low. Each encoder block
consists of the following sequence of two convolutional
layers and the LReLU [36] activation layer, which are
downsampled using max-pooling. Finally, critical infor-
mation is extracted by a designed simple attention (SA)
mechanism before moving to the next level of encoder.
In the input multi-scale low-light image, some regions
are underexposed, while others are normally exposed. The
attention mechanism can assign different weights to different
regions of illumination and enhance non-local interactions
between different exposure levels, resulting in a natural
light distribution in the enhanced image. The same structure
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FIGURE 3. The main structures of: (a) LRN module. (b) A simple attention.

FIGURE 4. The main structures of: (a) HRN module. (b) Feature Extraction Block (FEB).

was used for decoder blocks D1 and D2. Considering that
the frequent use of transpose convolution at multiple levels
produces noticeable checkerboard artifacts [37], instead of
using transpose convolution for upsampling as in U-Net [38],
we employ line nearest neighbor upsampling and then
convolution instead. The final LRN uses a fully connected
layer to synthesize the extracted features to obtain the final
output Âllow.

D. HIGH-FREQUENCY RESTORATION NETWORK (HRN)
To enhance low-light images and restore rich details, we pro-
pose a high-frequency reconstruction network for enhancing
high-frequency information. As shown in Fig. 4, we first
extract the features from high-frequency coefficients V l

low,
H l
low, and D

l
low using three feature extraction blocks (FEB),

which mainly consist of depth-separable convolution [39]

and LReLU, which can effectively reduce the computational
and parametric quantities, and also increase the inference and
operation efficacy of the proposed model. The diagonal
details are then supplemented using two cross-attention
layers [40] by utilizing the horizontal and vertical details.
Subsequently, we proposed a progressive dilationmodule that
extracts local information in the first and last convolutions
while improving the sensory field to utilize distant informa-
tion better in the middle convolutions. The gradual increase
and decrease in the dilation rate can efficiently prevent the
grid effect of the image. Eventually, we used the previous
three FEB to obtain the reconstructed high-frequency coef-
ficients V̂ l

low, Ĥ
l
low, and D̂

l
low. After obtaining the recovered

low-frequency coefficients and reconstructed high-frequency
coefficients, we can apply 2D-IDWT to obtain the output ŷl−1

with a scale of l-1.
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E. LOSS FUNCTION
The put forward model was trained in an end-to-end manner
with the objective of minimizing a loss function:

Ltotal = Llow + Lhigh, (5)

where Llow denotes the loss in the low-frequency restoration
network and Lhigh denotes the loss in the high-frequency
network.

1) LOW FREQUENCY LOSS
The low-frequency loss comprises the absolute loss and struc-
tural similarity SSIM loss [41], minimizing the discrepancy
between the restored low-frequency coefficients and those of
the normal-light image. The specific formulae are as follows:

Llow =

∑l

l=1

∣∣∣Ĉ l
low−Ĉ l

nor

∣∣∣
1
+ (1 − SSIM (Ĉ l

low, Ĉ l
nor )),

(6)

where Ĉ l
low denotes the low-frequency coefficients of the lth

layer of the wavelet decomposition of the network output,
and Ĉ l

nor is the low-frequency coefficients of the lth layer of
the wavelet decomposition of the corresponding normal-light
image.

2) HIGH FREQUENCY LOSS
We employed the Mean Square Error (MSE) loss to measure
the variation among details. Additionally, we add Total
Variation (TV) loss [42] to ensure result smoothness and
hence prevent over-enhancement, avoiding artifacts and
amplifying noise. This can be formulated as follows:

Lhigh = λ1

∑l

l=1
∥L̂ llow−L̂ lnor∥2+ λ2

∑l

l=1
TV (̂L llow),

(7)

where L̂ llow represents the high-frequency coefficients of the
lth layer of the wavelet decomposition of the network output,
and L̂ lnor represents the high-frequency coefficients of the
lth layer of the wavelet decomposition of the corresponding
normal-light image. λ1 and λ2 are the weights of each term.
In the experiments, we set λ1 and λ2 to 0.01 and 0.1,
respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This section first presents implementation details, test
datasets, and evaluation metrics. Then, quantitative and qual-
itative results are introduced, and the results are contrasted
with the current state-of-the-art low-light image enhancement
approaches. Finally, an ablation experiment is conducted to
show the efficacy of each component of the put forward
model.

A. IMPLEMENTATION DETAILS
We built our network on Pytorch and trained and tested it on a
core i9 3.7GHz CPU and two NVIDIA RTX 3060 GPUs. The
entire network was optimized using the Adam optimizer [43],
with an initial learning rate of 0.0001 and a cosine annealing

schedule [44]. The images were randomly cropped into 512×

512 segments for training, and the corresponding batch size
was set to 64 according to the GPU memory. The wavelet
transform ratio l was set to 3.

B. DATASET
1) OUR ESTABLISHED DATASET
Unlike existing low-light datasets, we created a novel
vast collection of images with diverse exposure levels.
Fig. 5 shows the differences in exposure levels across our
established dataset and the LOL dataset [24]. Compared with
our dataset, the LOL dataset had a relatively limited exposure
level of coverage. We need many training images to train
our proposed model correctly, including realistic multi-scale
exposure levels and the corresponding ground truth. Our
dataset came from the MIT-Adobe FiveK dataset [45], with
5,000 raw-RGB images, and the related sRGB images were
manually rendered by five professional photographers. For
every raw image, we utilized Adobe Lightroom Classic to
accurately simulate the nonlinear camera rendering process.
We rendered every original image with varying digital
exposure values (EV) for realistic multi-scale exposure.
In detail, we utilized relative EVs -4.0, -3.0, -2.0, and
+1.0, to render underexposed and overexposed images. The
ground truth, as the correct exposure of our dataset, was
an image that was manually modified by a professional
photographer.

FIGURE 5. Comparison of the exposure levels of our dataset with those
of the LOL dataset.

We meticulously chose 4,500 images out of the initial
5,000 raw images and eliminated silhouette photos, art
photos, and images with exposure errors and noticeable noise.
Our established dataset comprises a total of 22,500 8-bit
sRGB images with disparate digital exposure settings. The
dataset was bifurcated into three categories: (i) a training set
with 17,500 images and (ii) a testing set with 5,000 images.
Each set presented distinct scenarios for training and testing.

2) TEST DATASET
Besides the dataset we built in the previous subsection,
we also used the paired dataset LOL [24], which encompasses
500 pairs of natural low-light/normal-light photography.
Furthermore, we employed the following unpaired datasets:
LIME [19] (with 10 images), DICM [46] (with 64 images),
MEF [47] (with 17 images), VV [48] (with 24 images), and
ExDark [49] (with 7358 images) to assess the capability of
the suggested model.
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TABLE 1. Performance evaluation comparison of various low-light image enhancement approaches on our established dataset using four evaluation
metrics and runtime. The bold-red font indicates the best result, and the second-best result is formatted with bold-blue font.

TABLE 2. Performance evaluation comparison of various low-light image enhancement approaches on the paired LOL dataset using four evaluation
metrics and runtime. The bold-red font indicates the best result, and the second-best result is formatted with bold-blue font.

3) EVALUATION METRICS
For the paired dataset, the following four criteria metrics
were used to assess the pixel precision and perceived
quality of the output results: (i) peak signal-to-noise ratio
(PSNR), (ii) structural similarity (SSIM), (iii) Learned
perceptual image patch similarity [50] (LPIPS), and (iv)
Delta-E [51] (1E). Furthermore, we used the Natural Image
Quality Evaluator [52] (NIQE) as a non-reference assessment
metric for the non-paired datasets. This reconstruction
metric does unnecessary ground truth images and is more
consistent with human visual habits. The higher PSNR
and SSIM values denote better image quality, whereas
lower LPIPS and 1E values denote better image quality.
Furthermore, we provide runtime analysis of each method
to further evaluate its computational efficiency and real-time
performance.

C. COMPARISION WITH STATE-OF-THE-ART
We compared our method with nine state-of-the-art deep
learning-based method-ologies, including Retinex-Net [24],
LLHF-Net [25], EnlightenGAN [26], Zero-DCE++ [27],
SCI [28], URetinex-Net [53], UHDFour [54], SNR-Net [29]
and Retinexformer [30]. For a fair comparison, we employed
the openly implemented and recommended parameter set-
tings provided by the corresponding authors of each approach
to enhance low-light images.

1) QUANTITATIVE COMPARISONS
We first assessed the efficacy of diverse methods on our
established dataset (as detailed in Section IV-B1). The results
achieved by each technique are summarized in Table 1.
The put forward approach exceeds other state-of-the-art
approaches on all four indicators, has a significant lead, and
has the shortest running time.

In order to ascertain the model’s generalization capacity,
we further assessed the LOL dataset without retraining or
fine-tuning. Basically, LOL paired dataset is the training
dataset used by most of the existing methods. The perfor-
mance evaluation comparison for these experimental results
is presented in Table 2. Our suggested method lags slightly
behind Retinexformer and URetinex-Net in two metrics of
pixel accuracy. In the perceptual metrics LPIPS and 1E are
both best, indicating that our method can have better visual
quality. It is also only behind SNR-Net in runtime. Finally,
there was no reference evaluation indicator NIQE. Due to the
lack of authentic reference images, our proposed multi-scale
wavelet model exerts the corresponding advantages. As pre-
sented in Table 3, our approach takes the lead for multiple
datasets and provides the best results on average.

2) QUALITATIVE COMPARISONS
To verify the effectiveness of the suggested model, a series
of comparison experiments were performed for qualitative
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TABLE 3. Summary of natural image quality evaluator (NIQE) scores on various low-light image datasets, with red being the best result and blue the
second best.

FIGURE 6. Visual comparison results with various approaches on a complex multi-light source image from our established dataset, zooming
in to get the best viewing effect.

verification. Figures 6 and 7 visually compare two challeng-
ing cases, using a complex multi-light source image from
our established dataset (Figure 6 (a)) and an overall low-light
image with almost no feature (Figure 7 (a)). From these two
figures, it can be seen that our put forward approach can
restore more details and better contrast while keeping the
overall exposure more reasonable. From these two figures,
it can be seen that our put forward approach can restore more
details and better contrast while keeping the overall exposure
more reasonable. Other methods, such as Retinex-Net and
LLHF-Net, greatly amplify noise, produce artifacts, and
unnaturally enhance results. SCI and SNR-Net did not
improve the image significantly and were less effective than
others. URetinex-Net and UHDFour recover well, but the
image suffers from blurring and color undersaturation.

In addition, we provide a visual comparison of the
ExDark dataset without reference images, as illustrated in
Fig. 8. Our suggested approach achieves suppression of
noise and artifacts by restoring people’s exposure without
over-enhancing the image. Overall, the proposed approach
produces better visual effects than the other approaches,
which further proves its excellent generalization ability for
different types of low-light images.

3) LOW-LIGHT OBJECT DETECTION
This section examines the effects of different LLIE
approaches as preprocessing on the efficacy of object
detection under low-light conditions. Specifically, we made
a comparison with the ExDark dataset, which has a
composition of 7358 images obtained in actual nighttime
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FIGURE 7. Visual comparison results with various approaches on a very low-light image with from the paired LOL dataset, zooming in to get
the best viewing effect.

FIGURE 8. Visual comparison results with various approaches on the ExDark dataset, note that ExDark dataset does not have reference
image, zooming in to get the best viewing effect.

settings, including 12 classes of objects. Our proposed
method and the comparison method are first applied as a
preprocessing step, and then the final results are evaluated
using the latest object detection technique Yolov10 [55].
Different enhancement methods impact the performance of

the object detection algorithms, as shown in Fig. 9. The
LLHF-Net approach blurs the image and creates artifacts
resulting in poor detection. The Zero-DCE approach detects
more objects but the noise problem makes the targets less
credible. Our method can detect the most number of object
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FIGURE 9. Visual comparison of object detection results before and after enhanced by various approaches on the ExDark dataset, zooming
in to get the best viewing effect.

classes and the highest confidence level while improving the
image quality.

D. ABLATION STUDY
In this section, we execute two sets of experiments to evaluate
the impact of employing various parts in the proposed model.
We trained all of them using the implementation details
presented in Section IV-A and test them on our constructed
dataset.

1) WAVELET DECOMPOSITION SCALE
Wavelet decomposition takes progressively finer spatial or
frequency-domain steps for high frequencies so that it can
be focused on analyzing arbitrary details of the image, but
too many wavelet decomposition layers do not mean that
the final enhancement result will be better, so it is essential
to identify the optimum number of wavelet decomposition
layers. We selected sym2 wavelet and used five different
decomposition scales for the experiment, and the results
are illustrated in Table 4. It can be noticed that, as the
wavelet scale l gradually increases, all four metrics become
higher, runtime is also increasing. However, when l =

4 or 5, the evaluation metrics were not as ideal as when
l = 3. In light of the trade-off between computational
efficiency and performance, it was determined that the
wavelet decomposition scale l should be set to 3.

2) KEY MODULES
We previously introduced the simplified attention mech-
anism (SA) and feature extraction block (FEB) in the
low-frequency repair and high-frequency reconstruction

TABLE 4. Quantitative results for various evaluation metrics at different
wavelet decomposition scales, bold font represents the best performance.

TABLE 5. In a blation studies of the effectiveness of the simplified
attention (SA) and feature extraction block modules (FEB), bold font
represents the best performance.

networks, respectively. We performed the following ablation
experiments to verify their efficiency. As illustrated in
Table 5, a total of four sets of experiments were performed:
(i) default model (proposed model), (ii) removal of SA alone
from low-frequency repair network, (iii) removal of FEB
alone from high-frequency reconstruction network, and (iv)
removal of both SA and FEB. The results show that the
evaluation metrics using the default model are the best, and
consider removing a module alone decreases the effect of
each module accordingly. Furthermore, the effect was the
worst in the case of removing both SA and FEB. It was proven
that the proposed SA and FEB were indispensable in the
proposed network.
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V. CONCLUSION
This paper put forward a deep-learning model for LLIE. Our
key idea is to construct a frequency pyramid of low-light
images in terms of a wavelet transform, starting from
the global color information of the image and gradually
enhancing the image details. To this end, for different
frequency components, we constructed a low-frequency
restoration network (LRN) and a high-frequency recon-
struction network (HRN) to enhance the low-frequency
and high-frequency information, respectively. Moreover,
we introduce a simplified attention mechanism (SA) and
a feature extraction block (FEB) in different networks
and demonstrate their effectiveness in ablation experiments.
Additionally, we constructed a new dataset consisting of
4500 multi-scale expo-sure image pairs to compensate for
the shortcomings of the existing datasets. This enables the
proposed model to recover precise details, sharp contrasts,
and vivid colors in complex low-light scenes. Extensive
experiments prove that our proposed method produces more
convincing results than the existing LLIE approaches. In the
future work, we will address the problem of unprocessed
sensor noise and challenging imaging under extremely dark
conditions.
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